
302

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Generic Function Schema as a Means for Similar-Fashioned Operations on
Heterogeneous Connection Properties

Mark Yampolskiy1,4, Wolfgang Hommel2,4, David Schmitz2,4, Michael Schiffers3,4

myy@isis.vanderbilt.edu, hommel@lrz.de, schmitz@lrz.de, schiffer@nm.ifi.lmu.de

1Vanderbilt University (VU), 2Leibniz Supercomputing Centre (LRZ), 3Ludwig Maximilians University Munich (LMU),
4Munich Network Management (MNM) Team

Abstract—Graphs are often used to model interconnected
topological objects with different connection properties. Path
finding in a weighted graph belongs to the classical problems
of graph theory. Whereas the addition of the edges’ weights
as an aggregation and the interpretation of a smaller resulting
sum as the preferable path works very well in applications
like path computations, e.g., for road maps, it is not always
applicable to those connections in computer networks that need
to fulfill multiple independent Quality of Service (QoS) criteria
simultaneously. Until now, special solutions are implemented –
often manually – for each new service and for each QoS param-
eter separately. As the development of novel customer-tailored
network services often relies on different connection properties
and their combinations, a generic treatment of QoS parameters
becomes a critical factor for rapid development and network
service rollout. In this article, we present a generic function
schema for treating multiple independent QoS parameters in
a similarly fashioned way. Our work fosters efficient routing
algorithms that are considering multiple connection properties
and corresponding constraints at the same time, as they are
required, for example, in Future Internet infrastructures with
end-to-end QoS guarantees and in dynamic survivability-aware
environments.

Keywords-graph theory; multi-weighted graphs; QoS; QoS
aggregation; QoS comparison.

I. INTRODUCTION

Obviously, network connections are meanwhile broadly
used as a basis for or as an integral part of the services
that are realized upon them. Examples can be found in
areas like Internet-telephony, video-conferencing and video-
on-demand, connectivity for Grid cooperation, IT service
outsourcing, etc. Common to all these examples is that the
overall service quality directly depends on the combination
of multiple Quality of Service (QoS) parameters of the
underlying network connections. For instance, services like
telephony, e.g., realized using standard VoIP (Voice over IP)
protocols, are very sensitive to transmission jitter, as the
human ear is very sensitive to the delay variation; on the
other hand, video streaming depends primarily on the data
rate, so that the end-users do not have to wait periodically
for the transmission of the next portion of a high-resolution

This work was done while Mark Yampolskiy was employed by the LRZ
and worked for the DFN in the Géant project.

video; multi-player gaming in LANs and e-Sports over the
Internet often demand low latency and are sensitive to packet
or even connection loss; network connections for business
and scientific applications often combine requirements for
multiple QoS parameters at the same time and specify tighter
thresholds than the usual consumer applications’ demands.

The fulfillment of the service- or customer-specific end-to-
end (E2E) requirements is only possible if all respective QoS
parameters are considered during the path computation (rout-
ing), either as basis or as derived parameters . The state-of-
the-art routing algorithms that are taking into account E2E
requirements typically operate on weighted graphs in almost
the same manner as approaches operating on multi-weighted
graphs, i.e., on graphs with multiple weights associated with
the single edge representing values of multiple independent
QoS parameters.

In graph theory, it is common to use the addition of
edge-weights as an aggregation function with the path with
the smaller sum as the most preferred alternative. Such
procedures are very well suited in applications like path
computations for road maps in mobile navigation assistants.
However, the approach is not always applicable to connec-
tions in computer networks with combined QoS parameters
as the two network QoS parameters considered most often
(bandwidth and delay) show. Whereas the typical parameter
treatment is applicable to “delay”, a different function is
needed for “bandwidth”: The aggregation function needs to
choose the minimum bandwidth of all involved connection
segments and larger values are preferred over smaller ones.
In general, adequate QoS aggregation functions are signif-
icantly more complex than sum-of or minimum-of if other
QoS parameters like reliability and availability have to be
regarded as well.

Until now, there is no generally applicable solution to
overcome these difficulties. On the other hand, however, the
time for the development of new services with customer-
specific QoS parameters is becoming a crucial success factor.

In order to cope with the high variety of customer-
and service-specific requirements, we have presented in
[1] a generic function schema which allows the treatment
of various arbitrary network QoS parameters in a similar-



303

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

fashioned way. The proposal in [1] includes an efficient
way to distinguish between different QoS parameters; a
standardized general treatment for the aggregation of and
the comparison between values of a particular QoS parame-
ter; and the support of customer-relevant combinations of
arbitrary QoS parameters. The functions proposed in [1]
can be used by routing procedures in order to find a path
fulfilling the E2E constraints or as part of the monitoring of
established connections in order to ensure the fulfillment of
committed E2E connection qualities. However, [1] is limited
to operations on properties that could be called basis QoS
parameters. These are QoS parameters like bandwidth or
delay, which can be measured directly. [1] is not applicable
to derived QoS parameters that result from combining
multiple basis QoS parameters with arbitrary formulae. A
good example of such a parameter is “availability”, defined
as the ratio of the total time a component is capable of
being used during a given time interval to the length of this
interval.

