
1

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Sun Behind Clouds - On Automatic Cloud Security
Audits and a Cloud Audit Policy Language

Frank Doelitzscher, Thomas Ruebsamen, Tina Karbe,
Martin Knahl, Christoph Reich

Cloud Research Lab
Furtwangen University, Furtwangen, Germany

{Frank.Doelitzscher, Thomas.Ruebsamen, Tina.Karbe,
Martin.Knahl, Christoph.Reich}@hs-furtwangen.de

Nathan Clarke
Centre for Security, Communications & Network Research

Plymouth University
Plymouth PL4 8AA, United Kingdom

N.Clarke@plymouth.ac.uk

Abstract—Studies show that when it comes to an integration
of Cloud computing into enterprises, chief information officers
and management still see some dark Clouds on the horizon.
The biggest one is the lack of security, which results in distrust
and skepticism against the technology, mainly originating from
an intransparency of Cloud environments. To increase this
transparency, the Cloud Research Lab at Furtwangen University
develops the Security Audit as a Service (SAaaS) architecture for
Infrastructure as a Service Cloud environments. It is targeted to
ensure that a desired security level is reached and maintained
within a frequently changing Cloud infrastructure. Despite a
traditional security audit, which includes a comprehensive and
therefore time-consuming security check of a whole infrastruc-
ture, a Cloud security audit needs to be lightweight enough
to be executed right after an infrastructure change occurred,
and precisely target-oriented to perform an audit of the specific
infrastructure components affected by this change. This is called
a concurrent security audit. In this paper, a Cloud audit policy
language for the SAaaS architecture gets presented. First, the
design and implementation of the automated audit system of vir-
tual machine images, which ensures legal and company policies,
is described. Second, on-demand deployed software audit agents
that maintain and validate the security compliance of running
Cloud services, are discussed.

Keywords—Cloud computing, security policies, Cloud audits,
agents

I. INTRODUCTION

This paper is the successor of the conference paper “In-
cident Detection for Cloud Environments” [1] presented at
EMERGING 2011. In addition to the presentation of the
Security Audit as a Service (SAaaS) architecture, the com-
prehensive definition of an automated virtual machine (VM)
image audit system and the definition and presentation of a
Cloud audit policy language, form a novel contribution for
this extended journal paper.

Cloud vendors promise “infinite scalability and resources”
combined with on-demand access from everywhere. This lets
Cloud users quickly forget that there is still a real IT in-
frastructure behind a Cloud, and due to virtualization and
multi-tenancy the complexity of these infrastructures is even
increased compared to traditional data centers. This makes
management of service provisioning, monitoring, backup, dis-
aster recovery, security, etc. more complicated and, therefore,
there is still a lack of trust in Cloud infrastructures. Enterprise

Fig. 1: What concerns were expressed during the decision-
making process to migrate to the Cloud? [6]

analysts and researchers have identified Cloud specific security
problems as the major research area in Cloud computing [2],
[3], [4], [5]. The survey “Cloud Adoption and Trends for 2013”
which was done amongst 250 CIOs and other IT executives at
UK companies and public sector organizations states that secu-
rity concerns are still the major issue, which hinders a broad
industry acceptance of actually utilizing Cloud technologies
(see Fig. 1). In fact, even for private Cloud solutions, where
an enterprise runs its own Cloud IT infrastructure, security
concerns are named as the major obstacles, which proves that
there is a general lack of trust in Cloud computing security.

Security is a considerable challenge for Cloud environ-
ments due to its characteristics: seamless scalability, shared
resources, multi-tenancy, access from everywhere, on-demand
availability and third party hosting. Although existing industry
recommendations (ITIL), standards (ISO 20000, ISO 27001:5,
CobiT) and laws (e.g., Germanys Federal Data Protection
Act) provide well established security and privacy rule sets
for data center providers, research has shown that additional

2

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

regulations have to be defined for Cloud environments [2], [7].
The following examples of Cloud security incidents illustrate
the need for Cloud computing security improvements:

• Hackers stole credentials of Salesforce.com’s cus-
tomers via phishing attacks (2007)

• T-Mobile customers lost data due to the “Sidekick
disaster” of Microsoft Cloud (2009)

• Botnet incident at Amazon EC2 infected customer’s
computers and compromised their privacy (2009)

• Hotmail accounts were hacked due to technical flaws
in Microsoft software (2010)

• Amazon customer services were unavailable for mul-
tiple days and data was lost due to a logical flaw in
the Cloud storage design (2011)

Traditionally, IT infrastructure security audits are used to
document a data-center’s compliance to security best practices
and laws. But, the major shortcoming of a traditional security
audit is that it only provides a snapshot of an environments’
security state at the performed audit time. This is adequate
since classic IT infrastructures don’t change that frequently.
But because of the mentioned Cloud characteristics above, it
is not sufficient for auditing a Cloud environment [1].

