
278

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A One-Shot Dynamic Optimization Methodology and Application Metrics
Estimation Model for Wireless Sensor Networks

Arslan Munir and Ann Gordon-Ross
Department of Electrical and Computer Engineering

University of Florida, Gainesville, Florida 32611
Email: amunir@ufl.edu, ann@ece.ufl.edu

Susan Lysecky and Roman Lysecky
Department of Electrical and Computer Engineering

University of Arizona, Tucson, Arizona 85721
Email: {slysecky, rlysecky}@ece.arizona.edu

Abstract—Wireless sensor networks (WSNs), consisting
of autonomous sensor nodes, have emerged as ubiquitous
networks that span diverse application domains (e.g.,
health care, logistics, defense) each with varying application
requirements (e.g., lifetime, throughput, reliability). Typically,
sensor-based platforms possess tunable parameters (e.g.,
processor voltage, processor frequency, sensing frequency),
which enable platform specialization for particular application
requirements. WSN application design can be daunting for
application developers, which are oftentimes not trained
engineers (e.g., biologists, agriculturists) who wish to
utilize the sensor-based systems within their given domain.
Dynamic optimizations enable sensor-based platforms to tune
parameters in-situ to automatically determine an optimized
operating state. However, rapidly changing application
behavior and environmental stimuli necessitate a lightweight
and highly responsive dynamic optimization methodology. In
this paper, we propose a very lightweight dynamic optimization
methodology that determines initial tunable parameter settings
to give a high-quality operating state in one-shot for time-
critical and highly constrained applications. We compare
our one-shot dynamic optimization methodology with other
lightweight dynamic optimization methodologies (i.e., greedy-
and simulated annealing-based) to provide insights into the
solution quality and resource requirements of our methodology.
Results reveal that the one-shot solution is within 8% of the
optimal solution on average. To assist dynamic optimizations
in determining an operating state, we propose an application
metric estimation model to establish a relationship between
application metrics (e.g., lifetime, throughput) and sensor-based
platform parameters.

Keywords-Wireless sensor networks, dynamic optimization,
application metrics estimation

I. I NTRODUCTION AND MOTIVATION

Wireless sensor networks (WSNs) consist of spatially
distributed autonomous sensor nodes that observe a
phenomenon (environment, target, etc.). WSNs are
becoming ubiquitous because of their proliferation in
diverse application domains (e.g., defense, health care,
logistics) each with varying application requirements
(e.g., lifetime, throughput, reliability) [1]. For example,
a security/defense system may have a higher throughput
requirement whereas an ambient conditions monitoring
application may be more sensitive to lifetime. This diversity

makes WSN design challenging with commercial-off-the-
shelf (COTS) sensor nodes.

COTS sensor nodes are mass-produced to optimize cost
and are not specialized for any particular application.
Furthermore, WSN application developers oftentimes are
not trained engineers, but rather biologists, teachers, or
agriculturists who wish to utilize the sensor-based systems
within their given domain. Fortunately, many COTS sensor
nodes possess tunable parameters (e.g., processor voltage
and frequency, sensing frequency) whose values can be
tunedfor a specific application. Faced with an overwhelming
number of tunable parameter choices, WSN design can be a
daunting task for non-experts and necessitates an automated
parameter tuning process for assistance.

Parameter optimizationis the process of assigning
appropriate (optimal or near-optimal) values to tunable
parameters either statically or dynamically to meet
application requirements.Static optimizations assign
parameter values at deployment and these values
remain fixed during the sensor node’s lifetime. Accurate
prediction/simulation of environmental stimuli is challenging
and applications with changing environmental stimuli do
not benefit from static optimizations. Alternatively,dynamic
optimizationsassign parameter values during runtime and
reassign/change these values in accordance with changing
environmental stimuli, thus enabling close adherence to
application requirements.

There exists much research in the area of dynamic
optimizations [2][3][4][5][6], but most previous work targets
the memory (cache) or processor in computer systems.
Little work exists on WSN dynamic optimization, which
presents additional challenges because of a unique design
space, energy constraints, and operating environment.
The dynamic profiling and optimization (DPOP) project
aspires to alleviate the complexities associated with sensor-
based system design using dynamic profiling methods
capable of observing application-level behavior and dynamic
optimization to tune the underlying platform accordingly [7].
The DPOP project has evaluated dynamic profiling methods
for observing application-level behavior by gathering
profiling statistics, but dynamic optimization methods still

279

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

need exploration. In this paper, we explore a fine-grained
design space for sensor-based platforms with many tunable
parameters to more closely meet application requirements
(Gordon-Ross et al. [8] showed that finer-grained design
spaces provide interesting design alternatives and resultin
increased benefits in the cache subsystem). The exploration
of a fine-grained design space coupled with limited battery
reserves and rapidly changing application requirements and
environmental stimuli necessitates a lightweight and highly
responsive dynamic optimization methodology.

Our main contributions in this paper are:

• We propose a lightweight dynamic optimization
methodology that determines appropriate initial tunable
parameter values to give a good quality operating
state (tunable parameter value settings) inone-shot
with minimal design exploration for highly constrained
applications. Results reveal that this one-shot operating
state is within 8% of the optimal solution (obtained
from exhaustive search) averaged over several different
application domains and design spaces.

• We evaluate alternative initial parameter settings
to provide a comparison with our one-shot initial
parameter settings. Results reveal that the average
percentage improvement attained by the one-shot initial
parameter settings over alternative initial parameter
settings for different application domains and design
spaces is 33% on average.

• We analyze memory and execution time requirements
of our one-shot dynamic optimization methodology
and compare these with other lightweight dynamic
optimization methodologies (greedy- and simulated-
annealing (SA)-based). Results indicate that our one-
shot dynamic optimization methodology requires 204%
and 458% less memory on average as compared to
the greedy- and SA-based methodologies, respectively.
The one-shot solution requires 18% less execution
time on average as compared to the greedy- and SA-
based methodologies even if these methodologies are
restricted to explore only 0.03% of the design space on
average.

• To assist dynamic optimizations in determining an
operating state, we for the first time, to the best of our
knowledge, propose anapplication metric estimation
model, which estimates high-level application metrics
(lifetime, throughput, and reliability) from sensor-
based platform parameters (e.g., processor voltage and
frequency, sensing frequency, transceiver transmission
power, etc.). Our one-shot dynamic optimization
methodology leverages this estimation model when
comparing different operating states for optimization
purposes. We emphasize that this application metric
estimation model can be leveraged by any dynamic
optimization methodology and facilitates the WSN

design process.

The remainder of this paper is organized as follows.
Section II surveys previous work in the area of dynamic
optimizations. Section III presents our one-shot dynamic
optimization methodology and Section IV describes our
application metrics estimation model leveraged by our one-
shot dynamic optimization methodology. Section V presents
experimental results and Section VI presents conclusions and
future research work directions.

II. RELATED WORK

There exists much research in the area of dynamic
optimizations [2][3][4][5][6][9][10], however, most previous
work focuses on the processor or memory (cache) in
computer systems. Whereas previous work can provide
valuable insights into WSN dynamic optimizations, these
works are not directly applicable due to a WSN’s unique
design space, energy constraints, and operating environment.

In the area of WSN dynamic profiling and optimizations,
Sridharan et al. [11] obtained accurate environmental
stimuli by dynamically profiling the WSN’s operating
environment, but did not propose any methodology to
leverage these profiling statistics for optimizations. Shenoy
et al. [12] presented profiling methods for dynamically
monitoring sensor-based platforms and analyzed the
associated network traffic and energy, but did not explore
dynamic optimizations. In prior work, Munir et al.
[13] proposed a Markov Decision Process (MDP)-based
methodology as a first step towards WSN dynamic
optimizations, but this method required prohibitively large
computational resources for larger design spaces. Ideally,
this method required a base station node with more
computing resources to carry out the optimal operating
state determination process, and these operating states
could be communicated to other sensor nodes. The large
computational requirements inhibited the methodology’s
implementation on resource constrained sensor nodes to
enable autonomous operating state decisions. Kogekar et
al. [14] proposed an approach for dynamic software
reconfiguration in WSNs using adaptive software, which
used tasks to detect environmental changes (event
occurrences) and then adapted the software to the
new conditions. Though their work considered software
reconfiguration, they did not consider senor node tunable
parameters.

