
292

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REST-Event: A REST Web Service Framework for Building Event-Driven Web

Li Li

Avaya Labs Research

Avaya Inc.

Basking Ridge, New Jersey, USA

lli5@avaya.com

Wu Chou

Avaya Labs Research

Avaya Inc.

Basking Ridge, New Jersey, USA

wuchou@avaya.com

Abstract—As the World Wide Web is becoming a

communication and collaboration platform, there is an acute

need for an infrastructure to disseminate real-time events over

the Web. However, such infrastructure is still seriously lacking

as conventional distributed event-based systems are not

designed for the Web. To address this issue, we describe a

REST web service framework, REST-Event. It represents and

organizes the concepts and elements of Event-Driven

Architecture (EDA) as REST (Representational State

Transfer) web services. Our approach leads to a layered event-

driven web, in which event actors, subscriptions and event

channels are separated. As an integration framework, REST-

Event specifies a set of minimal REST services to support event

systems, such that generic two-way event channels can be

created and managed seamlessly through a process called

subscription entanglement. A special form of event-driven web,

called topic web, is proposed and built based on REST-Event.

The advantages and applications of topic web are presented

and discussed, including addressability, connectedness,

dynamic topology, robustness and scalability. In addition, a

prototype topic web for presence driven collaboration is

developed. Preliminary performance tests show that the

proposed approach is feasible and advantageous.

Keywords - Web service, REST, Topic Hubs, Event-driven,

EDA.

I. INTRODUCTION

The Web has undergone a rapid evolution from an
informational space of static documents to a space of
dynamic communication and collaboration. In the early days
of Web, changes to web content were infrequent and a user
could rely on web portals, private bookmarks, or search
engines to find information and follow them. However, in
the era of social media, information updates become frequent
and rapid. People need timely and almost instant availability
of these dynamic contents to interactively use this
information without being overwhelmed by the information
overload. This demands the Web to evolve rapidly from a
static and reactive informational space to a dynamic
communication and collaboration oriented environment. As a
consequence, this migration of Web can affect the
application spaces of both consumers and enterprises for
future services. The trend of a communication and
collaboration Web pushes for an event-driven web, in which
information sharing is driven by asynchronous events to
support dynamic, real-time, or near real-time information
exchange.

Despite many existing event notification systems
developed over the years, infrastructures and technologies
for such an event-driven web are still seriously lacking for
the following reasons.

First, most of the architectures, protocols, and
programming languages for conventional distributed event
notification systems were developed prior to the Web. As a
result, these notification systems are not accessible to each
other on the Web or fit the infrastructure of the Web.

Secondly, the current web technologies related to event
notifications, including Atom [4][5], Server-Sent Events [9],
Web Sockets [10], Bidirectional HTTP [33] and HTML5 [8],
focus mainly on client-server interactions and are not
sufficient to support integrations between web sites and web
applications across organizational boundaries.

Therefore, there is an acute need for a unifying
framework that can provide seamless integration of these
notification systems with the infrastructure of web and web
based services. Such a unifying framework can transform
conventional notification systems into web services such that
they become part of the Web. It can also be used to integrate
and enable the existing web based applications, including
those social network sites, which currently do not have a way
to share events. If these two goals can be achieved
effectively, then it could lead to a nested event notification
system on the Web - an event-driven web extension to the
current Web.

To develop such a unifying framework, we lay our
foundation on Event-Driven Architecture (EDA) [12], in
which information is encapsulated as asynchronous events
propagated to the interested components when they occur.
EDA defines the principles and architecture for event
discovery, subscription, delivery and reaction, which are also
key components in event-driven web for real-time
communication and collaboration. Moreover, EDA is a
natural fit for the event-driven web as both architectures
assume a distributed system that are developed and
maintained independently by different organizations without
any centralized control.

To apply EDA to the web architecture, we represent and
organize EDA concepts and elements as REST [1][2] web
services in a framework called REST-Event. As an
integration framework, REST-Event demands a set of
minimal REST services supported by the systems to be
integrated but at the same time supports different event
channels between the systems. For this reason, we generalize
the traditional one-way event channels, in which event

293

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

notifications flow in one direction to two-way event
channels, in which event notifications can flow in both
directions. To hide complexity of managing two-way event
channels, we introduce a process called subscription
entanglement based on REST protocols. With this
framework, the event-driven web can be built and operated
as a distributed hypermedia system, for which REST is
optimized.

By projecting EDA to REST, many important problems
in conventional event notification systems can be resolved
efficiently. The uniform interface, connectedness, and
addressability of REST can facilitate the discovery of
notification web services. The idempotent operations and
statelessness of REST can enhance robustness and scalability
to notification web services. Subscription entanglement hides
system complexity from the clients.

To test REST-Event framework, a prototype event-driven
web, topic web, which consists of distributed topic hubs, is
implemented using REST-Event to demonstrate the
feasibility and advantages of this approach.

The rest of the paper is organized as follows. Section II
introduces the background and related work. Section III
describes our vision of event-driven web. Section IV
introduces the REST-Event framework. Section V describes
a special event-driven web called topic web that can be built
from REST-Event. Section VI summarizes the advantages of
the topic web. Section VII is dedicated to a prototype
implementation and experimental study results. Findings of
this paper are summarized in Section VIII.