Beside the frequently changing infrastructure inside a
Cloud, there is also a new dynamic in administrative tasks. The
number of administrators of a traditional data centre is limited
and they all are working under the same company security
policy, while installing and maintaining machines. This can be
completely different in a Cloud infrastructure. Public market-
places for exchanging Cloud appliances such as, OpenNebula
Marketplace [8], Amazon Web Services EC2 Management
Console or the Amazon Web Services Marketplace [9] provide
Cloud customers with an easy and efficient way of finding
the right virtual machine image. But they also allow users
to be administrators of their virtual machines, or upload
and share their custom made VM images with other users.
Although Cloud providers provide security guidelines [10] on
how to prepare an image before releasing it to a marketplace,
current research by Balduzzi [11], Bugiel [12] and Meer [13]
shows that marketplace images are highly insecure due to
old software versions or “forgotten” or restorable security
credentials, such as SSH private keys. Users, uploading ap-
pliances are usually more or less anonymous. There is no way
to easily determine whether a custom appliance is legit or
maliciously manipulated. Images could contain rootkits, which
are performing passive eavesdropping attacks such as traffic
analysis, keylogging or transmission of user’s data to external
systems for industrial spying [11].

European and German data protection laws increase the
necessity for users to re-validate the security status of virtual
machines originating from preconfigured images by clearly
putting the user who runs the image into responsibility (§3.7
German Data Protection Law, Art. 2d 4, European Guideline
95/46/EG) when data is processed in the Cloud. The Cloud
user has to re-validate technical and organizational security
measures taken by the Cloud provider initially at the beginning
of a Cloud usage and periodically over time (§11 II - 4 German
Data Protection Law).

To mitigate these problems, this work proposes the Security
Audit as a Service architecture for Infrastructure as a Service
(IaaS) Clouds. The contribution of this paper is structured
in two parts: A) Description of an automatic Cloud audit
architecture based on agents, which react on changes in a
Cloud infrastructure. B) A Cloud audit policy language to
describe security targets and enable automatic Cloud audits.
It is shown that automatic audits of VMs and VM images
can increase transparency and therefore security in Cloud
computing environments.

In the remainder of this article, Section II - Use Cases
of the SAaaS System, introduces the target scenarios, which
this work aims to solve. Section III then gives an inside view
into the process of automatic virtual machine image audits.
Following, Section IV - A Cloud Audit Policy Language
presents a comparison of existing security policy languages
and introduces CAPL - a policy extension for the Cloud In-
frastructure Management Interface (CIMI). Then, the Security
Audit as a Service architecture is presented in Section V,
which introduces the concept of using distributed agents to
perform Cloud audits. An integration of the developed Cloud
audit policy language is also shown. How the presented work
increases security and transparency in Cloud environments is
elaborated in Section VI - Evaluation. Section VII - Related
Work, discusses related work on the topic of Cloud specific
security problems, Cloud audits and other research similar to
Security Audit as a Service, before Section VIII - Conclusion
& Outlook wraps-up the paper and gives an outlook into future
work.

II. USE CASES OF THE SAAAS SYSTEM

The Security Audit as a Service system presented in this
work covers three use cases:

1. Automated security audit: In this use case the SAaaS
architecture gets used as a Software as a Service (SaaS)
solution. It enables users to plan and perform security audits of
their IT infrastructure on a regular basis. An audit can consist
of regular vulnerability scans of a user’s internet exposed
systems (not necessarily Cloud instances). Results get auto-
matically evaluated, post-processed and submitted as a security
report in a standardized format to the user. Additionally, to
simplify black box scans it is imaginable to deposit an entry
credential (e.g., a ssh key pair) in the service so that the service
can log in and perform internal security scans. While such
systems already exist as appliances (e.g., Nessus appliance),
especially small SMEs can profit from this service running in
a Cloud since they only need to pay per scan. For the Cloud
provider this service is valuable since computing resources
are only allocated for the duration of a scan. Afterwards,
the compute resources are released and made available for
different tasks.

2. Monitoring and Audit of Cloud Instances: User
VMs running in a Cloud infrastructure are equipped with
a SAaaS agent. The user creates security policies defining
the behaviour of this VM to be considered “normal”, which
VM components are to be monitored and how to alert the
customer in case of system deviation from the defined manner.
The status gets conditioned in a user-friendly format in a
Web portal - the SAaaS security dashboard. This continuous

3

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

monitoring creates transparency about the security status of a
user’s Cloud VMs hence increasing the user’s trust into the
cloud environment.