In the area of WSN optimizations, Wang et al.
[15] proposed a distributed energy optimization method
for target tracking applications. The energy management
mechanism consisted of an optimal sensing scheme that
leveraged dynamic awakening of sensor nodes. The
dynamic awakening scheme awoke the group of sensor
nodes located in the target’s vicinity for reporting the
sensed data. The results verified that dynamic awakening
combined with optimal sensor node selection enhanced

280

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the WSN energy efficiency. Liu et al. [16] proposed
a dynamic node collaboration scheme for mobile target
tracking in wireless camera sensor networks (wireless
camera sensor networks can provide much more accurate
information in target tracking applications as compared
to traditional sensor networks). The proposed scheme
comprised of two components: a cluster head election
scheme during the tracking process and an optimization
algorithm to select an optimal subset of camera sensors
as the cluster members for cooperative estimation of the
target’s location. Khanna et al. [17] proposed a reduced-
complexity genetic algorithm for secure and dynamic
deployment of resource constrained multi-hop WSNs. The
genetic algorithm adaptively configured optimal position
and security attributes by dynamically monitoring network
traffic, packet integrity, and battery usage.

Several papers explored dynamic voltage and frequency
scaling (DVFS) for reduced energy consumption in WSNs.
Min et al. [18] demonstrated that dynamic processor
voltage scaling reduced energy consumption by 60%.
Similarly, Yuan et al. [19] studied a DVFS system
that used additional transmitted data packet information
to select appropriate processor voltage and frequency
values. Although DVFS provides a mechanism for dynamic
optimizations, considering additional sensor node tunable
parameters increases the design space and the sensor node’s
ability to better meet application requirements. To the best of
our knowledge, our work is the first to explore an extensive
sensor node design space.

In prior work, Lysecky et al. [20] proposed SA-based
automated application specific tuning of parameterized
sensor-based embedded systems and found that automated
tuning can better meet application requirements by 40%
on average as compared to a static configuration of
tunable parameters. Verma [21] studied SA-based and
particle swarm optimization (PSO) methods for automated
application specific tuning and observed that an SA-based
method performed better than PSO because PSO often
quickly converged to local minima. Exhaustive search
algorithms have been used in literature for performance
analysis and comparison with heuristic algorithms. Mannion
et al. [22] proposed a PareDown decomposition algorithm
for partitioning pre-defined behavioral blocks onto a
minimum number of programmable sensor blocks and
compared the partitioning algorithm’s performance with an
exhaustive search algorithm. Meier et al. [23] proposed an
exhaustive search based scheme called NoSE (Neighbor
Search and link Estimation) for neighbor search, link
assessment, and energy consumption minimization.

Even though there exists some work on optimizations in
WSNs [15][18][19][24][25][26][27], dynamic optimizations
require further research and more in depth considerations.
Specifically, a sensor node’s constrained energy and storage
resources necessitate lightweight dynamic optimization

Figure 1. One-shot dynamic optimization methodology for wireless sensor
networks.

methodologies for sensor node parameter tuning.

III. D YNAMIC OPTIMIZATION METHODOLOGY

In this section, we give an overview of our one-
shot dynamic optimization methodology and the associated
algorithm. We also formulate the state space and objective
function for our methodology.

A. Overview

Fig. 1 depicts our one-shot dynamic optimization
methodology for WSNs. WSN designers evaluate
application requirements and capture these requirements as
high-level application metrics(e.g., lifetime, throughput,
reliability) and associatedweight factors. The weight
factors signify the relative weightage/importance of
application metrics with respect to each other. The dynamic
optimization methodology leverages an application metric
estimation model to determine application metric values
offered by an operating state (we describe this application
metric estimation model in Section IV).

Fig. 1 shows the per-node one-shot dynamic optimization
process (encompassed by the dashed circle), which is
orchestrated by thedynamic optimization controller. The
dynamic optimization controller invokes theone-shot
step wherein the sensor node operating state is directly
determined by intelligent tunable parameter value settings,
and hence the methodology is termed asone-shot. The one-
shot step also determines an exploration order (ascending
or descending) for tunable parameters. This exploration
order can be leveraged by anonline optimization algorithm
to provide improvements over the one-shot solution by
further design space exploration and is the focus of our
future work. This exploration order is critical in reducing
the number of states explored by the online optimization

281

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

algorithm. The sensor node moves directly to the operating
state specified by the one-shot step. Adynamic profiler
records profiling statistics (e.g., battery energy, wireless
channel condition) given the current operating state and
environmental stimuli and passes these profiling statistics
to the dynamic optimization controller.

The dynamic optimization controller processes the
profiling statistics to determine if the current operating
state meets the application requirements. If the application
requirements are not met, the dynamic optimization
controller reinvokes the one-shot dynamic optimization
process to determine the new operating state. This feedback
process continues to ensure the selection of a good operating
state to better meet application requirements in the presence
of changing environmental stimuli.

B. State Space

The state spaceS for our one-shot dynamic optimization
methodology givenN tunable parameters is defined as:

S = P1 × P2 × · · · × PN (1)

where Pi denotes the state space for tunable parameter
i, ∀ i ∈ {1, 2, . . . , N} and× denotes the Cartesian product.
Each tunable parameterPi consists ofn values:

Pi = {pi1 , pi2 , pi3 , . . . , pin} : |Pi| = n (2)

where |Pi| denotes the tunable parameterPi’s state space
cardinality (the number of tunable values inPi). S is a set
of n-tuples (each n-tuples represents a sensor node state)
formed by taking one tunable parameter value from each
tunable parameter. A single n-tuples ∈ S is given as:

s = (p1y , p2y , . . . , pNy
) : piy ∈ Pi,

∀ i ∈ {1, 2, . . . , N}, y ∈ {1, 2, . . . , n} (3)

We point out that some n-tuples inS may not be feasible
(such as invalid combinations of processor voltage and
frequency) and can be treated asdo not caretuples.

C. Optimization Objection Function

The sensor node dynamic optimization problem can be
formulated as an unconstrained optimization problem:

max f(s) =

m∑

k=1

ωkfk(s)

s.t. s ∈ S

ωk ≥ 0, k = 1, 2, . . . ,m

ωk ≤ 1, k = 1, 2, . . . ,m
m∑

k=1

ωk = 1, (4)

where f(s) denotes the objective function characterizing
application metrics and weight factors.fk(s) and ωk in
(4) denote the objective function and weight factor for the

Figure 2. Throughput objective functionft(s).

kth application metric, respectively, given that there arem
application metrics. Each states ∈ S has an associated
objective function value and the optimization goal is to
determine a state that gives the maximum (optimal) objective
function valuefopt(s) (fopt(s) indicates the best possible
adherence to the specified application requirements given
the design spaceS). The solution quality for anys ∈ S
can be determined by normalizing the objective function
value corresponding to states with respect tofopt(s). The
normalized objective function value corresponding to a state
can vary from 0 to 1 where 1 indicates the optimal solution.

For our dynamic optimization methodology, we consider
three application metrics (m = 3), lifetime, throughput, and
reliability, whose objective functions are denoted byfl(s),
ft(s), andfr(s), respectively. We defineft(s) (Fig. 2) using
the piecewise linear function:

ft(s) =

1, st ≥ βt

CUt
+

(Cβt
−CUt

)(st−Ut)

(βt−Ut)
, Ut ≤ st < βt

CLt
+

(CUt
−CLt

)(st−Lt)

(Ut−Lt)
, Lt ≤ st < Ut

CLt
· (st−αt)
(Lt−αt)

, αt ≤ st < Lt

0, st < αt.
(5)

where st denotes the throughput offered by states, the
constant parametersLt andUt denote thedesiredminimum
and maximum throughput, respectively, and the constant
parametersαt andβt denote theacceptableminimum and
maximum throughput, respectively. The constant parameters
CLt

, CUt
, andCβt

in (5) denote theft(s) value atLt, Ut,
and βt, respectively. A piecewise linear objective function
captures accurately the desirable and acceptable ranges ofa
particular application metric. We consider piecewise linear
objective functions as a typical example, however, our
methodology works well for any other objective function
characterization (e.g., linear, non-linear) [13].