II. RELATED WORK

This paper extends our previous work [1] published in
Service Computation 2010 in the following aspects: 1) the
new framework is based on a new layered system with
generalized event channels, whereas our previous work
assumes all event channels are HTTP; 2) the new framework
supports creation of two-way event channels in one
transaction, whereas the previous framework only supports
one-way event channels; 3) this paper clarifies the notions of
entangled subscriptions; 4) the core resources and protocols
of the framework are separated from the topic web, which is
a system built from the described framework.

REST stands for REpresentational State Transfer. It is an
architecture style optimized for distributed hypermedia
system as described in [2][3][4]. The fundamental constraint
of REST is that the interactions between a client and servers
should be driven by hypermedia. In other words, a client
should be able to start from a single URI and transition to a
desired state by following the links in the hypermedia
provided by the servers. This constraint is realized by the
following architectural constraints: 1) Addressability: each
resource can be addressed by URI. 2) Connectedness:
resources are linked to enable transitions. 3) Uniform
Interface: all components in the system support the same
interface, namely HEAD, GET, PUT, DELETE and POST.
HEAD and GET are safe and idempotent. PUT and DELETE
are not safe but idempotent. Idempotent operations can be
executed many times by a server and have the same effect as
being executed once. This property allows a client to

resubmit a request in case of failures without worrying about
undesired side-effect, such as paying something twice. 4)
Statelessness: all requests to a resource contain all
information necessary to process the requests, and the
servers do not need to keep any context in order to process
the requests. Stateless servers have much less failure
conditions than stateful ones and are easy to scale and
migrate. 5) Layering: intermediate proxies between clients
and servers can be used to cache responses, enforce security
polices, or distribute workloads.

RSS [7] and Atom [5] are two data formats that describe
web feeds to be consumed by feed readers. A feed can be
news, blogs, wikis, or any resource whose content may be
updated frequently by the content providers. The content
providers are responsible to publish their feeds. This is
usually done by embedding the feed URI in a web page. The
feed readers are responsible to find the feeds, for example by
following feed URI. Once a feed is found, the feed reader
fetches the updates by periodically polling the feed.
However, such polling is very inefficient in general, because
the timing of the updates is unpredictable. Polling too
frequently may waste a lot of network bandwidth, when
there is no update. On the other hand, polling too
infrequently may miss some important updates and incur
delay on information processing.

To address the inefficiency of poll style feed delivery,
Google developed a topic based subscription protocol called
PubSubHubbub [23]. In this protocol, a hub web server acts
as a broker between feed publishers and subscribers. A feed
publisher indicates in the feed document (Atom or RSS) its
hub URL, to which a subscriber (a web server) can registers
a listener. Whenever there is an update, the feed publisher
notifies its hub, which then fetches the feed and multicasts
(push) it to the registered listeners. While this protocol
enables more efficient push style feed updates, it does not
describe how hubs can be federated to provide a global feed
update service across different web sites. This protocol only
supports one-way event channels from a topic hub to its
listeners. The event channels are also fixed to be Atom over
HTTP. Also the system does not use subscription
entanglement to manage event channels.

Many techniques have been developed over the years to
address the asynchronous event delivery to the web
browsers, such as Ajax, Pushlet [8], and most recently
Server-Sent Events [10] and Web Sockets [11]. However,
these techniques are not applicable to federated notification
services where server to server relations and communication
protocols are needed.

Bayeux [34] is a protocol that supports both HTTP long-
polling and streaming mechanisms to allow a HTTP server to
push notifications to a HTTP client. This protocol can be
combined with normal HTTP request/response to support
two-way event channels. But this protocol does not specify
how to create and manage subscriptions.

BOSH (XEP-0124) [35] uses HTTP long-polling to
emulate bidirectional TCP streams. XMPP also supports a
publish/subscribe extension (XEP-0060) [36] to allow
XMPP entities to subscribe and publish events to topics. But

294

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

these protocols do not specify how to create and manage
subscriptions.

Server-Sent Events [10] defines a protocol that uses
HTTP streaming to allow a HTTP server to push
notifications to a HTTP client. This protocol can be
combined with normal HTTP request/response to create two-
way event channels. However, the protocol does not specify
how to create or manage subscriptions.

Google Wave is a platform and protocol to provide near
real-time communication and collaboration between web
browsers. Since Google Wave Federation Protocol [37] is
based on XMPP, it does not support integration with the
Web directly. Google Wave Client-Server Protocol [38] is
based on WebSockets and JSON. The protocol does not
specify how to create subscriptions.

Microsoft Azure cloud platform [39][40] has several
built-in mechanism to support EDA (Event-Driven
Architecture), including server-to-server event subscriptions,
for example between an event queue and a router. But the
platform does not support two-way event channels through
subscription entanglement.

WIP [41] uses WS-Eventing to negotiate media
transports for IP based multimedia communication. The
basic idea in WIP is to treat media streams as two-way
events and WS-Eventing is used to negotiate the media
transport parameters. Although WIP supports a form of two-
way event channels, there are some significant differences.
First, WIP is based on WS-* instead of REST. Second, WIP
is aimed to establish media transports (RTP) between two
endpoints, whereas REST-Event is aimed to integrate
different notification systems.