Consequently, while basis parameters induce metrics the
dependencies of which on other variables is not explicit,
derived parameters induce metrics where the influencing
variables are explicitly considered. The important practi-
cal benefit of derived QoS parameters is their conceptual
separation from basis parameters (and thus from dedicated
measurements). For example, reliability (a derived QoS
parameter) – defined as the probability that a service will
perform its intended function during a specified period of
time –, is not solely tied to uptime (a basis parameter). It
could also be coupled to reaction times, response times or
– in the context of a reliability-scalability metric – even to
the number of users when defining it as the Mean Time to
Failure (MTTF) in dependency of the number of users.

Despite these obvious advantages, however, the deter-
mination of derived QoS parameters induces a significant
increase in complexity as the operations to aggregate the
parameters are not necessarily homogeneous (summations
may be combined with min-max-considerations and set
theoretic intersections).

The remainder of the paper is organized as follows: We
first analyze the state of the art in Section II. In Section III,
we summarize first the main results of our original paper [1]
which are necessary to understand the subsequent sections.
We then generalize from the basis QoS parameters to derived
ones and show how operations on them can be formally
specified. In Section IV, we extend the discussion to properly
treating the special problem of value ranges. In Section V we
demonstrate the applicability of our approach to path finding
problems in networks. Section VI discusses the operations
required for aggregating derived QoS parameters, before we
present an information model for derived QoS parameters in
Section VII. Section VIII summarizes the resulting big pic-
ture and presents a concrete example. Finally, we conclude
the paper in Section IX, where we also give an outlook to

our ongoing work.

II. STATE OF THE ART

Most routing algorithms are based on graphs that have
a single fixed value associated with their edges as weights.
This representation is then used for finding a path (often
the shortest path) between arbitrary nodes of the graph.
However, such graphs do not reflect all specifics of computer
networks (see Figure 1). For instance, different quality
classes of the network infrastructure canonically lead to
significant variances in parameter values. In order to process
such value ranges, graphs can be transformed into so called
multigraphs where nodes may be directly connected by one
or more edges. Even in the simple case of weight ranges
for a single property, such transformations can significantly
increase the graph processing complexity. If multiple con-
nection properties with value ranges have to be considered
at the same time, the complexity increases even more
drastically. Therefore, in [2], we proposed an information
model which is able to describe value ranges. Consequently,
such a description raises the necessity of adequate operations
on ranges.

Weight Count

Edge CountWeight

Value

Range

Single

Multiple

Multiple

Single

Multigraph

Multi-Weighted
Graph

Figure 1. Classification of graph properties [1]

Graphs that support multiple weights at the same time
are known as multi-weighted graphs. Such graphs are hardly
investigated yet. In [7], a very good overview of the state of
the art is given. It shows that path finding in multi-weighted
graphs is in general an NP-complete problem. As path find-
ing in multi-weighted graphs violates Bellman’s optimality
principle [8], routing algorithms that require this principle,
e.g., Dijkstra’s algorithm, cannot be used. Additionally, the
handling of multiple properties at the same time is not
solved adequately. Currently, the common understanding is
to describe multiple properties as value vectors. This allows
the use of vector-addition as property aggregation operation.
For a comparison of weight vectors, the concept of non-
dominance has been established [4]: A vector A is non-
dominant to vector B only if all of its weight elements, i.e.,
property values, are smaller or equal to the corresponding
elements of vector B.



304

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As for single-weighted graphs, for multi-weighted graphs
addition is also the pre-dominant aggregation function with
a smaller value being the better one. Even if limitations of
these operations w. r. t. the application to computer networks
are long known, only workarounds have been proposed so
far. For instance, in [9] the addition of log(weight) is
proposed if the true aggregation function for weights is
multiplicative.

Alongside with the directly measurable QoS parame-
ters, the necessity of parameters like service availability
or reliability is very well agreed. Such quality parameters
are defined in IT Service Management (ITSM) frameworks
like ITIL [11] or e-TOM [12] and are widely used in
Service Level Agreements (SLA) among network providers
and carriers. Furthermore, more comprehensive research
areas like survivability and dependability rely on derived
QoS parameters (as, for example, pointed out in [10])
with arbitrary aggregation functions, corresponding weight
comparison procedures, and improved handling of value
ranges. While solutions to the first two aspects will be
described in Section III, an efficient approach for handling
value ranges during path finding will be presented in Section
IV-A.

Besides these purely technical aspects, organizational
specifics have to be considered as well. The so called
policy-based routing between domains, does not only take
technical aspects into account. Rather, it focuses on provider-
specific interests. Along with very restrictive information
and management policies, which are out of the scope of this
paper, network operators and service providers are generally
interested in the reduction of the resources that are required
for a high-quality service delivery.

III. OPERATIONS ON CONNECTION PROPERTIES AND
THEIR GENERALIZATION

In this section, we present a solution to function general-
ization regarding both single properties and property sets.

A. Functions for operations on a single property

During path finding the properties of the edges have to be
aggregated. Typically, simple arithmetical addition is used as
an aggregation function. As discussed in Section I, this is not
necessarily the case for every QoS parameter. Furthermore,
as discussed in [2], in the case of inter-domain connections
each Service Provider (SP) may have access only to infor-
mation regarding his own technical infrastructure which may
not be sufficient to determine all relevant connection proper-
ties. In this case also the aggregation of the partial views of
involved SPs at the same inter-domain connection is needed.
The calculation of QoS properties of the inter-domain link
from two partial views is not necessarily identical to the
aggregation of two physical connections of the same type
and length. For instance, when describing a connection with
the property delay, not only the delay caused by the network

cable should be considered, but also the delay caused by the
active and passive network components used by each single
SP; obviously, this varies between SPs.