The fl(s) andfr(s) can be defined similar to (5).
We point out that some tunable parameters may affect

multiple application metrics (e.g., sending at a lower
power might conserve energy but may increase the packet
loss ratio). Our dynamic optimization objective function
handles such multi-effect parameters appropriately. Since

282

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

our dynamic optimization objective function is a weighted
sum of objective functions of individual application metrics,
the overall solution will be an operating state in which the
affect of these parameters is balanced out in a way that
gives the maximum overall objective function value. An
application metric with a higher weight factor will be given
precedence in arbitrating between the tunable parameters
that affect multiple application metrics.

D. One-Shot Dynamic Optimization Algorithm

In this subsection, we describe the algorithm for
our one-shot dynamic optimization methodology. The
algorithm determines initial tunable parameter value settings
and exploration order (ascending or descending). This
exploration order can be used for the exploration of tunable
parameters if further improvement over the one-shot solution
is desired, and this improvement is the focus of our future
work.

Input : f(s), N, n, m,P
Output : Initial tunable parameter value settings and exploration

order
for k ← 1 to m do1

for Pi ← P1 to PN do2
fk
pi1
← kth metric objective function value when3

parameter setting is {Pi = pi1 , Pj = Pj0 ,∀ i 6= j} ;
fk
pin
← kth metric objective function value when4

parameter setting is {Pi = pin , Pj = Pj0 , ∀ i 6= j} ;
δfk

Pi
← fk

pin
− fk

pi1
;5

if δfk
Pi
≥ 0 then6

explore Pi in descending order ;7
P k
d
[i]← descending ;8

P k
0
[i]← pkin ;9

else10
explore Pi in ascending order ;11
P k
d
[i]← ascending ;12

P k
0
[i]← pki1

;13
end14

end15
end16

return P
k

d
, P k

0
, ∀ k ∈ {1, . . . ,m}

Algorithm 1 : One-shot dynamic optimization algorithm.

Algorithm 1 describes our one-shot dynamic optimization
algorithm to determine initial tunable parameter value
settings and exploration order. The algorithm takes as
input the objective functionf(s), the number of tunable
parametersN , the number of values for each tunable
parameter n (we assume for simplicity that tunable
parameters have an equal number of tunable values, however,
other values can be taken), the number of application
metricsm, andP whereP represents a vector containing
the tunable parameters,P = {P1, P2, . . . , PN}. For
each application metrick, the algorithm calculates vectors
P

k

0
and P

k

d
(where d denotes the exploration direction

(ascending or descending)), which store the initial value
settings and exploration order, respectively, for the tunable

parameters. The algorithm determinesfk
pi1

and fk
pin

(the
kth application metric objective function values) where the
parameter being exploredPi is assigned its firstpi1 and last
pin tunable values, respectively, and the remainder of the
tunable parametersPj , ∀ j 6= i are assigned initial values
(lines 3 - 4). δfk

Pi
stores the difference betweenfk

pin
and

fk
pi1

. δfk
Pi

≥ 0 means thatpin results in an equal or
greater objective function value as compared topi1 for
parameterPi (i.e., the objective function value decreases
as the parameter value decreases). To reduce the number of
states explored while considering that an online optimization
algorithm (e.g., greedy-based algorithm) will typically stop
exploring a tunable parameter if a tunable parameter’s value
yields a comparatively lower (or equal) objective function
value,Pi’s exploration order must be descending (lines 6 -
8). The algorithm assignspin as the initial value ofPi

for the kth application metric (line 9). Ifδfk
Pi

< 0, the
algorithm assigns the exploration order as ascending forPi

andpi1 as the initial value setting ofPi (lines 11 - 13). This
δfk

Pi
calculation procedure is repeated for allm application

metrics and allN tunable parameters (lines 1 - 16).
Algorithm 1 determines appropriate initial parameter

value settings corresponding to individual application
metrics, however, further calculations are required to
determine intelligent initial parameter value settings suitable
for all the application metrics because the best initial
value settings for different application metrics may be
different. Since some parameters are more critical to
meeting application requirements than other parameters
depending on the application metric weight factors, more
consideration should be given to the initial parameter value
settings corresponding to the application metrics with higher
weight factors. For example, sensing frequency is a critical
parameter for applications with a high responsiveness weight
factor and therefore, initial value settings corresponding
to the responsiveness application metric should be given
priority. We devise a technique for intelligent initial value
settings such that the initial value settings consider the
impact of these settings on the overall objective function
considering all the application metrics and the application
metrics’ associated weight factors. Our initial value settings
technique is based on the calculations performed in
Algorithm 1.

The initial value settings vectorP k

0
corresponding to

application metrick is given by:

P
k

0
= {P k

01 , P
k
02 , . . . , P

k
0N }, ∀ k ∈ {1, 2, . . . ,m} (6)

where P k
0i denotes the initial value setting for tunable

parameteri, ∀ i ∈ {1, 2, . . . , N} corresponding to thekth

application metric (as given by Algorithm 1). An intelligent
initial value setting vector̂P0 must consider all application
metrics’ weight factors with higher importance given to

283

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

higher weight factors, i.e.,:

P̂0 = {P 1
01 , . . . , P

1
0l1

, P 2
01 , . . . , P

2
0l2

,

P 3
01 , . . . , P

3
0l3

, . . . , Pm
01 , . . . , P

m
0lm

} (7)

wherelk denotes the number of initial value settings taken
from P k

0 , ∀ k ∈ {1, 2, . . . ,m} such that
∑m

k=1 lk = N .
Our technique allows taking more initial value settings
corresponding to application metrics with higher weight
factors (since Algorithm 1 gives appropriate initial value
settings for each application metric separately), i.e.,lk ≥
lk+1 ⇔ ωk ≥ ωk+1, ∀ k ∈ {1, 2, . . . ,m − 1}. In
(7), l1 initial value settings are taken from vectorP 1

0 ,
then l2 from vector P 2

0 , and so on tolm from vector
Pm
0 such that{P k

01 , . . . , P
k
0lk

} ∩ {P k−1
01

, . . . , P k−1
0lk−1

} =

∅, ∀ k ∈ {2, 3, . . . ,m}. In other words, we select those
initial value settings corresponding to the application metrics
with lower weight factors that are not already selected based
on the application metrics with higher weight factors (i.e.,
P̂0 comprises of disjoint or non-overlapping initial value
settings).

In the situation where a weight factorω1 is much greater
than all of the other weight factors, an intelligent initialvalue
setting P̃0 would correspond to the initial value settings
based on the application metric with weight factorω1, i.e.,:

P̃0 = P
1

0
= {P 1

01 , P
1
02 , . . . , P

1
0N}

⇔ ω1 ≫ ωq, ∀ q ∈ {2, 3, . . . ,m} (8)

E. Computational Complexity

The computational complexity of our one-shot dynamic
optimization methodology isO(Nm), which is comprised of
the intelligent initial parameter value settings for individual
application metrics and exploration ordering (Algorithm 1)
O(Nm), and intelligent initial value settings considering all
the application metricsO(N+m), based on the Algorithm 1
calculations (Section III-D). This complexity reveals that our
one-shot methodology is lightweight and is thus feasible for
sensor nodes with tight resource constraints.

IV. A PPLICATION METRICSESTIMATION MODEL

In this section, we propose an application metric
estimation model, which is leveraged by our one-
shot dynamic optimization methodology. This estimation
model estimates high-level application metrics (lifetime,
throughput, reliability) from a sensor node’s parameters
(e.g., processor voltage and frequency, sensing frequency,
transceiver voltage, etc.). For brevity, we describe only the
model’s key elements. Table I presents a summary of key
notations used in our application metrics estimation model.