In software engineering, Publisher-Subscriber [16] or
Observer [12] is a well-known software design pattern for
keeping the states of cooperative components or systems
synchronized by event propagation. It is widely used in
event-driven programming for GUI applications. This pattern
has also been standardized in several industrial efforts for
distributed computing, including Java Message Service
(JMS) [25], CORBA Event Service [26], CORBA
Notification Service [26], which are not based on web
services.

Recently, two event notification web services standards,
WS-Eventing [19] and WS-Notification [20][21] are
developed. However, these standards are not based on REST.
Instead they are based on WSDL [28] and SOAP [29], which
are messaging protocols alternative to REST [1]. WS-Topic
[22] is an industrial standard to define a topic-based
formalism for organizing events. However, these topics are
not REST resources but are XML elements in some
documents.

Recently, much attention has been given to Event-Driven
Architecture (EDA) [13][17] and its interaction with Service-
Oriented Architecture (SOA) [18] to enable agile and
responsive business processes within enterprises. The
fundamental ingredients of EDA are the following actors:
event publishers that generate events, event listeners that
receive events, event processors that analyze events and
event reactors that respond to events. The responses may

cause more events to occur, such that these actors form a
closed loop.

A comprehensive review on the issues, formal properties
and algorithms for the state-of-the-art event notification
systems is provided in [14]. The system model of the
notification services is based on an overlay network of event
brokers, including those based on DHT [15]. There are two
types of brokers: the inner brokers that route messages and
the border brokers that interact with the event producers and
listeners. A border broker provides an interface for clients to
subscribe, unsubscribe, advertise, and publish events. An
event listener is responsible to implement a notify interface
in order to receive notifications. However, none of the
existing notification systems mentioned in [14] is based on
RESTful web services.

III. EVENT-DRIVEN WEB

To project EDA to REST, we model the EDA concepts,
such as subscription, publisher, listener and broker, as
interconnected resources that support the uniform interface
of REST. As the result, a distributed event notification
system becomes the event-driven web: a web of resources
represented as distributed hypermedia that propagates and
responds to events as envisioned by EDA. There is no longer
any boundary between different event notification systems as
they can expose their interfaces through these resources and
become part of the event-driven web.

The event-driven web is a layered system with the
following layers as shown in Figure 1.

Figure 1. Three layers of the event-driven web

Layer 1 is a web of event publishers, listeners and

subscription factories. A publisher is a resource that
advertises events. A listener is a resource that accepts event
notifications. A subscription factory is a resource that
accepts subscriptions on behalf of a publisher. These
resources expose their functions through REST services.
They serve as the access points to a complex event
notification system treated as a black box to the Web.

Layer 2 is a web of subscription resources that are
created from the resources in Layer 1. Subscription resources
exist as entangled pairs and each pair defines an association
between an event publisher and an event listener, in which
event notifications are sent. These associations are referred
as event channels. These entangled subscriptions resources

Layer 1: web of publishers, listeners and

subscription factory

Layer 2: web of subscriptions

Layer 3: event channels

link

manage

U
sers

295

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

provide REST services to manage the event channels. Layer
1 and 2 resources are connected so navigations between
layers are supported.

Layer 3 consists of event channels created from
subscription resources in Layer 2. Unlike resources in layers
1 and 2 that provide REST services, the event channels may
use any protocol to transmit event notifications, such as
HTTP, JMS, and TCP/IP. In fact, the event notifications do
not have to be discrete messages and can be media streams
that are transmitted over RTP as proposed in WIP [41]. If
two event systems do not use the same protocol for
notifications, adaptors may be used to convert notifications.

To build such a layered system through integration of
existing distributed event systems, REST-Event framework
defines a set of minimal REST services required for the
resources in Layer 1, upon which subscriptions can be
created. The REST-Event itself defines the protocols for the
subscription management. To be flexible, REST-Event does
not define the protocols for Layer 3 since these protocols are
defined by the existing event systems. REST-Event does not
define any event filter languages either as they are also
defined by the existing event systems. However, the
notification protocols and filters can be specified in
subscriptions.

IV. REST-EVENT FRAMEWORK

REST-Event framework defines a minimal set of
resources and protocols to support the creation and
management of event channels through subscriptions. The
following subsections describe the core resources and
protocols, namely: Discovery, Creation and Deletion in this
framework.

A. Discovery Protocol

REST requires that a REST API should be entered with a
single URI without any prior knowledge except media types
and link relations [3]. This means, when being provided with
a URI, an event subscriber must be able to determine if the
URI points to an event publisher, and if so, which resource
can be used to create subscriptions. To satisfy this
requirement, REST-Event requires an event publisher to
support the Discovery Protocol. The protocol contains three
elements: a HTTP HEAD request from a subscriber to a
publisher, a HTTP response from the publisher to the
subscriber, and a special link relation subscribe in the
response message. Suppose the given URI is
http://www.host1.com/topic1, then the HEAD request and
response could be:

HEAD /topic1 HTTP 1.1
Host: www.host1.com

200 OK HTTP 1.1
Link: </topic1/factory1>; rel=subscribe

The special subscribe link in the response tells the

subscriber two things: 1) the requested resource is an event
publisher; and 2) the location of its subscription factory that
accepts subscription requests to this event publisher.