If customer-specific end-to-end quality-of-service con-
straints need to be met, the value of the already found
(partial) route has to be compared to these constraints during
the path finding process. For path optimization it is also
necessary to compare the values of several alternatives in
order to choose the better one. In opposite to the case clas-
sically treated in graph theory, the meaning of what is better
may vary between different QoS parameters. Regarding the
examples mentioned above, for bandwidth a bigger value can
be considered as a better one, however for delay a smaller
value is the more preferred one.

Consequently, with each supported connection property
operations for value aggregation and comparison have to
be associated. As we will see, the necessary mathematical
operations are not always as simple as adding values or
selecting the minimum.

B. Associating operations with properties

In IT industry, new technologies and services are evolving
very fast. Therefore prior to the association of operations
with properties, a distinction between existing and projected
properties is needed. We propose to assign a globally unique
ID to each supported property. In order to ensure the global
uniqueness of IDs, we propose to use a registration tree.
Additionally to the distinction between properties, using a
registration tree has another very important advantage. As
multiple functions have to be associated with each supported
property, it can be realized by the definition of the functions
together with the registration of their property-ID (see Figure
2). Additionally, this will ensure the identity of functions
used among SPs.

Associated Functions
_Compare 

_Aggregate

Figure 2. Registration tree example [1]

C. Comparison and aggregation of multiple properties

Based on the previous definition, we introduce an ap-
proach for the handling of m different properties with the
globally unique IDs ID1, . . . , IDm. In graph theory, it is
common practice to use vectors in order to describe multiple
weights associated with a single edge or a path in general.
For any path in a graph with m properties, the weight can



305

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be specified as
−→
U ::= (u1, . . . , um) ∈ Rm. In this definition,

uj is the weight of the jth property with IDj . The order of
properties in the weight vector can be arbitrary, as long as
the placement of the properties is identical among all weight
vectors. Further, for the edges of a path being enumerated
from 1 to n, the weight of an edge with index i will be
referred to as follows:

−→
W i ::= (wi

1, . . . , w
i
m) ∈ Rm.

In order to calculate the weight vector
−→
P of the path

consisting of n edges with weights
−→
W 1, . . . ,

−→
Wn, we first

introduce an aggregation function for two weight vectors as
follows:−−→

Aggr
(−→
U ,
−→
V
)
::= (Aggr1(u1, v1), . . . ,Aggrm(um, vm))

This definition is based on m aggregation func-
tions for each property. The aggregation functions Aggri
(i = 1, . . . ,m) are associated with the property ID in the
registration tree. We assume that all properties are indepen-
dent of each other, i.e., they can vary without influencing
the values of other properties. Furthermore, we assume that
the binary operations defined by aggregation functions fulfill
associative and commutative laws. Then we inductively
define the computation of the whole path weight from
weights of involved segments as follows:−−→

Aggr
(−→
W 1, ...,

−→
Wn

)
::=
−−→
Aggr

(−−→
Aggr

(−→
W 1,
−→
W 2
)
, ...,
−→
Wn

)
Similar to the aggregation, we define the comparison of

property vectors based on the comparison between identical
properties. Corresponding to the non-dominance concept
described in [4] we define that vector

−→
U is better than

−→
V if

and only if all properties in the first vector are better than
the corresponding properties of the second vector. In order
to denote that property ui of vector

−→
U is better than the

corresponding property vi of vector
−→
V , we use the symbol

”≺”. In contrast to the comparison of single values, it is
possible that some properties of the first vector are better
and some others are worse than those of the second vector.
This situation should be treated as “indefinite”. We depict
this with the symbol ”6=”. The comparison of two property
sets can thus be defined as follows:

−−−−−−→
Compare(

−→
U ,
−→
V ) ::=



=, if ∀1 ≤ i ≤ m : ui = vi

≺, if ∀1 ≤ i ≤ m : (ui ≺ vi

∨ ui = vi) ∧
∃1 ≤ j ≤ m : uj ≺ vj

�, if ∀1 ≤ i ≤ m : (ui � vi

∨ ui = vi) ∧
∃1 ≤ j ≤ m : uj � vj

6=, if ∃1 ≤ i ≤ m : ui ≺ vi ∧
∃1 ≤ j ≤ m : uj � vj

IV. TREATMENT OF VALUE RANGES

Some typical aspects of computer networks are not di-
rectly addressed by classical graph theory. In this section
we propose the treatment of value ranges which can be
associated with connection segments (graph edges) instead
of multigraphs.

A. Path finding with value ranges

Physical network connections usually cannot be realized
with a single property set because properties like bandwidth
might vary in a wide range. A good example is the variation
of achievable delays for a single logical connection, as it can
be realized by different physical connections. Consequently,
the property of the whole end-to-end (E2E) path between
two endpoints may vary as well. We will refer to the value
range of a particular path path as



W path =

(−→
W path

min ,
−→
W path

max

)
∈ Rm × Rm,

i.e., the supported value range for the given path can vary
from

−→
W path

min to
−→
W path

max .
It is obvious that the path found between two endpoints

can only be feasible if the best possible value fulfills the E2E
constraints specified by customer (see Figure 3). Therefore,
we propose to operate with the best values of the available
connection segments during the path finding process.