A. Lifetime Estimation

The lifetime of a sensor node is defined as the time
duration between the deployment time and the time before
which the sensor node fails to perform the assigned task

Table I
SUMMARY OF APPLICATION METRICS ESTIMATION MODEL NOTATIONS

Notation Description

Ls Lifetime in days

Eb Battery energy in Joules

Ec Energy consumption per hour

Vb Battery voltage in volts

Cb Battery capacity in mA-h

Eproc Processing energy per hour

Ecom Communication energy per hour

Esen Sensing energy per hour

Ea
proc Processing energy per hour in active mode

Ei
proc Processing energy per hour in idle mode

Etx
trans Transceiver transmission energy per hour

Erx
trans Transceiver receive energy per hour

Ei
trans Transceiver idle energy per hour

Ntx
pkt

Number of packets transmitted per hour

E
pkt
tx Transmission energy per packet

Vt Transceiver voltage

It Transceiver current

t
pkt
tx Time to transmit one packet

Ist Transceiver sleep current

titx Transceiver idle time per hour

Ps Packet size in bytes

Rtx Transceiver data rate (in bits/second)

Em
sen Sensing measurement energy

Ei
sen Sensing idle energy

Nr Number of sensors on the sensing board

Ns Number of sensing measurements per second

Vs Sensing board voltage

Ims Sensing measurement current

tms Sensing measurement time
Is Sensing sleep current

tis Sensing idle time

R Aggregate throughput

Rsen Sensing throughput

Rproc Processing throughput

Rcom Communication throughput

Fs Sensing frequency

Rb
sen Sensing resolution bits

Fp Processor frequency

Nb Number of instructions to process one bit

t
pkt
tx Time to transmit one packet

P
eff
s Effective packet size

due to sensor node failure, which is normally caused by
battery energy depletion. A sensor node typically contains
AA alkaline batteries whose energy depletes gradually as the
sensor node consumes energy during operation. The critical
factors in determining sensor node lifetime are battery
energy and energy consumption during operation.

The sensor node lifetime in daysLs can be estimated as:

Ls =
Eb

Ec × 24
(9)

284

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

whereEb denotes the sensor node’s battery energy (Joules)
andEc denotes the sensor node’s energy consumption per
hour. The battery energy in mWhE

′

b can be given by:

E
′

b = Vb · Cb (mWh) (10)

whereVb denotes the battery voltage (Volts) andCb denotes
the battery capacity (typically mA-h). Since 1J = 1 Ws,Eb

can be calculated as:

Eb = E
′

b × 3600/1000 (J) (11)

We model Ec as the sum of the processing,
communication, and sensing energies, i.e.,:

Ec = Eproc + Ecom + Esen (J) (12)

whereEproc, Ecom, andEsen denote the processing energy
per hour, communication energy per hour, and sensing
energy per hour, respectively.

The processing energyaccounts for the processor energy
consumed in processing the sensed data. We assume that the
sensor node’s processor operates in two modes, active mode
and idle mode [28]. We point out that although we consider
active and idle modes only, a processor operating in other
sleep modes (e.g., power-down, power-save, standby, etc.)
can also be incorporated in our model.Eproc is given by:

Eproc = Ea
proc + Ei

proc (13)

where Ea
proc and Ei

proc denote the processor’s energy
consumption per hour in active mode and idle mode,
respectively.

The sensor nodes communicate with each other (e.g.,
send packets containing the sensed data information)
to accomplish the assigned application task and this
communication process consumescommunication energy.
The communication energy is the sum of the transmission,
receive, and idle energies for a sensor node’s transceiver,
i.e.,:

Ecom = Etx
trans + Erx

trans + Ei
trans (14)

whereEtx
trans, E

rx
trans, andEi

trans denote the transceiver’s
transmission energy per hour, receive energy per hour, and
idle energy per hour, respectively.Etx

trans is given by:

Etx
trans = N tx

pkt · E
pkt
tx (15)

whereN tx
pkt denotes the number of packets transmitted per

hour andEpkt
tx denotes the transmission energy per packet.

Epkt
tx is given as:

Epkt
tx = Vt · It · t

pkt
tx (16)

where Vt denotes the transceiver voltage,It denotes the
transceiver current, andtpkttx denotes the time to transmit
one packet.tpkttx is given by:

tpkttx = Ps × 8/Rtx (17)

wherePs denotes the packet size in bytes andRtx denotes
the transceiver data rate (in bits/second).
Erx

trans can be calculated using a similar procedure as
Etx

trans. E
i
trans can be calculated as:

Ei
trans = Vt · I

s
t · titx (18)

where Vt denotes the transceiver voltage,Ist denotes the
transceiver sleep current, andtitx denotes the transceiver idle
time per hour.

The energy consumed by the sensors during sensing the
observed phenomenon accounts for thesensing energy. The
sensing energy mainly depends upon the sensing (sampling)
frequency and the number of sensors attached to the sensor
board (e.g., the MTS400 sensor board [29] has Sensirion
SHT1x temperature and humidity sensors [30]). The sensors
consume energy while taking sensing measurements and
switch to an idle mode for energy conservation while not
sensing.Esen is given by:

Esen = Em
sen + Ei

sen (19)

whereEm
sen denotes the sensing measurement energy per

hour andEi
sen denotes the sensing idle energy per hour.

Em
sen can be calculated as:

Em
sen = Ns · Vs · I

m
s · tms × 3600 (20)

whereNs denotes the number of sensing measurements per
second,Vs denotes the sensing board voltage,Ims denotes
the sensing measurement current, andtms denotes the sensing
measurement time.Ei

sen is given by:

Ei
sen = Vs · Is · t

i
s × 3600 (21)

whereIs denotes the sensing sleep current andtis denotes
the sensing idle time.

B. Throughput Estimation

In the context of dynamic optimizations,throughputcan
be interpreted as the sensor node’s sensing, processing,
and transmission rate to observe a phenomenon. Three
processes contribute to the sensor node’s throughput
(i.e., sensing, processing, and communication). The
throughput interpretation may vary depending upon the
WSN application design as sensing, processing, and
communication throughputs can have different relative
importance for different applications. The aggregate
throughputR (typically measured in bits/second) can be
considered as a weighted sum of constituent throughputs:

R = ωsRsen+ωpRproc+ωcRcom : ωs+ωp+ωc = 1 (22)

where Rsen, Rproc, and Rcom denote the sensing,
processing, and communication throughputs, respectively.
ωs, ωp, andωc denote the weight factors for the sensing,
processing, and communication throughputs, respectively.

285

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The sensing throughput is the throughput due to sensing
activity and measures the sensing bits sampled per second.
Rsen is given by:

Rsen = Fs ·R
b
sen (23)

where Fs and Rb
sen denote the sensing frequency and

sensing resolution bits, respectively.
The processing throughput is the throughput due to

the processor’s processing of sensed measurements and
measures the bits processed per second.Rproc is given by:

Rproc = Fp/N
b (24)

where Fp and N b denote the processor frequency and
the number of processor instructions to process one bit,
respectively.

The communication throughputRcom results from the
transfer of data packets over the wireless channel and is
given by:

Rcom = P eff
s × 8/tpkttx (25)

wheretpkttx denotes the time to transmit one packet andP eff
s

denotes the effective packet size excluding the packet header
overhead.

C. Reliability Estimation

The reliability metric measures the number of packets
transferred reliably (i.e., error free packet transmission)
over the wireless channel. Accurate reliability estimation
is challenging because of dynamic changes in the involved
factors, such as network topology, number of neighboring
sensor nodes, wireless channel fading, sensor network traffic,
etc. The two main factors that affect reliability are the
transceiver transmission powerPtx and receiver sensitivity.
For example, the AT86RF230 transceiver [31] has a receiver
sensitivity of -101 dBm with a corresponding packet error
rate (PER)≤ 1% for an additive white Gaussian noise
(AWGN) channel with a physical service data unit (PSDU)
equal to 20 bytes. Reliability can be estimated using
Friis free space transmission equation [32] for different
Ptx values, distance between transmitting and receiving
sensor nodes, and fading models (e.g., shadowing fading
model). Reliability values can be assigned corresponding
to Ptx values such that the higherPtx values give higher
reliability, however, more accurate reliability estimation
requires profiling statistics for the number of packets
transmitted and the number of packets received.