The link is specified in the header following RFC5988
[42]. This approach allows an event publisher to delegate its
subscription management to another resource. Specifying the
link in the header instead of the body has the advantage that
the link is independent of the outgoing representations.

B. Creation Protocol

In conventional event-based systems, a subscription
represents a one-way event channel, in which event
notifications flow from the publisher to the listener.
However, in many cases, two-way event channels, in which
event notifications can flow in both directions are necessary
in communication and collaboration systems. It is possible
for a subscriber to create a two-way event channel in these
systems with two separate subscriptions, each representing a
one-way event channel. But this approach has the following
drawbacks. First, the system complexity is exposed to the
subscriber, which is typically a human user. Second, the
system relies on an external entity (subscriber) to control its
state. If the external entity leaves the system in an
inconsistent state, for example failing to delete one
subscription, then it is difficult for the system to detect and
recover from the inconsistence.

To address this issue, REST-Event supports creation and
management of two-way event channels in one transaction
initiated by a subscriber. The conventional one-way event
channels are a special case of two-way event channels. This
approach hides the complexity and keeps the system in the
loop so that any failure can be detected and recovered. Two-
way event channels are created by a process called
subscription entanglement, in which a pair of subscriptions
are created and linked to have the same lifecycles.
Subscription entanglement is realized by the subscription
protocol that involves interactions between three entities: an
event subscriber, a subscription factory and an event listener.
REST-Event therefore requires that event systems to be
integrated exposing a subscription factory resource and a
listener resource that support the Creation Protocol.

Without losing generality, we assume the subscription
protocol is defined in terms of HTTP and XML according to
REST. Figure 2 illustrates the protocol messages exchanged

between the involved resources: topic1 is an event

publisher resource and facotory1 is the subscription

factory of topic1 of the first event system; topic2 is an

event listener resource and factory2 is the subscription

factory of topic2 of the second event system.
The Creation Protocol creates a two-way event channel

between the two systems through subscription entanglement
as follows.

Step 1: the subscriber sends a HTTP POST request to

http://www.host1.com/topic1/factory1 to
create a subscription that specifies a two-way event channel
consisting of two one-way channels. Both outbound and
inbound channels specify a source URI and a sink URI. In
this case, the outbound channel tranmits notifications from

the source topic1 to the sink topic2 and the inbound
channel goes the opposite direction. In general, the two event
channels can be separated with 2 different pairs of sources

296

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and sinks, but always have the same lifetime as specified by
the expiry element. Each event channel can have its own
filter:

Figure 2. Creation Protocol

POST /factory1 HTTP 1.1
Host: www.host1.com
Accept: application/xml

<subscription>

 <expiry>…</expiry>
 <outbound>
 <source

href="http://www.host2.com/topic1" />
 <sink

href="http://www.host2.com/topic2" />
 <filter>…</filter>
 </outbound>
 <inbound>
 <source

href="http://www.host2.com/topic2" />
 <sink

href="http://www.host2.com/topic1" />
 <filter>…</filter>
 </inbound>

</subscription>

The factory1 resource will process this request and

create a subscription resource subscription1 that

represents the outbound event channel from topic2 to

topic1 in the request.

Steps 2-3: The factory1 resource sends a HTTP GET

to the topic2 resource to discover its factory using the
Discovery Protocol discussed before.

Step 4: The factory1 resource sends a POST request

to factory2 found above:

POST /factory2 HTTP 1.1
Host: www.host2.com
Accept: application/xml

<subscription>

 <expiry>…</expiry>
 <link rel="entangle"

href="http://www.host1.com/subscription1" />
 <outbound>

 <source
href="http://www.host2.com/topic2" />

 <sink
href="http://www.host1.com/topic1" />

 <filter>…</filter>
 </outbound>

</subscription>

Step 5: The factory2 resource creates

subscription2 and links it with subscription1 . On
success, it responds with a URI to the created

subscription2 :

201 Created HTTP 1.1
Content-Type: application/xml
Location: http://www.host2.com/subscription2

Upon receiption of the response, the factory1 links

subscription1 to subscription2 .

Step 6: The factory1 resources returns a response to

the subscriber that contains the link to subscription1
for the subscriber to access the entangled subscriptions:

201 Created HTTP 1.1
Location: http://www.host1.com/subscription1

This completes the creation of entangled subscriptions

that are mutually linked. If there is a failure in steps 2-5, the
partial subscriptions will be deleted and the subscriber will
receive an error status code in response.

To create a one-way event channel from topic1 to

topic2 , we just remove the <inbound> element from the

request message in Step 1 and the <outbound> element
from the request in Step 4. The rest messages will be the
same.

The factory2 discovered in steps 2-3 can be cached so
the total number of messages can be reduced to 4 when the
Subscription Protocol is repeated on the same resources.

C. Deletion Protocol

Since the entangled subscriptions have the same
lifecycle, deleting any one of them will delete the other. The
Deletion Protocol is illustrated by the following sequence
diagram (Figure 3).