ConstraintDelay

Availability

Figure 3. Fulfillment of end-to-end constraints [1]



306

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We assume that all simultaneously considered path prop-
erties can vary independent of each other. Under this as-
sumption, we define the selection function Best for the best
possible value of a path as follows:

−−→
Best(



W path) =

−−→
Best(

−→
W path

min ,
−→
W path

max)

−−→
Best(

−→
U ,
−→
V ) ::= (Best1(u1, v1), . . . , Bestm(um, vm))

Besti(ui, vi) ::=

{
ui, if ui ≺ vi
vi, otherwise
for 1 ≤ i ≤ m

Please note that this definition is applicable not only to a
path as a whole but also to any path segment.

B. Considering service provider interests: Optimization of
resource usage

In contrast to customers, the service providers are usually
interested in a reduction of resources used for service
realization. This means that the requested service quality
should not be the best possible one, but rather the one
closest to the customer constraints. For paths complying

with the E2E constraints, i.e.,
−−→
Best(



W path) ≺

−→
C E2E ,

we distinguish between three cases as depicted in Figure
4, given the weights of alternative paths A, B and C:

• All worst properties of the considered path are worse
than the constraints (see ”Path A”)

• All worst properties of the path are better than the
constraints (see ”Path B”)

• The worst properties of the path are for some prop-
erties worse and for other properties better than the
constraints (see ”Path C”)

Path A

Delay

Availability

Path B

Path C

Constraint

Figure 4. Pathweights of paths complying to constraints [1]

In order to distinguish between these alternatives, the
function Worst for the selection of the worst possible value

of the found path can be defined as the opposite to Best.
In the case equivalent to ”Path B”, the worst possible value

can be requested during the link ordering process. In the two
remaining cases, an approximation to the constraint value
should be performed. As the properties are independent of
each other, such an approximation can be done separately
(or even in parallel) for each affected property.

The whole E2E path weight is the aggregation of the
weights of the involved parts. A possible gradation between
the maximum and minimum values of connection parts is
depicted in Figure 5. The E2E approximation of the path
weight for a single property can be done in different ways. It
can be seen as a knapsack-like problem with an intention to
find a fit most close to the E2E constraint. We argue against
this approach, as it may prevent the on-demand adaptation
of requested service parts parameters. Instead we favor a
”fair split” among all connection parts. For each property i,
we propose to use a divide-and-conquer strategy as follows:

1) For each connection part j with a value range between
wj

i,min and wj
i,max we compute values

wj
i,best=Besti (wj

i,min, wj
i,max) and

wj
i,worst=Worsti(w

j
i,min, wj

i,max).
2) For each connection part j we compute the realizable

value
⌊
wj

i,best+wj
i,worst

2

⌋
.

3) If the computed path value
∑k

j=1

⌊
wj

i,best+wj
i,worst

2

⌋
is equivalent to the E2E constraint for the selected
property, the selected values can be used as a result
of this optimization.

4) If the computed path value is better than the E2E
constraint, the computed values for connection parts
should be used in the next step as wj

i,best, otherwise
as wj

i,worst.
5) We propose to limit the number of optimization

steps. If the number of maximal optimization steps
is reached, the latest wj

i,best for each connection part
should be used as an approximation value. If the
amount of the maximum optimization steps is not
reached yet, this procedure shall be repeated beginning
with step (2).

…

wi,2
1

wi,1
1 wi,1

2

wi,3
n

wi,2
n

wi,1
n

SCPsrc SCPdest

Figure 5. Possible gradation of values for different path segments for
property i [1]

Please note that in order to reflect the ”better/worse”
comparison instead of ”smaller/bigger” one, we define the
unary operator ”b c” as follows: the result should be the
worst realizable value which is equal or better than the value
enclosed in the brackets.



307

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. APPLICATION TO SEARCH PROBLEMS

In Figure 6, we present a path finding algorithm, which
illustrates the usage of our operators. In the pseudo-code, a
Deep First Search (DFS) strategy is used for finding a path
complying with multiple QoS constraints

−→
C E2E .

MCP (nodeCur, nodeDest,
−→
W path2cur,

−→
C E2E)

if (nodeCur == nodeDest)
BacktracePath (nodeCur);
return TRUE;

end if

MarkNode (nodeCur);

for each neighbor nodeNbr of nodeCur
if (not Marked (nodeNbr))
−→
W path2nbr =

−−−→
Aggr (

−→
W path2cur,

−−→
Best(



W cur2nbr))

if (
−→
W path2nbr ≺

−→
C E2E)

if (MCP(nodeNbr, nodeDest,
−→
W path2nbr,

−→
C E2E))

BacktracePath (nodeCur);
return TRUE;

end if
end if

end if
end for

UnmarkNode (nodeCur);
return FALSE;

Figure 6. Use of the new operators in a path finding algorithm [1]

The presented algorithm solves the so-called multi con-
strained path finding (MCP) problem. The function requires
four parameters. The first two parameters (nodeCur and
nodeDest) specify nodes in the graph, between which a
path has to be found. As the MCP function is called recur-
sively, the nodeCur specifies the end of the intermediately
considered path. The weight of the intermediate path is given
in the third parameter

−→
W path2cur. Finally,

−→
C E2E are always

the E2E-constraints between two endpoints.
The function first checks whether the destination node is

reached yet. If it is the case, the BacktracePath function is
called in order to memorize the node in the path between two
endpoints. Then the value TRUE is returned which signals
that a path with acceptable properties has been found.