V. EXPERIMENTAL RESULTS

In this section, we describe our experimental setup and
results for our one-shot dynamic optimization methodology.

Table II
CROSSBOWIRIS MOTE PLATFORM HARDWARE SPECIFICATIONS.

Notation Description Value

Vb Battery voltage 3.6 V

Cb Battery capacity 2000 mA-h

Nb Processing instructions per bit 5

Rb
sen Sensing resolution bits 24

Vt Transceiver voltage 3 V

Rtx Transceiver data rate 250 kbps

Irxt Transceiver receive current 15.5 mA

Ist Transceiver sleep current 20 nA

Vs Sensing board voltage 3 V

Ims Sensing measurement current 550µA

tms Sensing measurement time 55 ms

Is Sensing sleep current 0.3 µA

A. Experimental Setup

We base our experimental setup on the Crossbow IRIS
mote platform [33], which has a battery capacity of 2000
mA-h with two AA alkaline batteries. The IRIS mote
platform integrates an Atmel ATmega1281 microcontroller
[28], an Atmel AT-86RF230 low power 2.4 GHz transceiver
[31], an MTS400 sensor board [29] with Sensirion SHT1x
temperature and humidity sensors [30]. Table II shows the
sensor node hardware specific values, corresponding to the
IRIS mote platform, which are used by the application
metrics estimation model [28][30][31][33].

In our experimental setup, we consider a WSN topology
where each sensor node has two neighbors, although our
topology can be extended for any number of neighboring
sensor nodes. The number of neighboring sensor nodes in
a topology determines the number of packets received by
a sensor node, which affects the expended communication
energy. This expended communication energy affects the
lifetime of the sensor nodes in the WSN. Our work
assumes that the medium access control (MAC) layer
handles collisions and packet loss. The packet loss due to
any reason (e.g., low transmission power, collision, etc.)
is taken into account at a high level by our reliability
application metric. The accurate determination of the packet
loss requires gathering of profiling statistics, which is the
focus of our future work.

We analyze six tunable parameters: processor voltage
Vp, processor frequencyFp, sensing frequencyFs,
packet size Ps, packet transmission intervalPti, and
transceiver transmission powerPtx. In order to evaluate
our methodology across small and large design spaces, we
consider two design space cardinalities (number of states
in the design space):|S| = 729 and |S| = 31, 104. The
tunable parameters for|S| = 729 are Vp = {2.7, 3.3, 4}
(volts),Fp = {4, 6, 8} (MHz) [28], Fs = {1, 2, 3} (samples
per second) [30],Ps = {41, 56, 64} (bytes),Pti = {60, 300,

286

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

600} (seconds), andPtx = {-17, -3, 1} (dBm) [31]. The
tunable parameters for|S| = 31, 104 are Vp = {1.8, 2.7,
3.3, 4, 4.5, 5} (volts),Fp = {2, 4, 6, 8, 12, 16} (MHz) [28],
Fs = {0.2, 0.5, 1, 2, 3, 4} (samples per second) [30],Ps =
{32, 41, 56, 64, 100, 127} (bytes),Pti = {10, 30, 60, 300,
600, 1200} (seconds), andPtx = {-17, -3, 1, 3} (dBm) [31].
All state space tuples are feasible for|S| = 729, whereas
|S| = 31, 104 contains 7,779 infeasible state space tuples
(e.g., allVp andFp pairs are not feasible). Our consideration
of two different design space cardinalities (|S| = 729 and
|S| = 31, 104) is important because this consideration helps
in investigating the impact of the design space cardinality
on dynamic optimization methodologies.

We assign application specific values for the desirable
minimum L, desirable maximumU , acceptable minimum
α, and acceptable maximumβ objective function parameter
values for the application metrics (Section III-C). We specify
the objective function parameters as a multiple of base
units for lifetime, throughput, and reliability, however,our
application metrics estimation model and one-shot dynamic
optimization methodology works equally well for any set
of application requirements, weight factors, and assumption
of base units. We assume that one lifetime unit is 5 days,
one throughput unit is 20 kbps, and one reliability unit
is 0.05 (reliability measures error-free packet transmissions
on a scale from 0 to 1). Table III depicts the application
requirements for the application domains in terms of
objective function parameter values and Table IV depicts the
associated weight factors used in our experiments. Weight
factors for a given application domain depend upon specific
application requirements. For example, a security/defense
application that requires prolonged operation requires a
higher weight factor for the lifetime application metric
as compared to the other application metrics, whereas a
different security/defense application that requires gathering
high resolution images requires a higher weight factor for
the throughput application metric as compared to the other
application metrics.

Since the objective function values corresponding to
different states depends upon the estimation of high-level
metrics, we present an example throughput calculation to
explain this estimation process using our application metrics
estimation model (Section IV) and the IRIS mote platform
hardware specifications (Table II). We consider a statesy =
(Vpy

, Fpy
, Fsy , Psy , Ptiy , Ptxy

) = (2.7, 4, 1, 41, 60,−17)

for our example. (17) givestpkttx = 41 × 8/(250 × 103) =
1.312 ms. (23), (24), and (25) giveRsen = 1 × 24 = 24
bps,Rproc = 4 × 106/5 = 800 kbps, andRcom = 21 ×
8/(1.312 × 10−3) = 128.049 kbps, respectively (P eff

s =
41− 21 = 20 where we assumePh = 21 bytes). (22) gives
R = (0.4)(24)+(0.4)(800×103)+(0.2)(128.049×103) =
345.62 kbps where we assumeωs, ωp, andωc equal to 0.4,
0.4, and 0.2, respectively.

In order to evaluate our one-shot dynamic optimization

Table III
DESIRABLE MINIMUM L, DESIRABLE MAXIMUM U , ACCEPTABLE

MINIMUM α, AND ACCEPTABLE MAXIMUM β OBJECTIVE FUNCTION
PARAMETER VALUES FOR A SECURITY/DEFENSE(DEFENSE) SYSTEM,

HEALTH CARE, AND AN AMBIENT CONDITIONS MONITORING

APPLICATION. ONE LIFETIME UNIT = 5 DAYS, ONE THROUGHPUT UNIT

= 20 KBPS, ONE RELIABILITY UNIT = 0.05.

Notation Defense Health Care Ambient Monitoring

Ll 8 units 12 units 6 units

Ul 30 units 32 units 40 units

αl 1 units 2 units 3 units

βl 36 units 40 units 60 units

Lt 20 units 19 units 15 unit

Ut 34 units 36 units 29 units

αt 0.5 units 0.4 units 0.05 units

βt 45 units 47 units 35 units

Lr 14 units 12 units 11 units

Ur 19.8 units 17 units 16 units

αr 10 units 8 units 6 units

βr 20 units 20 units 20 units

Table IV
WEIGHT FACTORS FOR DIFFERENT APPLICATION DOMAINS FOR

|S| = 729 AND |S| = 31, 104.

− |S| = 729 & |S| = 31, 104

Application Domain ωl ωt ωr

Security/Defense System 0.25 0.35 0.4

Health Care 0.25 0.35 0.4

Ambient Conditions Monitoring 0.4 0.5 0.1

solution quality, we compare the solution from the one-shot
initial parameter settingŝP0 with the solutions obtained
from the following four potential initial parameter value
settings (although any feasible n-tuples ∈ S can be taken
as the initial parameter settings):

• I1 assigns the first parameter value for each tunable
parameter, i.e.,I1 = pi1 , ∀ i ∈ {1, 2, . . . , N}.

• I2 assigns the last parameter value for each tunable
parameter, i.e.,I2 = pin , ∀ i ∈ {1, 2, . . . , N}.

• I3 assigns the middle parameter value for each tunable
parameter, i.e.,I3 = ⌊pin/2⌋, ∀ i ∈ {1, 2, . . . , N}.

• I4 assigns a random value for each tunable parameter,
i.e., I4 = piq : q = rand()%n, ∀ i ∈ {1, 2, . . . , N}
where rand() denotes a function to generate a
random/pseduo-random integer and % denotes the
modulus operator.