When a client deletes a subscription, the resource will
delete the local subscription state to reclaim the space. It then
deletes the entangled subscription to maintain the same
lifecycle. The deletions can also be initiated by a HTTP
server that terminates a local subscription for various
reasons, such as the server is shutting down or reclaiming
spaces.

V. TOPIC WEB

This section demonstrates the use of REST-Event
framework in creating a form of event-driven web called
topic web. A topic web consists of federated topic hubs that
implement the REST-Event protocols. A topic hub hosts
many topic resources that are linked into a topic tree. A topic

297

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

resource is a kind of event broker. A topic web can be
regarded as the event delivery backbone in the conventional
distributed event systems. But a topic web offer more
flexibility and extensibility than conventional event delivery
backbones.

Figure 3. Deletion Protocol

A topic hub hosts resources required by REST-Event:

topic, which is a publisher and listener, subscription factories
and subscriptions. Each hub also hosts a presence resource,
through which an administrator can start or shut down the
services. A hub can be owned and operated by a single user
or shared by a group of users. A topic hub can also invoke
distributed event processors to process notifications. The
high level interactions between a topic hub and its clients and
servers are illustrated in Figure 4.

Figure 4. Topic hub resources and interactions

The topic hub is a light weight component and it can be

run on any devices, including mobile phones that support
HTTP protocol. It can be a Java Servlet on a HTTP server, a
standalone HTTP server, or embedded in another
application.

A topic hub can be a gateway between conventional
event systems and the REST web services. In this sense, a
topic hub represents a complex event system hidden to the
Web. This approach can significantly reduce the cost of web

service development while reusing the existing event
infrastructures to ensure quality of services.

Figure 5. A topic web

Because a topic hub is based on REST design, it is

stateless. Consequently, a topic hub can shut down and
restart safely without losing any of its services, provided that
the resource states are persisted. This is especially useful
when the hubs are hosted on mobile devices, which can be
turned on and off. Because a topic hub is stateless, it is also
scalable. We can add more topic hubs to support more clients
without worrying about client session replica or affinity.

Event channels between topic hubs are created and
managed by REST-Event protocols. An example topic web
is illustrated in Figure 5, where topic hubs are represented as
rectangles and publishers/listeners are represented by circles.
The arrows indicate the event channels.

The following paragraphs describe the elements in topic
web in a more formal setting with set-theoretic notations.

A topic tree is a set of topics organized as a tree. A topic
is a resource, to which events can be published and
subscribed. More formally, a topic t has a set of events E, a
set of children topics C:

t = (E, C), C={ tj | tj is a child topic of t}.

Given a set of topic hubs H={hi} where each hub hosts a

set of topic trees T(hi)={t|t is a topic on hi}, these topic trees
form a web of topics linked by entangled subscriptions.
More formally, a topic web W(H) on top of a set of hubs H is
defined as:

() ()
i

i
h H

W H T h
∈

= ∪

A. Resource Design

The key properties, interfaces and relations of the
resources are depicted in the UML class diagram in Figure 6.

Each resource on a hub is addressed by a URI. The
following templates are used to reflect the subordinate
relations defined above:

• Topic t: /topics/{t};

• Child topic tj of topic t: /topics/{t}/topics/{tj};

• Subscription factory of topic t:
/topics/{t}/subscriptions;

• Subscription s of topic t: /topics/{t}/subscriptions/{s};

Hub 1

Hub 2 Hub 3

Topic Hub

presence

topics

subscriptions

su
b

scrib
er

listen
er

ad
m

in
istrato

r
p

u
b

lish
er processor

HTTP HTTP

notification notification

298

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Entangled subscriptions between topic ta on hub A to

topic tb on hub B is established by a user using a web

browser following the REST-Event Creation Protocol.

Figure 6. Main resources on topic hub

A notification is propagated between hubs as follows:

1. The user posts a notification to a topic on a hub

from a web browser using HTTP POST.

2. The notification is delivered by a scheduler to all

listening topics with PUT that maintains the

original UUID assigned to the notification by the

original hub; as the result, all the propagated

notifications on different hubs can be identified by

the same UUID.

The topic web does not define the representations of its

resources, which is left to the implementations. Different

representations (media types) of the same resource are

supported through HTTP content negotiation. The

communications between web browsers and the topic hubs

are also outside the scope of this framework, as we expected

they can be addressed by the upcoming W3C standards [10].

B. Security

The communication between the topic hubs are secured
using HTTPS with PKI certificates based mutual
authentication. For this to work, each topic hub maintains a
X.509 certificate issued by a CA (Certificate Authority) that
is trusted by other hubs. It is possible or even preferable to
obtain two certificates for each topic hub: one for its client
role and one for its server role, such that these two roles can
be managed separately.

The communications between the topic hubs and web
browsers (users) are also secured by HTTPS. In this case, the
browser authenticates the topic hub certificate against its
trusted CA. In return, users authenticate themselves to the
hub using registered credentials (login/password or
certificate). Once a user is authenticated to a topic hub A, it

employs role-based authorization model to authorize a user
for his actions.