3. Cloud Infrastructure Monitoring and Audit: The
security status of the entire Cloud environment, especially
the Cloud management system, access to customer data and
data paths are monitored. Usage and communication behaviour
profiles are created automatically and continuously analyzed
for substantial changes. This way monitoring across different
customers is used by the Cloud provider as well as a 3rd party,
like a security service provider to ensure the overall cloud
security status. Standardized interfaces enable security audits
of the Cloud infrastructure, which can lead to a cloud security
certification.

III. AUDITING VMS OF A CLOUD

As previously mentioned, using third party appliance im-
ages from public marketplaces can pose a significant security
risk. Therefore, not only running virtual machines need to be
audited in a Cloud environment, but also virtual appliance
images, from which virtual machines are created. This sec-
tion describes requirements (see Section III-A), roles (see
Section III-B), audit categories (see Section III-C) and a
system architecture (see Section III-D) involved in solving
the aforementioned issues. Virtual machine image auditing is
regarded as a part of SAaaS use case 2 - Monitoring and Audit
of Cloud Instances.

A. VM Auditing Requirements

To be able to automatically audit VM images, it is es-
sential to describe the security and privacy requirements, in a
machine understandable way. This is commonly achieved by
the definition of security policies, transferring a requirement
into a checklist of one or multiple testable conditions. To
respect Cloud user’s and provider’s security requirements, both
parties need to be able to create policies. A key factor for
the success of such a system is the detailed and distinct
definition of security policies. However, this is contrary to a
short VM deployment process a Cloud user expects. Therefore,
we propose to create a very easily operable, security policy
generator, where Cloud users can define security policies in a
human way of thinking, such as: “The VM must be checked
for malware”. Such simple policies could be supported by a
graphical Web interface with templates utilizing check boxes or
drop-down lists. This needs then to be translated into a machine
understandable format, which results in the audit checks to be
performed. The output of these checks needs to be translated
back into a human understandable format, which will form the
audit report submitted to the image creator, Cloud provider
and image user. In summary, the following important audit
requirements can be identified:

• VM images need to be audited in an automatic
manner, to provide short response times to an image
creator who wants to publish its image.

• The system needs to respect different security require-
ments from the image creator as well as the Cloud
provider.

• The system needs to produce a human understandable
output in case an image did not pass the security
check, providing the image creator with information
about what prohibited the image release so that he is
able to fix it.

• Security policies need to be described in a machine
understandable way.

B. VM Audit Roles

When it comes to auditing virtual machine appliances,
there are a couple of different roles, which need to be consid-
ered: appliance user, appliance creator, Cloud provider, audit
service provider and audit tool provider. These roles will be
described in more detail in the following.

The appliance user is a customer of the Cloud provider
obtaining the virtual machine images via the appliance store.
The main concern of the appliance user is to make sure,
that the VM complies with the company’s IT security policy
when using third party appliances. Such a security policy may
include the necessity of malware checks (e.g., viruses, trojans,
spyware, rootkits etc.), checks for undesirable software (e.g.,
games, file sharing software) but also a more detailed view on
the operating system and services configuration of an appliance
may be checked. For example, if there exist unprivileged
system user accounts for running a Web server or if there are
any leftover default passwords, which the appliance creator
may have overlooked. The auditing’s goal, from an appliance
user’s point of view, is to make sure a virtual appliance
complies to his company’s security policy, before the appliance
is started and integrated in the company’s IT infrastructure.

The appliance creator can be the Cloud provider himself
or a customer of the Cloud provider. He creates individual
VMs and shares them with other Cloud customers using
an appliance store. Before publishing virtual appliances, the
appliance creator has to make sure that there is no private
data, which could compromise privacy (e.g., logs, browser
cache, user information like names and addresses), left on
the image. Another, often overlooked, aspect are non-securely
deleted files on the image’s file system. It is often possible
to recover such files with little effort using file carving tools,
like extundelete [14] or winundelete [15]. The auditing’s goal
from the appliance creator’s point of view is therefore mostly
to make sure policies, which prevent the disclosure of sensitive
data, are used during auditing of the appliance before it gets
published.

The Cloud provider provides the technical infrastructure
for running the virtual machine image and also runs the
appliance store. Providers usually have little or no interest
in restricting the creation and publication of virtual machine
appliances, as long as there is no violation of laws or terms of
use. Such violations may include the intentional distribution
of malware, intentionally misconfigured services or any form
of illegal content, such as pirated software.