Although we analyzed our methodology for the IRIS
motes platform, three application domains, two design
spaces, and four potential initial parameter value settings,
our one-shot dynamic optimization methodology and
application metrics estimation model are equally applicable
to any platform, application domain, and design space.

287

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Results

We implemented our one-shot dynamic optimization
methodology in C++. To evaluate the effectiveness of
our one-shot solution, we compare the one-shot solution’s
results with four alternative initial parameter arrangements
(Section V-A). We normalize the objective function values
corresponding to the operating states attained by our
dynamic optimization methodology with respect to the
optimal solution obtained using an exhaustive search.
We compare the relative complexity of our one-shot
dynamic optimization methodology with two other dynamic
optimization methodologies, which leverage greedy- and
SA-based algorithms for design space exploration [34].
Although for brevity we present results for only a subset
of the initial parameter value settings, application domains,
and design spaces, we observed that results for extensive
application domains, design spaces, and initial parameter
settings revealed similar trends.

1) Percentage Improvements over other Initial Parameter
Settings: Table V depicts the percentage improvements
attained by the one-shot parameter settingsP̂0 over other
parameter settings for different application domains and
weight factors (Table IV). We point out that different weight
factors could result in different percentage improvements,
however, we observed similar trends for other weight factors.
Table V shows that the one-shot initial parameter settings
can result in as high as a 155% improvement as compared
to other initial value settings. We observe that some
arbitrary settings may give a comparable or even a better
solution for a particular application domain, application
metric weight factors, and design space cardinality, but
that arbitrary setting would not scale to other application
domains, application metric weight factors, and design space
cardinalities. For example,I3 obtains a 12% better quality
solution than P̂0 for the ambient conditions monitoring
application for|S| = 31, 104, but yields a 10% lower quality
solution for the security/defense and health care applications
for |S| = 31, 104, and a 57%, 31%, and 20% lower quality
solution thanP̂0 for the security/defense, health care, and
ambient conditions monitoring applications, respectively, for
|S| = 729. The percentage improvement attained bŷP0

over all application domains and design spaces is 33% on
average. Our one-shot methodology is the first approach (to
the best of our knowledge) to leverage intelligent initial
tunable parameter value settings for sensor nodes to provide
a good quality operating state, as arbitrary initial parameter
value settings typically result in a poor operating state.
Results reveal that on averagêP0 gives a solution within
8% of the optimal solution.

2) Comparison with Greedy- and SA-based Dynamic
Optimization Methodologies: In order to investigate
the effectiveness of our one-shot methodology, we
compare the one-shot solution’s quality (indicated by the

1 2 3 4 5 6 7 8 9 11 50 100 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of States Explored

N
or

m
al

iz
ed

 O
bj

ec
tiv

e
F

un
ct

io
n

One−Shot

GDasc

SA

Figure 3. Objective function value normalized to the optimal solution
for a varying number of states explored for the one-shot, greedy, and SA
algorithms for a security/defense system whereωl = 0.25, ωt = 0.35,
ωr = 0.4, |S| = 729.

attained objective function value) with two other dynamic
optimization methodologies, which leverage an SA-based
and a greedy-based (denoted by GDasc where asc stands
for ascending order of parameter exploration) explorationof
the design space. We assign initial parameter value settings
for the greedy- and SA-based methodologies asI1 andI4,
respectively. Note that, for brevity, we present results for
I1 andI4, however, other initial parameter settings such as
I2 andI3 would yield similar trends when combined with
greedy-based and SA-based design space exploration.

Fig. 3 shows the objective function value normalized
to the optimal solution versus the number of states
explored for the one-shot, GDasc, and SA algorithms for
a security/defense system for|S| = 729. The one-shot
solution is within 1.8% of the optimal solution. The figure
shows that GDasc and SA explore 11 states (1.51% of the
design space) and 10 states (1.37% of the design space),
respectively, to attain an equivalent or better quality solution
than the one-shot solution. Although, greedy- and SA-based
methodologies explore few states to reach a comparable
solution as that of our one-shot methodology, the one-
shot methodology is suitable when design space exploration
is not an option due to an extremely large design space
and/or extremely stringent computational, memory, and
timing constraints. These results indicate that other arbitrary
initial value settings (e.g.,I1, I4, etc.) do not provide a
good quality operating state and necessitate design space
exploration by online algorithms (e.g., greedy) to providea
good quality operating state. We point out that if the greedy-
and SA-based methodologies leverage our one-shot initial
tunable parameter value settingsI, further improvements
over the one-shot solution can produce a very good quality
(optimal or near-optimal) operating state [34].

Fig. 4 shows the objective function value normalized to
the optimal solution versus the number of states explored for
a security/defense system for|S| = 31, 104. The one-shot
solution is within 8.6% of the optimal solution. The figure

288

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table V
PERCENTAGE IMPROVEMENTS ATTAINED BYP̂0 OVER OTHER INITIAL PARAMETER SETTINGS FOR|S| = 729 AND |S| = 31, 104.

− |S| = 729 |S| = 31, 104

Application Domain I1 I2 I3 I4 I1 I2 I3 I4

Security/Defense System 155% 10% 57% 29% 148% 0.3% 10% 92%

Health Care 78% 7% 31% 11% 73% 0.3% 10% 45%

Ambient Conditions Monitoring 52% 6% 20% 7% 15% -7% -12% 18%

1 2 3 4 5 6 7 8 9 11 50 100 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of States Explored

N
or

m
al

iz
ed

 O
bj

ec
tiv

e
F

un
ct

io
n

One−Shot

GDasc

SA

Figure 4. Objective function value normalized to the optimal solution
for a varying number of states explored for the one-shot, greedy, and SA
algorithms for a security/defense system whereωl = 0.25, ωt = 0.35,
ωr = 0.4, |S| = 31, 104.

shows that GDasc converges to a lower quality solution than
the one-shot solution after exploring 9 states (0.029% of
the design space) and SA explores 8 states (0.026% of the
design space) to yield a better quality solution than the one-
shot solution. These results reveal that the greedy exploration
of parameters may not necessarily attain a better quality
solution than our one-shot solution.

Fig. 5 shows the objective function value normalized to
the optimal solution versus the number of states explored
for a health care application for|S| = 729. The one-
shot solution is within 2.1% of the optimal solution. The
figure shows that GDasc converges to an almost equal quality
solution as compared to the one-shot solution after exploring
11 states (1.5% of the design space) and SA explores 10
states (1.4% of the design space) to yield an almost equal
quality solution as compared to the one-shot solution. These
results indicate that further exploration of the design space is
required to find an equivalent quality solution as compared
to one-shot if the intelligent initial value settings leveraged
by one-shot are not used.

Fig. 6 shows the objective function value normalized to
the optimal solution versus the number of states explored
for a health care application for|S| = 31, 104. The one-shot
solution is within 1.6% of the optimal solution. The figure
shows that GDasc converges to a lower quality solution than
the one-shot solution after exploring 9 states (0.029% of the
design space) and SA explores 6 states (0.019% of the design

1 2 3 4 5 6 7 8 9 11 50 100 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of States Explored
N

or
m

al
iz

ed
 O

bj
ec

tiv
e

F
un

ct
io

n

One−Shot

GDasc

SA

Figure 5. Objective function value normalized to the optimal solution
for a varying number of states explored for the one-shot, greedy, and SA
algorithms for a health care application whereωl = 0.25, ωt = 0.35,
ωr = 0.4, |S| = 729.

1 2 3 4 5 6 7 8 9 11 50 100 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of States Explored

N
or

m
al

iz
ed

 O
bj

ec
tiv

e
F

un
ct

io
n

One−Shot

GDasc

SA

Figure 6. Objective function value normalized to the optimal solution
for a varying number of states explored for the one-shot, greedy, and SA
algorithms for a health care application whereωl = 0.25, ωt = 0.35,
ωr = 0.4, |S| = 31, 104.

space) to yield a better quality solution than the one-shot
solution. These results confirm that the greedy exploration
of the parameters may not necessarily attain a better quality
solution than our one-shot solution.