If the user wants to create a subscription link from hub A
to hub B, B has to authorize A for the inbound subscription.
To satisfy this condition, the user first obtains an
authenticated authorization token from hub B. The user then
sends this token with the subscription message to hub A.
Hub A uses this token to authorize itself to hub B for the
inbound subscription creation. Once hub B creates the
resource, it returns an access token to hub A to authorize it
for future notifications to that topic.

An alternative to the above scheme is to use the OAuth
1.0 Protocol [32] that allows a user to authorize a third-party
access to his resources on a server. In this case, hub A
becomes the third-party that needs to access the topic
resources on hub B owned by the user. Here is how it works
at a very high level: 1) the user visits hub A to create a
subscription to hub B; 2) hub A obtains a request token from
hub B and redirects the user to hub B to authorize it; 3) the
user provides his credentials to hub B to authorize the
request token and hub B redirects the user back to hub A; 4)
hub A uses the authorized request token to obtain an access
token from hub B and creates the inbound subscription on B.

In both approaches, the user does not have to share his
credentials on hub B with hub A.

VI. FEATURES OF TOPIC WEB

On surface, the topic web built by REST-Event
framework, as described in the previous section, appears
similar to the broker overlay network in the conventional
notification architecture [14]. However, it has the following
advantages due to a REST based design.

A. Addressability and Connectedness

Unlike conventional broker overlay networks that are
closed systems whose accessibility are prescribed by the
APIs, a topic web is open, addressable and connected.
Unlike in a conventional broker overlay network that
distinguishes between inner, border, or special rendezvous
brokers, a topic web consists of homogeneous topic hubs
with the same type of web services. Users can navigate and
search the topic web to find the interested information using
regular web browsers or crawlers. The addressability and
connectedness increase the “surface areas” of the web
services such that the information and services in a topic web
can be integrated in many useful ways beyond what is
anticipated by the original design.

B. Dynamic and Flexible Topology

Unlike in conventional broker network where brokers
have fixed routing tables, a topic web can be dynamically
assembled and disassembled by users for different needs. Its
topology can be changed on the fly as subscriptions are
created and deleted and hubs join and leave the topic web.
For example, a workflow system can be created where work
items are propagated as notifications between users. In an
emergence situation, a group of people can create an ad-hoc
notification network to share alerts and keep informed. In an
enterprise, a topic web about a product can be created on-

299

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

demand such that alerts from field technicians can propagate
to proper sales and supporting engineers who are in charge of
the product to better serve the customers. In any case, once
the task is finished, the topic web can be disassembled or
removed completely. In this sense, a topic web is similar to
an ad-hoc peer-to-peer network. However, a topic web is
based on REST web services, whereas each type of P2P
network depends on its own protocols.

In conventional notification services, a broker routes all
messages using one routing table. Therefore, it cannot
participate in more than one routing topology. In our
framework, a hub can host many topics, each having its own
routing table (subscriptions). As a result, a hub can
simultaneously participate in many different routing
networks. This gives the users the ability to simultaneously
engage in different collaboration tasks using the same topic
web.

C. Robustness and Scalability

Topic hubs can be made robust because its resource
states can be persisted and restored to support temporary
server shutdown or failover.

The safe and idempotent operations, as defined by HTTP
1.1 [30] also contribute to the robustness. Our framework
uses nested HTTP operations where one operation calls other
operations. We ensure that such a chain of operations is safe
and idempotent by limiting how operations can be nested
inside each other as follows:

nested(GET)={GET}
nested(POST)={GET,POST,PUT,DELETE}
nested(PUT)={GET,PUT,DELETE}
nested(DELETE)={GET,PUT,DELETE}

The robustness and scalability also come from the

statelessness of REST design. The statelessness means that a
topic hub can process any request in isolation without any
previous context. By removing the need for such context, we
eliminate a lot of failure conditions. In case we need to
handle more client requests, we can simply add more servers
and have the load balancer distribute the requests to the
servers who share the resources. If the resource access
becomes a bottleneck, we can consider duplication or
partition of resources. Robustness and scalability can be
crucial when a topic hub serves as the gateway to large-scale
notification systems.

VII. IMPLEMENTATION AND EXPERIMENTS

A prototype topic web has been developed based on the
described REST-Event framework. The notification system
allows users within a group to publish and subscribe
presence information and text messages. Users can respond
to received messages to enable real-time collaboration. For
example, when an expert becomes available through his
presence notification, a manager may respond to the
notification and propose a new task force be formed with the
expert as the team leader. This response is propagated to the
group over the event channels so that interested members can
set up a new workflow using the proposed topic web.

Users interact with the topic web with Web browsers
without any download. The following is a screenshot of a
web page of a particular topic (Figure 7).

From a topic page, a user can follow the link to the
subscription factory page to create subscriptions (Figure 9
and Figure 9).

Figure 7. A topic web page

Figure 8. Page for creating subscription

Figure 9. Page for a created subscription

In this prototype system, a user can post a message to a

topic using a web browser (Figure 10). The topic hub will
propagate the message over the event channels. All users
who subscribe to the topic directly or indirectly through
other topics will receive the message in a notification. In this
topic web, notifications for text messages are also modeled

300

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as resources that can be linked to track the interaction
history. When a user posts a message to a topic, it is saved
by the topic hub and all notifications for this message are
linked to the original copy. If another user responds to this
message, the response is again saved in a topic hub and
linked to the original message. A user can follow this
response chain through the hyperlinks embedded in the
notifications. In some sense, the messages are like tweets.
However, the topic web is not a single web site as
www.twitter.com. Instead, the topic web is a distributed
system consists of many such web sites.