If the end node is not yet reached, the nodeCur is marked
using the function MarkNode. This is a common practice
in DFS-algorithms in order to prevent loops. In the following
for each loop all neighbors of nodeCur are considered
that have not been marked. For each neighbor nodeNbr a

weight
−→
W path2nbr of an path between start and nodeNbr

nodes is computed. Corresponding to Section IV-A, the best

possible value of the considered segment weight


W cur2nbr

is aggregated with the intermediate sum
−→
W path2cur. If the

computed weight of the new intermediate path is still better
than E2E-constraint

−→
C E2E , the MCP function is called

recursively. This time, nodeNbr is used to mark the end
of the intermediate path. If the function returns TRUE, the
node is saved in order to backtrace the path; subsequently
TRUE is returned. If the call to the MCP function was not
successful, the next neighbor has to be considered likewise.
If all neighbors have been considered without any success,
the node nodeCur is unmarked and the value FALSE is
returned.

Please note that for the sake of simplicity in this algorithm
at most one connection between two nodes is supported. An
extension for multigraphs would require an additional loop
for all edges between two interconnected nodes. Further-
more, also the backtracking function should be extended in
this case, in order to track not only nodes along the path,
but also along used edges.

VI. AGGREGATION OF DERIVED QOS PARAMETERS

The comparison of the derived QoS parameters does not
differ from the one of basis QoS parameters. The reason is
that the derived QoS parameters are commonly defined as
values that have to be compared with the defined thresholds.
However, the aggregation of the values of derived QoS
parameters is significantly more complex.

In the organizational domain of a single service provider,
all basis QoS parameters required for the computation of
derived QoS parameters are available. Therefore the derived
QoS parameter – from the perspective of this provider –
can be calculated end-to-end. Consequently, there is no
necessity to aggregate values of derived QoS parameters.
However, this is not applicable to multi-domain network
connections. Figure 7 presents an end-to-end connection
crossing organizational boundaries of three providers and
consisting of five connection segments.

The complexity of the aggregation can be demonstrated
using the QoS parameter Availability typically found in
Service Level Agreements (SLA). This QoS parameter is
computed as up-time, i.e., the time during which the service
was fully operational, divided by total-time, i.e., the time
during which the availability should be measured. If in the
example depicted in Figure 7 all connection segments are un-
available for one hour, the availability of each single segment
is 95.83%. However, the availability of the whole end-to-
end connection cannot be exactly computed based on these
values. Instead, the up-time of the whole connection needs
to be calculated first. If we abstain from the consideration
of the possible time deviations among different domains,
the total time of the whole connection need not have to



308

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Composition of E2E connection quality [2]

be computed, instead it can be used as defined in the SLA.
Returning to up-time calculation, this is again a derived QoS
parameter, which can only be computed as the length of the
intersection of up-times in all involved segments.

Generalizing our previous discussion, the values of de-
rived QoS parameters can be seen as a projection from an
m-dimensional vector of underlying (basis or derived) QoS
parameters to the single value of the derived QoS parameter:

DeriveQoSderived
: QoSm

base → QoSderived

Please note that the values of QoS parameters have not
necesserily be the real numbers, e.g., up-time periods can be
described as an conjunction of contiguous up-time periods,
which in turn can be described based on the start and end
time of this period. Further, the projection from the source
to the target spece depends on the QoSdest, i.e., the exact
formula how the derived QoS value is calculated from the
underlying QoS parameters. Furthermore, the destination
QoS parameter is not necessarily one of the source QoS
parameters, but we do not restrict this case.

In order to aggregate derived QoS values of two connec-
tion segments, we first have to calculate the aggregate of the
underlying QoS values. This means that we have to access
the values used in the Derive projection. We call this access
to underlying values Base:

BaseQoSderived
: QoSderived → QoSm

base

Please note that the Base operation cannot be realized on
values alone, as the Derive projection applied on various
inputs in the source space can produce identical results in
the target space. For instance, the mentioned availability of
95.83% can be achieved regardless at which time the service
was unavailable for 1 hour; moreover, the unavailability time
should not be a single continuous time period.

The necessity for the Base operation raises the require-
ments on the information model, which is used for the
representation of the values of the various QoS parameters.

In the case of derived QoS parameters not only the derived
value itself, but also the underlying values used for their
computations should be represented. Furthermore, such de-
rived/base-relations should be recursive, with the leafs of the
QoS-derivation-tree representing only basis QoS parameters.