Fig. 7 shows the objective function value normalized to
the optimal solution versus the number of states explored
for an ambient conditions monitoring application for|S| =
729. The one-shot solution is within 7.7% of the optimal
solution. The figure shows that GDasc and SA converge to
an equivalent or better quality solution than the one-shot
solution after exploring 4 states (0.549% of the design space)

289

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 2 3 4 5 6 7 8 9 11 50 100 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of States Explored

N
or

m
al

iz
ed

 O
bj

ec
tiv

e
F

un
ct

io
n

One−Shot

GDasc

SA

Figure 7. Objective function value normalized to the optimal solution
for a varying number of states explored for the one-shot, greedy, and SA
algorithms for an ambient conditions monitoring application whereωl =
0.4, ωt = 0.5, ωr = 0.1, |S| = 729.

1 2 3 4 5 6 7 8 9 11 50 100 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of States Explored

N
or

m
al

iz
ed

 O
bj

ec
tiv

e
F

un
ct

io
n

One−Shot

GDasc

SA

Figure 8. Objective function value normalized to the optimal solution
for a varying number of states explored for the one-shot, greedy, and SA
algorithms for an ambient conditions monitoring application whereωl =
0.4, ωt = 0.5, ωr = 0.1, |S| = 31, 104.

and 10 states (1.37% of the design space), respectively.
These results again confirm that the greedy- and SA-based
explorations can provide improved results over the one-shot
solution, but require additional state exploration.

Fig. 8 shows the objective function value normalized to
the optimal solution versus the number of states explored
for an ambient conditions monitoring application for|S| =
31, 104. The one-shot solution is within 24.7% of the
optimal solution. The figure shows that both GDasc and SA
converge to an equivalent or better quality solution than
the one-shot solution after exploring 3 states (0.01% of
the design space). These results indicate that both greedy-
and SA-based methods can give good quality solutions
after exploring a very small percentage of the design space
and both greedy- and SA-based methods enable lightweight
dynamic optimizations [34]. The results also indicate that
the one-shot solution provides a good quality solution when
further design space exploration is not possible due to
resource constraints.

3) Computational Complexity:To verify that our one-
shot dynamic optimization methodology (Section III) is

lightweight, we compared the data memory requirements
and execution time of our one-shot dynamic optimization
methodology with the greedy- and SA-based dynamic
optimization methodologies.

The data memory analysis revealed that our one-shot
methodology requires only 150, 188, 248, and 416 bytes for
(number of tunable parametersN , number of application
metrics m) equal to (3, 2), (3, 3), (6, 3), and (6, 6),
respectively. The greedy-based methodology requires 458,
528, 574, 870, and 886 bytes, whereas the SA-based
methodology requires 514, 582, 624, 920, and 936 bytes of
storage for design space cardinalities of 8, 81, 729, 31,104,
and 46,656, respectively. The data memory analysis shows
that the SA-based methodology has comparatively larger
memory requirements than the greedy-based methodology.
Our analysis reveals that the data memory requirements
for our one-shot methodology increases linearly as the
number of tunable parameters and the number of application
metrics increases. The data memory requirements for the
greedy- and SA-based methodologies increase linearly as
the number of tunable parameters and tunable values (and
thus the design space) increases. The data memory analysis
verifies that although the one-shot, greedy- and SA-based
methodologies have low data memory requirements (on the
order of hundreds of bytes), the one-shot solution requires
204% and 458% less memory on average as compared to
the greedy- and SA-based methodologies, respectively.

We measured the execution time for our one-shot and the
greedy- and SA-based methodologies averaged over 10,000
runs (to smooth any discrepancies in execution time due
to operating system overheads) on an Intel Xeon CPU
running at 2.66 GHz [35] using the Linux/Unixtime
command [36]. We scaled the execution time results to
the Atmel ATmega1281 microcontroller [28] running at 8
MHz. Although microcontrollers have different instruction
set architectures and scaling does not provide 100% accuracy
for the microcontroller runtime, scaling enables relative
comparisons and provides reasonable runtime estimates.
Results showed that one-shot required 1.66 ms both for
|S| = 729 and |S| = 31, 104. GDasc explored 10 states
and required 0.887 ms and 1.33 ms on average to converge
to the solution for |S| = 729 and |S| = 31, 104,
respectively. SA took 2.76 ms and 2.88 ms to explore
the first 10 states (to provide a fair comparison with
GDasc) for |S| = 729 and |S| = 31, 104, respectively.
The execution time analysis revealed that our dynamic
optimization methodologies required execution times on the
order of milliseconds, and the one-shot solution required
18% less execution time on average as compared to
greedy- and SA-based methodologies. The one-shot solution
required 66% and 73% less execution time for the SA-
based methodology when|S| = 729 and |S| = 31, 104.
These results indicate that the design space cardinality
affects the execution time linearly for greedy- and SA-based

290

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

methodologies whereas the one-shot solution’s execution
time is affected negligibly by the design space cardinality
and hence our one-shot methodology’s advantage increases
as the design space cardinality increases. We verified our
execution time analysis using theclock() function [37],
which revealed similar trends.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we proposed a lightweight dynamic
optimization methodology for WSNs, which provided a
high-quality solution in just one-shot using intelligent initial
tunable parameter value settings for highly constrained
applications. To assist dynamic optimization methodologies
for operating states’ comparisons, we proposed an
application metric estimation model to estimate high-level
metrics (lifetime, throughput, and reliability) from sensor
node’s parameters. This estimation model was leveraged
by our one-shot dynamic optimization methodology
and provided a prototype model for application metric
estimation. To evaluate the effectiveness of the initial
parameter settings by our one-shot methodology, we
compared the one-shot solution quality with four other
typical initial parameter settings. Results revealed thatthe
percentage improvement attained by our one-shot solution
over other initial parameter settings for different application
domains and design spaces was 33% on average and as high
as 155%. Results indicated that our one-shot solution was
within 8% of the optimal solution obtained from exhaustive
search. We compared the computational complexity of
our one-shot dynamic optimization methodology with two
other dynamic optimization methodologies that leveraged
greedy- and simulated annealing (SA)-based exploration
of the design space. Results showed that the one-shot
solution required 204% and 458% less memory on average
as compared to the greedy- and SA-based methodologies,
respectively. The one-shot solution required 18% less
execution time on average as compared to the greedy-
and SA-based methodologies even if these methodologies
were restricted to explore only 0.03% of the design space
on average. The execution time and data memory analysis
confirmed that our one-shot methodology is lightweight and
suitable for time-critical or highly constrained applications.

Future work includes the incorporation of profiling
statistics into our one-shot dynamic optimization
methodology to provide feedback with respect to changing
environmental stimuli. We plan to further verify our one-shot
dynamic optimization methodology using implementation
on a hardware sensor node platform. We also plan to further
investigate online optimization algorithms leveraging our
one-shot initial value settings for further higher quality
solutions for comparatively less constrained applications.

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation (NSF) (CNS-0834080) and the Natural Sciences
and Engineering Research Council of Canada (NSERC).
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the NSF and the NSERC.

REFERENCES

[1] A. Munir, A. Gordon-Ross, S. Lysecky, and R. Lysecky, “A
One-Shot Dynamic Optimization Methodology for Wireless
Sensor Networks,” inProc. IARIA IEEE International Confer-
ence on Mobile Ubiquitous Computing, Systems, Services and
Technologies (UBICOMM), Florence, Italy, October 2010.

[2] D. Brooks and M. Martonosi, “Value-based Clock Gating
and Operation Packing: Dynamic Strategies for Improving
Processor Power and Performance,”ACM Trans. on Computer
Systems, vol. 18, no. 2, pp. 89–126, May 2000.

[3] S. Patel and S. Lumetta, “rePLay: A Hardware Framework for
Dynamic Optimization,”IEEE Trans. on Computers, vol. 50,
no. 6, pp. 590–608, June 2001.

[4] C. Zhang, F. Vahid, and R. Lysecky, “A Self-Tuning Cache
Architecture for Embedded Systems,”ACM Trans. on Em-
bedded Computing Systems, vol. 3, no. 2, pp. 407–425, May
2004.