Figure 10. Page for posting a message

The prototype was written in Java using Restlet 1.1.4

[24]. The implementation followed the Model-View-
Controller (MVC) design pattern. The Model contains the
persistent data stored on disk. The Controller contains the
resources and the View contains the view objects that
generate XHTML pages from the XHTML templates. The
topic hub stack was implemented by four Java packages, as
illustrated in Figure 11.

For this prototype, we used OpenSSL package [31] as the
CA to generate certificates for the topic hubs, and Java
keytool to manage the keystores for the hubs. Resources
states are managed by a file manager that synchronizes the
access to them. A hub used a separate thread to dispatch
notifications from a queue shared by all resources. Because
HTML form only supports POST and GET, we used
JavaScript (XMLHttpRequest) to implement the PUT and
DELETE operations for pages that update or delete
resources.

Figure 11. Topic hub stack

Users interact with the services using web browsers
(Firefox in our case). For demo purpose, the notifications
were delivered to the browsers using automatic page
refreshing. This is a temporary solution as our focus is on
communications between hubs, instead of between browser
and server. However, the REST-Event framework should
work with any client side technologies, such as Ajax or
Server-Sent Event technologies.

We measured the performance of the prototype system in
a LAN environment. The hubs were running on a Windows
2003 Server with 3GHz dual core and 2GB RAM. The
performances of several key services were measured, where
S means subscription, L means listener, and N means
notification. The time durations for each method are
recorded in the following table. The time duration includes
processing the request, saving data to the disk, and
assembling the resource representation.

TABLE 1. PERFORMANCE MEASURED IN MILLISECONDS

task/time POST

S

POST

L

PUT

S

POST

N

PUT

N

avg 14.1 38.9 6.2 9.5 0

std 13.7 16.8 8.0 8.1 0

The table shows that adding a listener (POST L) takes the

longest time and this is expected because it is a nested
operation, where

t(POST L)=processing time + network latency + t(PUT
S).

The time to update a notification (PUT N) is ignorable (0
ms) and this is good news, since we use PUT to propagate
notifications.

VIII. CONCLUSIONS

In this paper, we described an approach - REST-Event
framework for event-driven web, in which elements of EDA
(event-driven-architecture) can be projected and represented
by REST resources, protocols and services. The basic REST
resources, protocols, services and securities in this
framework were specified and constructed. Moreover, a
special event-driven web, topic web, was proposed and built
based on REST-Event. We studied features in REST-Event
approach, including addressability, dynamic topology,
robustness, and scalability, etc., and compared them with the
conventional notification systems.

In addition, we developed a prototype REST-Event based
system using secure HTTP. Preliminary performance tests
showed that the proposed approach is feasible and
advantageous.

Our plan is to test the framework in a larger scale
network environment and analyze its behaviors and
performance in those deployments.

REFERENCES

application (container)

resources views

util (file manager)

restlet (HTTP client/server)

XHTML

templates

Resource

data

Keystore

301

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[1] Li Li and Wu Chou: R-Event: A RESTful Web Service Framework
for Building Event-Driven Web, Service Computation 2010, pages 7-
13, Lisbon, Portugal, November 21-26, 2010.

[2] Richardson, L. and Ruby, S., RESTful Web Services, O’Reilly Media,
Inc. 2007.

[3] Fielding, R., Architectural Styles and the Design of Network-based
Software Architectures, Ph.D. Dissertation, 2000,
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm. Last
Accessed: January 5, 2012.

[4] Jacobs, I. and Walsh, N., (eds), Architecture of the World Wide Web,
Volume One, W3C Recommendation 15 December 2004.
http://www.w3.org/TR/webarch/, Last Accessed: January 5, 2012.

[5] The Atom Syndication Format, 2005,
http://www.ietf.org/rfc/rfc4287.txt, Last Accessed: January 5, 2012.

[6] The Atom Publishing Protocol, 2007,
http://www.ietf.org/rfc/rfc5023.txt, January 5, 2012.

[7] RSS 2.0 Specification, 2006, http://www.rssboard.org/rss-
specification, Last Accessed: January 5, 2012.

[8] Pushlets, http://www.pushlets.com/, Last Accessed: January 5, 2012.

[9] HTML Working Group, 2009, http://www.w3.org/html/wg/, Last
Accessed: January 5, 2012.

[10] Hickson, I. (ed), Server-Sent Events, W3C Working Draft 29 October
2009, http://www.w3.org/TR/eventsource/, Last Accessed: January 5,
2012.

[11] Hickson, I. (ed), The Web Sockets API, W3C Working Draft 29
October 2009, http://www.w3.org/TR/websockets/, Last Accessed:
January 5, 2012.

[12] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns,
Addison-Wesley, 1995

[13] Taylor, H., Yochem, A., Phillips, L., and Martinez, F., Event-Driven
Architecture, How SOA Enables the Real-Time Enterprise, Addison-
Wesley, 2009.