Based on our previous discussion, we refine the function
for the aggregation of two values belonging to derived QoS
as follows:

Aggr(q, v) ::=

{
Aggrbasis(q, v), if q, v are basis QoS
Aggrderived(q, v), if q, v are derived QoS

Aggrderived(q, v) ::= Derive(
−−−→
Aggr(Base(p), Base(q)))

where Base and Derive operations are specific to the
QoS parameter of q, v, and the result of their aggregation.
The vector aggregation

−−−→
Aggr is defined in Section III-C.

Please note that in opposite to our previous discus-
sion these are not precise mathematical formulas that can
immediately be applied on values. Instead these pseudo-
formulas specify the order of computations, or the order
and encapsulation of function calls as they are understood in
computer science. For aggregation of two values of the same
QoS type one has to distinguish first whether these QoS
parameters are basis ones or derived ones. If they are basis
ones, the aggregation of the values can be done according to
the mathematical formula specified for the particular QoS in
the registration tree. If they are derived ones, a more complex
computation of the aggregated value is required. This include
that the basis values of the derived QoS parameter should
be accessed first. As the Base operation can result in one
or more underlying QoS parameters, the aggregation of two
vectors is required. After aggregation of the underlying QoS
values the values of the resulting vector have to be used
in the formula for the computation of the derived QoS
parameter.

Please note that following the Base operation, a vector
aggregation was used. This means that according to the
definition of vector aggregations in Section III, this results
in the aggregation of vector elements, which are values
of either basis or derived QoS parameters. Consequently,
again either basis or derived aggregation rules have to be
applied, which may result in further Base operations, until
the aggregation on the values of the underlying basis QoS
parameters can be performed. This can be seen as the
navigation in the QoS parameter derivation tree.

Please note further that the distinction between aggrega-
tion of basis and derived QoS parameters determines how
the aggregated value have to be computed. Regardless of
the QoS class, the aggregation function has to be associated
with its ID as proposed in Section III.



309

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. INFORMATION MODEL SUPPORTING BASIS AND
DERIVED QOS PARAMETERS

As discussed above, the distinction between different QoS
parameters can be realized based on their globally unique
IDs. In [2], we have introduced an advanced information
model, which can be used to describe available network
connection segments as well as their properties, which
includes various combinations of qualitative and quantitative
QoS parameters as well as of the available management
functionality (see Figure 8). However, the information model
in its original form is not sufficient for the description
of derived QoS parameters, as the computation on them,
as defined in Section VI, requires the knowledge of the
basis properties, from which the particular QoS parameter
is derived.

Figure 8. Connection segment properties [2]

In order to support the derivation of QoS parameters
from each other, we extend this model with an additional
view (see Figure 9). We define that every QoS parameter is
derived from a basis class PROPERTY. The only purpose of
this class is to show that every property can be either stand-
alone, i.e., basis QoS, or derived from one or more other
properties, i.e., derived QoS. The relation between derived
and underlying QoS parameters is specified as a reflexive
aggregation of the PROPERTY class. This aggregation
called DERIVEDFROM has the cardinality ∗, which means
that the same class can be used for the description of both
basis and derived QoS parameters. Further, this aggregation
involves the important operations Base and Derive, as they
have been defined in Section VI.

Please note that the proposed information model is highly
extensible. For instance, it can be easily extended to support
properties of energy consumption which are relevant, e.g.,
for energy efficient routing. The aggregation and comparison
rules for such parameters can be defined as we have already

Figure 9. Deriving properties from each other

described for the QoS parameters. As the focus of the
particular article lies on the function model, we abstain from
the further discussion of the information model.

VIII. PUTTING IT ALL TOGETHER IN AN EXAMPLE

In order to illustrate the practicability of the proposed
solution we refer to the situation of an E2E connection
consisting of multiple segments (see Figure 7). As men-
tioned above, the aggregation is always needed during the
routing process; it might also be needed for the monitoring
of established connections. The latter is only necessary if no
end-to-end measurements are possible and only connection
segments can be monitored instead, which, however, is a
very common situation in multi-domain connections. Further
we only consider the situation that properties of different
connection segments have to be aggregated together.

For the sake of simplicity, we say that only two QoS
parameters (one basis and one derived QoS) are relevant for
the connection: bandwidth and availability. The information
about the connection segment’s properties has to be struc-
tured according to the information model we have defined
in Section VII. Currently, it is common that the components
of distributed architectures communicate with each other via
web services. This includes that the communication artifacts
are encoded in an XML format. This is fully sufficient for the
illustration purpose, as the XML format is human readable.

An XML schema can be derived directly from the defined
information model. The choice of XML has an additional ad-
vantage, as it enables the description of service- or customer-



310

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

requirements-adjusted combinations of supported connection
properties. Please note that we intentionally avoid an explicit
definition of the XML schema, as different realizations
might be optimized for different purposed, e.g., for better
parser performance or for human-readability.

One possible XML representation of the bandwidth and
availability values of a single connection segment is depicted
in Figure 10. In the XML code, the Properties element
encloses all properties of a segment, which are in this partic-
ular case two QuantitativeQoS elements of the mentioned
QoS parameters that are identified through their QoS ID.
Bandwidth belongs to the basis QoS class and is therefore
structured very simple; it contains only the value and its
metrics. The availability belongs to the class of derived
QoS parameters. Therefore, for this parameter also basis
values should be provided, which have been used for the
calculation of the availability, i.e., in this case properties
with IDs UpTime and TotalT ime. Please, note that also
for these values properties are provided, from which they
are derived.