[5] K. Hazelwood and M. Smith, “Managing Bounded Code
Caches in Dynamic Binary Optimization Systems,”ACM
Trans. on Architecture and Code Optimization, vol. 3, no. 3,
pp. 263–294, September 2006.

[6] S. Hu, M. Valluri, and L. John, “Effective Management of
Multiple Configurable Units using Dynamic Optimization,”
ACM Trans. on Architecture and Code Optimization, vol. 3,
no. 4, pp. 477–501, December 2006.

[7] (2012, January) Dynamic Profiling and Optimization (DPOP)
for Sensor Networks. [Online]. Available: http://www.ece.
arizona.edu/∼dpop/

[8] A. Gordon-Ross, F. Vahid, and N. Dutt, “Fast Configurable-
Cache Tuning With a Unified Second-Level Cache,”IEEE
Trans. on Very Large Scale Integration (VLSI) Systems,
vol. 17, no. 1, pp. 80–91, January 2009.

[9] C.-Y. Seong and B. Widrow, “Neural Dynamic Optimization
for Control Systems,”IEEE Trans. on Systems, Man, and
Cybernatics, vol. 31, no. 4, pp. 482–489, August 2001.

[10] H. Hamed, A. El-Atawy, and A.-S. Ehab, “On Dynamic
Optimization of Packet Matching in High-Speed Firewalls,”
IEEE Journal on Selected Areas in Communications, vol. 24,
no. 10, pp. 1817–1830, October 2006.

[11] S. Sridharan and S. Lysecky, “A First Step Towards Dy-
namic Profiling of Sensor-Based Systems,” inProc. IEEE
Conference on Sensor, Mesh and Ad Hoc Communications
and Networks (SECON’08), San Francisco, California, June
2008, pp. 600–602.

[12] A. Shenoy, J. Hiner, S. Lysecky, R. Lysecky, and A. Gordon-
Ross, “Evaluation of Dynamic Profiling Methodologies for
Optimization of Sensor Networks,”IEEE Embedded Systems
Letters, vol. 2, no. 1, pp. 10–13, March 2010.

[13] A. Munir and A. Gordon-Ross, “An MDP-based Application
Oriented Optimal Policy for Wireless Sensor Networks,” in
Proc. ACM International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS’09), Grenoble,
France, October 2009, pp. 183–192.

291

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] S. Kogekar, S. Neema, B. Eames, X. Koutsoukos, A. Ledeczi,
and M. Maroti, “Constraint-Guided Dynamic Reconfiguration
in Sensor Networks,” inProc. ACM International Symposium
on Information Processing in Sensor Networks (IPSN’04),
Berkeley, California, April 2004, pp. 379–387.

[15] X. Wang, J. Ma, S. Wang, and D. Bi, “Distributed Energy Op-
timization for Target Tracking in Wireless Sensor Networks,”
IEEE Trans. on Mobile Computing, vol. 9, no. 1, pp. 73–86,
January 2009.

[16] L. Liu, X. Zhang, and H. Ma, “Dynamic Node Collabora-
tion for Mobile Target Tracking in Wireless Camera Sensor
Networks,” in Proc. IEEE (INFOCOM’09), Rio de Janeiro,
Brazil, April 2009, pp. 1188–1196.

[17] R. Khanna, H. Liu, and H.-H. Chen, “Dynamic Optimization
of Secure Mobile Sensor Networks: A Genetic Algorithm,”
in Proc. IEEE International Conference on Communications
(ICC’07), Glasgow, Scotland, June 2007, pp. 3413–3418.

[18] R. Min, T. Furrer, and A. Chandrakasan, “Dynamic Voltage
Scaling Techniques for Distributed Microsensor Networks,” in
Proc. IEEE Workshop on VLSI (WVLSI’00), Orlando, Florida,
April 2000, pp. 43–46.

[19] L. Yuan and G. Qu, “Design Space Exploration for Energy-
Efficient Secure Sensor Network,” inProc. IEEE Interna-
tional Conference on Application-Specific Systems, Architec-
tures, and Processors (ASAP’02), San Jose, California, July
2002, pp. 88–97.

[20] S. Lysecky and F. Vahid, “Automated Application-Specific
Tuning of Parameterized Sensor-Based Embedded System
Building Blocks,” in Proc. of the International Conference
on Ubiquitous Computing (UbiComp), Orange County, Cali-
fornia, September 2006, pp. 507–524.

[21] R. Verma, “Automated application specific sensor network
node tuning for non-expert application developers,” Master’s
thesis, Department of Electrical and Computer Engineering,
University of Arizona, 2008.

[22] R. Mannion, H. Hsieh, S. Cotterell, and F. Vahid, “System
Synthesis for Networks of Programmable Blocks,” inProc.
IEEE Conference on Design, Automation and Test in Europe
(DATE), Munich, Germany, March 2005, pp. 888–893.

[23] A. Meier, M. Weise, J. Beutel, and L. Thiele, “NoSE: Ef-
ficient Initialization of Wireless Sensor Networks,” inProc.
ACM Conference on Embedded Networked Sensor Systems
(SenSys’08), Raleigh, North Carolina, November 2008, pp.
397–398.

[24] D. Ma, J. Wang, M. Somasundaram, and Z. Hu, “Design and
Optimization on Dynamic Power System for Self-Powered
Integrated Wireless Sensing Nodes,” inProc. IEEE Inter-
national Symposium on Low Power Electronics and Design
(ISLPED’05), San Diego, California, August 2005, pp. 303–
306.

[25] R. Jurdak, P. Baldi, and C. Lopes, “Adaptive Low Power
Listening for Wireless Sensor Networks,”IEEE Trans. on
Mobile Computing, vol. 6, no. 8, pp. 988–1004, August 2007.

[26] M. Hasegawa, T. Kawamura, N. Tran, G. Miyamoto, Y. Mu-
rata, H. Harada, and S. Kato, “Decentralized Optimization
of Wireless Sensor Network Lifetime based on Neural Net-
work Dynamics,” in Proc. IEEE International Symposium
on Personal, Indoor and Mobile Radio Communications
(PIMRC’08), Cannes, France, September 2008, pp. 1–5.

[27] X. Ning and C. Cassandras, “Optimal Dynamic Sleep Time
Control in Wireless Sensor Networks,” inProc. IEEE Con-
ference on Decision and Control (CDC’08), Cancun, Mexico,
December 2008, pp. 2332–2337.

[28] Atmel. (2012, January) Atmel atmega1281 microcontroller
with 256k bytes in-system programmable flash. [On-
line]. Available: http://www.atmel.com/dyn/resources/prod
documents/2549S.pdf

[29] Crossbow. (2012, January) MTS/MDA sensor board users
manual. [Online]. Available: http://www.xbow.com/

[30] Sensirion. (2012, January) Datasheet sht1x (sht10, sht11,
sht15) humidity and temperature sensor. [Online]. Available:
http://www.sensirion.com/

[31] Atmel. (2012, January) Atmel at86rf230 low power 2.4 ghz
transceiver for zigbee, ieee 802.15.4, 6lowpan, rf4ce and ism
applications. [Online]. Available: http://www.atmel.com/dyn/
resources/proddocuments/doc5131.pdf

[32] H. Friis, “A Note on a Simple Transmission Formula,”Proc.
IRE, vol. 34, p. 254, 1946.

[33] Crossbow. (2012, January) Crossbow iris datasheet. [Online].
Available: http://www.xbow.com/

[34] A. Munir, A. Gordon-Ross, S. Lysecky, and R. Lysecky, “A
Lightweight Dynamic Optimization Methodology for Wire-
less Sensor Networks,” inProc. IEEE International Confer-
ence on Wireless and Mobile Computing, Networking and
Communications (WiMob), Niagara Falls, Canada, October
2010, pp. 129–136.

[35] (2012, January) Intel Xeon Processor E5430. [Online].
Available: http://processorfinder.intel.com/details.aspx?
sSpec=SLANU

[36] (2012, January) Linux Man Pages. [Online]. Available:http:
//linux.die.net/man/

[37] (2012, January) C++ reference library. [Online]. Available:
http://cplusplus.com/reference/clibrary/ctime/clock/