[14] Mühl, G., Fiege, L., and Pietzuch, P.R., Distributed Event-Based
Systems, Springer, 2006.

[15] Rowstron, A., Kermarrec, A.M., Castro, M., and Druschel, P.,
SCRIBE: The design of a large-scale event notification infrastructure,
Proc. of 3rd International Workshop on Networked Group
Communication, November 2001, pp 30-43.

[16] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal,
M. (1996). Pattern-Oriented Software Architecture: A System of
Patterns. West Sussex, England: John Wiley & Sons Ltd., 1996.

[17] Chandy, K. M. (2006). Event-Driven Applications: Costs, Benefits
and Design Approaches, Gartner Application Integration and Web
Services Summit 2006, http://www.infospheres.caltech.edu/node/38,
Last Accessed: January 5, 2012.

[18] Michelson, B. M. (2006). Event-Driven Architecture Overview,
http://soa.omg.org/Uploaded%20Docs/EDA/bda2-2-06cc.pdf, Last
Accessed: January 5, 2012.

[19] Davis, D., Malhotra, A., Warr, K., and Chou, W. (eds), Web Services
Eventing (WS-Eventing), W3C Working Draft, 5 August 2010.
http://www.w3.org/TR/ws-eventing/, Last Accessed: January 5, 2012.

[20] Graham, S., Hull, D., and Murray, B. (eds), Web Services Base
Notification 1.3 (WS-BaseNotification), OASIS Standard, 1 October
2006. http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-
spec-os.pdf, Last Accessed: January 5, 2012.

[21] Chappell, D. and Liu, L. (eds), Web Services Brokered Notification
1.3 (WS-BrokeredNotification), OASIS Standard, 1 October 2006.
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-
spec-os.pdf, Last Accessed: January 5, 2012.

[22] Vambenepe, W., Graham, S., and Biblett, P. (eds), Web Services
Topics 1.3 (WS-Topics), OASIS Standard, 1 October 2006.
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf, Last
Accessed: January 5, 2012.

[23] Fitzpatrick, B., Slatkin, B., and Atkins, M., PubSubHubbub Core 0.2,
Working Draft, 1 September 2009,
http://code.google.com/p/pubsubhubbub/, Last Accessed: January 5,
2012.

[24] Restlet, RESTful Web framework for Java, http://www.restlet.org/,
Last Accessed: January 5, 2012.

[25] JMS (2002). Java Message Service, version 1.1, 2002,
http://www.oracle.com/technetwork/java/index-jsp-142945.html, Last
Accessed: January 5, 2012.

[26] Event Service Specification, Version 1.2, October 2004, 2004.

[27] Notification Service Specification, Version 1.1, October 2004.

[28] Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S.,
Web Services Description Language (WSDL 1.1), W3C Note, 15
March 2001. http://www.w3.org/TR/wsdl, Last Accessed: January 5,
2012.

[29] Gudgin, M., et al, SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition), W3C Recommendation, 27 April 2007.
http://www.w3.org/TR/soap12-part1/, Last Accessed: January 5,
2012.

[30] Fielding, R., et al. Hypertext Transfer Protocol – HTTP/1.1.
http://www.w3.org/Protocols/rfc2616/rfc2616.html, Last Accessed:
January 5, 2012.

[31] OpenSSL: http://www.openssl.org/, Last Accessed: January 5, 2012.

[32] The OAuth 1.0 Protocol: http://tools.ietf.org/html/rfc5849, Last
Accessed: January 5, 2012.

[33] RFC6202: Known Issues and Best Practices for the Use of Long
Polling and Streaming in Bidirectional HTTP,
http://tools.ietf.org/html/rfc6202, Last Accessed: January 5, 2012.

[34] The Bayeux Specification:
http://svn.cometd.com/trunk/bayeux/bayeux.html, Last Accessed:
January 5, 2012.

[35] XEP-0124: Bidirectional-streams Over Synchronous HTTP (BOSH):
http://xmpp.org/extensions/xep-0124.html, Last Accessed: January 5,
2012.

[36] XEP-0060: Publish-Subscribe: http://xmpp.org/extensions/xep-
0060.html, Last Accessed: January 5, 2012.

[37] Google Wave Federation Protocol: http://wave-
protocol.googlecode.com/hg/spec/federation/wavespec.html, Last
Accessed: January 5, 2012.

[38] Google Wave Client-Server Protocol: http://wave-
protocol.googlecode.com/hg/whitepapers/client-server-
protocol/client-server-protocol.html, Last Accessed: January 5, 2012.

[39] Event driven architecture onto the Azure Services Platform:
http://www.microsoft.com/belux/architect/issue_3/azure_services_pla
tform.aspx, Last Accessed: January 5, 2012.

[40] Event-Driven Architecture: SOA Through the Looking Class:
http://msdn.microsoft.com/en-us/architecture/aa699424, Last
Accessed: January 5, 2012.

[41] Wu Chou, Li Li, Feng Liu, Web Services for Communication over IP,
IEEE Communication Magazine, vol. 46 no. 3, page 136-143, March
2008.

[42] RFC9588: Web Linking, http://tools.ietf.org/html/rfc5988, Last
Accessed: January 5, 2012.