Figure 10. Example, basis and derived QoS parameters in XML

As discussed above, for the aggregation of values belong-
ing to different connection properties, the property-relevant
aggregation function should be used. According to our pro-
posal, the definition of such functions should be associated
with the property IDs in the registration tree. We assume
that the QoS IDs specified in XML file are sufficient
for the unambiguous identification of QoS parameters and

for access to the associated functions. Please note that the
realization will require URNs with structure reflecting paths
in the registration tree. Such functions can be defined, e.g.,
as the set of computation rules which should be executed
or as a module of some interpreting programming language,
which can be applied on demand.

For presentation purposes only, we define the aggregation
functions for the example’s QoS parameters as a pseudo-
code (see Figure 11). All functions presented in the figure
should be accessed from different locations in the registra-
tion tree. The aggregation rule for the bandwidth is very
simple – it returns the smaller of to the two values. The
rule for the calculation of the availability is more complex
and follows the three steps described above. First, the basis
values are obtained, which have been used for the calculation
of the values p and q. Second, the aggregation function is
executed on these basis values. Please note that the used
aggregation functions correspond to the QoS parameters
they are executed upon. Third, based on the results of the
calculation in the previous step, the combined availability of
two segments is calculated.

// Agggregation function for basis QoS "Bandwidth" 
Bandwidth_Aggregate (p, q) 
{ 
  if (p < q) return p; 
  return q; 
} 
 
// Agggregation function for derived QoS "Availability" 
Availability_Aggregate (p, q) 
{ 
  // 1. Basis‐operation for values  
  //    Get basis values/value‐vectors of derived QoS parameters 
  p_base = Availability_Base (p); 
  q_base = Availability_Base (q); 
 
  // 2. Vector‐aggregation of underlying QoS parameters 
  //    Use for this purpose function defined for the basis QoS parameters 
  //    In this case QoS parameters are time interval durations 
  UpTime    = TimeDuration_Aggregate(p_base.UpTimeLength, p_base.UpTimeLength); 
  TotalTime = TimeDuration_Aggregate(p_base.TotalTimeLength, p_base.TotalTimeLength); 
 
  // 3. Derive‐projection to the derived QoS "availability" 
  Availability = UpTime / TotalTime; 
 
  return Availability; 
} 
 
// Agggregation function for derived QoS "TimeDuration" 
TimeDuration_Aggregate (p, q) 
{ 
  // 1. Basis‐operation for values  
  //    Get basis values/value‐vectors of derived QoS parameters 
  //    In this case these are lists of all time intervals  
  p_base = TimeDuration_Base (p); 
  q_base = TimeDuration_Base (q); 
 
  // 2. Vector‐aggregation of underlying QoS parameters 
  //    Use for this purpose function defined for the basis QoS parameters 
  //    In this case QoS parameters are lists of time intervals 
  TimeIntervalIntersection =  
    TimeIntervalList_Aggregate (p_base.TimeIntervals, q_base.TimeIntervals); 
 
  // 3. Derive‐projection to the derived QoS "TimeDuration" 
  JointTimeIntervalDuration = 0; 
  for all TimeInterval in TimeIntervalIntersection 
    JointTimeIntervalDuration += TimeInterval.IntervalDuration; 
 
  return JointTimeIntervalDuration; 
} 
 
// Agggregation function for basis QoS "TimeInterval" 
TimeIntervalList_Aggregate (p, q) 
{ 
  // compute intersection of the all intervals in the interval lists "p" and "q" 
  return IntervalListIntersection (p, q); 
} 

 

Figure 11. Pseudo-code for aggregation functions

The access to and execution of the comparison function is
similar to the aggregation one. Therefore, we omit its explicit
treatment. Instead we would like to discuss the disadvantage
of the computational procedure we have defined for the



311

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

aggregation of derived QoS parameters. Even though the
defined procedure leads to the desired results, it requires
Base and Derive operations every time values of two
segments have to be aggregated. This means that for a
connection with n segments, such operations should be done
2 ∗ (n − 1) times (n − 1 pairs of 2 segments every time).
We see a big potential for the improvement of this situation
through the use of dynamic programming in the definition
of aggregation functions. However, the exact optimizations
have to be analyzed case by case for each supported derived
QoS parameter.

IX. CONCLUSION AND FUTURE WORK

In this article, we have defined a novel schema for the
generic treatment of network connection properties. In order
to support operations on arbitrary properties of network
connections, we propose to associate five functions with
the ID of each supported property. These functions are
summarized in Table I. Three of these functions, which are
used for property aggregation and comparison, are manda-
tory. The mandatory function AGGREGATE LINKPART is
dedicated to compute the property of connection based on
only partial views at the same inter-domain connection. For
elaborated discussion about its necessity we refer to [2].
The remaining selection functions aim to simplify handling
with value ranges. These functions are not mandatory, as
they can be easily derived based on comparison function.
Additionally to the mentioned five functions, for derived
QoS parameters two operations Base and Derive should
be defined. They can be either defined implicitly as a part
of mentioned aggregation functions or explicitly as functions
associated with the QoS ID in the registration tree.

 
 

Function class Purpose 

_COMPARE 

Compare two values a and b. 
Result can be: “a is better”, “a is 
worse”, “a and b are equivalent” 

_SELECT_BEST 
Optional function returning the 
best value of a given value set 

_SELECT_WORST 
Optional function returning the 
worst value of a given value set 

_AGGREGATE_LINKS 
Aggregate property values of two 
links or paths 

_AGGREGATE_LINKPARTS 
Aggregate two partial views at the 
same link to a single link weight 

 
Table I

FUNCTIONS FOR OPERATIONS ON A SINGLE QOS PARAMETER

Together with [2] and [3], which present an information
model and a multi-domain routing procedure, the solution
presented here is an integral part of our ongoing work
enabling user-tailored connection services with guaranteed
E2E quality. However, the generic operation handling pro-
posed in this article is not restricted to the problem space

described here. It can be used in alternative routing algo-
rithms that are considering multiple properties, such as [5]
and [6].

The presented proposal leaves some aspects unsolved,
they will be addressed in further research as follows: In the
first place, a meta-language for the description of property-
related functions has to be selected; also, a concrete structure
for the registration tree has to be proposed. In order to
achieve this, a profound evaluation of alternatives is needed.
In the case that a single global registration tree has to
be used by multiple organizations, like it is the case for
the internet registration tree, the description of equivalence
relationships between different entries has to be addressed.
Furthermore, the quality parameters of different network
layers as well as user-faced services depend on the quality
of the underlying layers they are realized upon. Therefore, a
general description of such interdependencies and parameter
transformations is essential in order to offer customer-
demanded quality based on network-specific information.

Additionally, we plan to investigate the applicability
of our approach on the services with other composition
structures. For instance, the quantification of survivability
capabilities requires conditional computations [13] leaving
the strictly sequential compositions in favor of more flexible
procedures including branches, loops, and cases.

ACKNOWLEDGMENT

The authors wish to thank the members of the Munich
Network Management Team (MNM Team) [14] for fruitful
discussions and valuable comments on previous versions of
this paper. The MNM Team directed by Prof. Dr. Dieter
Kranzlmüller and Prof. Dr. Heinz-Gerd Hegering is a group
of researchers at Ludwig-Maximilians-Universität München,
Technische Universität München, the University of the Fed-
eral Armed Forces and the Leibniz Supercomputing Centre
of the Bavarian Academy of Science.

REFERENCES

[1] M. Yampolskiy, W. Hommel, D. Schmitz, and M. K. Hamm,
Generic Function Schema for Operations on Multiple Net-
work QoS Parameters, Proceedings of The Second Interna-
tional Conference on Advanced Service Computing (SER-
VICE COMPUTAION 2010), pp. 126–131. Valencia, 2010.

[2] M. Yampolskiy, W. Hommel, P. Marcu, and M. K. Hamm,
An information model for the provisioning of network connec-
tions enabling customer-specific End-to-End QoS guarantees,
Proceedings of 7th IFIP/IEEE International Conference on
Services Computing (SCC 2010), pp. 138–145. Miami, 2010.

[3] M. Yampolskiy, W. Hommel, B. Lichtinger, W. Fritz, and
M. K. Hamm, Multi-Domain End-to-End (E2E) Routing
with multiple QoS Parameters. Considering Real World User
Requirements and Service Provider Constraints, Proceedings
of The Second International Conference on Evolving Internet
(INTERNET 2010), pp. 9–18. Valencia, 2010.



312

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[4] F. A. Kuipers, Quality of service routing in the internet:
Theory, complexity and algorithms, PhD thesis. Delft
University Press, 2004.

[5] T. Korkmaz and M. Krunz, Multi-constrained optimal path
selection, Proceedings of Twentieth Annual Joint Conference
of the IEEE Computer and Communications Societies (IN-
FOCOM 2001), pp. 834–843. 2001.

[6] P. Van Mieghem, H. De Neve, and F. A. Kuipers, Hop-by-hop
quality of service routing, Computer Networks, pp. 407–423.
Elsevier, 2001.

[7] M. Ziegelmann, Constrained Shortest Paths and Related
Problems, PhD thesis. VDM, 2007.

[8] R. Bellman, The theory of dynamic programming, Proceed-
ings of the National Academy of Sciences of the United States
of America, pp. 716–719. 1952.

[9] G. Bertrand, S. Lahoud, M. Molnar, and G. Texier, Inter-
Domain Path Computation with Multiple Constraints. 2008.

[10] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic
Concepts and Taxonomy of Dependable and Secure Comput-
ing, IEEE Transactions on Dependable and Secure Comput-
ing, VOL. 1, NO. 1, Jan-Mar 2004, pp. 11-33

[11] V. Lloyd, C. Rudd, ITIL Service Design. The Stationery
Office, 2007, ISBN 9780113310470

[12] TMForum, SLA Management Handbook, Release 2.5,
GB917, 2005

[13] M. Schiffers, D. Kranzlmüller, Folded Interaction Systems
and their Application to the Survivability Analysis of Un-
bounded Systems, Proceedings of 33th International Confer-
ence on Information Technology Interfaces (ITI 2011), pp.
97–102, Dubrovnik, Croatia, 2011

[14] Munich Network Management Team (MNM Team) Homepage,
[Online: http://www.mnm-team.org], August 2010.