The two remaining roles audit service provider and audit
tool provider have no immediate interest in auditing virtual
machine appliances. They merely complete the auditing pro-
cess by providing additional services and tools. The audit tool
provider designs, develops and provides programs and services

4

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I: Virtual Appliance Audit Categories

Appliance
User

Appliance
Creator

Cloud
Provider

Se
cu

ri
ty

Malware x x

Undesirable Software x

Account Requirements x

Login Requirements x

Password Strength x

Access Rights x x

Service Misconfiguration x x

Unwanted Service Combina-
tion

x

Pr
iv

ac
y

Browser Caches x

Log Files x

History Files x

Insecurely Deleted Files x

L
eg

al

Software Licenses x x

Illegal Content x x x

Customer Specific Require-
ments

x

for auditing virtual machine images. The audit service provider
is a specialist in auditing IT infrastructure and therefore has ex-
tensive knowledge about auditing procedures and methodolo-
gies, which he offers to the Cloud provider. He also provides
the Cloud provider with work-flows, recommendations about
the tools to use, knowledge about currently emerging threats to
security and privacy as well as any additional auditing know-
how.

C. Auditing Categories

The auditing categories identified by the authors are se-
curity, privacy and legal concerns. Multiple audit cases
from these categories can be arbitrarily combined to form an
auditing policy. Each of the previously described roles has a
different view on the requirements the audit process has to ful-
fill. Table I illustrates this circumstance. The security category
includes requirements regarding the absence of malware and
otherwise undesirable software in the virtual appliance. Also,
the preconfiguration of the appliance’s services, like access
rights on a file system level, the combination of services (e.g.,
mail daemons and network attached storage (NAS) service on
the same appliance), insecure default service configurations,
the use of insecure default passwords and login requirements
(allowing remote administrator access with passwords) are the
most common concerns. The privacy category includes mostly
requirements, which should help preventing unintentional data
loss. This includes leftovers from the appliance setup process,
like log files, command line history or insecurely deleted files.
Additionally, this category also includes data generated by end-
user applications (e.g., browser caches). The legal category
includes all sorts of compliance requirements, for example
illegal content stored on the image.

The appliance user obviously has much more interest
in secure and compliant appliances. One could argue that
data loss while using the appliance because of misconfigured

services or backdoor programs could be assigned to the privacy
category, but this data loss arises because of security problems.

The appliance creator has mostly privacy concerns, when
publishing virtual appliances. Checks for the previously de-
scribed problems need to be thoroughly executed before pub-
lishing a virtual appliance. Also, not publishing preinstalled
software licenses is a legal problem, which needs to be checked
for.

The Cloud provider’s main concern is protecting his own
infrastructure. Therefore, the categories, which apply are secu-
rity and legal. Checking virtual appliance images for malware
may reduce the risk of malware spreading and hackers using
the appliance store as a basis for their attacks. Checking
for illegal content may also be necessary because the Cloud
provider stores virtual appliances.

D. Automatic Auditing System Overview

Figure 2 shows an overview of our proposed auditing
system for virtual appliances.

The appliance store is enhanced by an Automatic Audit
System (AAS) for image auditing. The cloud infrastructure as
well as the appliance store are run and maintained by the Cloud
provider.

Fig. 2: Appliance Store with Automatic Audit System

A typical process of creating, auditing and sharing virtual
appliances is described in the following:

1) The appliance creator creates a virtual appliance
(VA) (e.g., setting up the operating system and ser-
vices provided by the appliance). Optionally, the
appliance creator can upload a policy document,
which describes his requirements for publication of
the VA. This policy is evaluated by the AAS. If
any policy violations are detected (e.g., there are
insecurely deleted files or log files in the VA), the
publication process is immediately stopped.

2) The AAS audits the virtual appliance using the Cloud
provider’s policies (see III-C for audit case exam-
ples). This step is performed to make sure, the Cloud
provider’s requirements are met (e.g., protecting the
Cloud infrastructure from malicious VAs).

5

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3) On successfully passing the audit process the ap-
pliance is deployed in the Cloud and the image is
published using the appliance store.

4) The appliance user now decides to use the virtual
appliance. He therefore uploads his policy to the
AAS, which in turn audits the appliance according
to the audit cases defined in this policy.

5) If the audit process is passed successfully, the virtual
appliance image is cloned by the appliance store and
deployed to the cloud.

While this is a rather high level design of an automatic
system more details of the technology used is described in
the following sections. It becomes clear, that as an enabler a
security policy language for virtual machines is needed.

IV. A CLOUD AUDIT POLICY LANGUAGE

This section first describes the requirements established
for a Cloud audit policy language. Beneath generic attributes
six specific policy scenarios get introduced, which have to
be describable with the target language. Afterwards, several
already existing security policy languages have been evaluated
using the requirements and it is shown why none of them
fulfills these requirements. Therefore, a new Cloud Audit
Policy Language CAPL will be introduced, which is based on
the Cloud Infrastructure Management Interface (CIMI) [16]
specification.

A. Security Policy Language Requirements

Apparently, there is a huge number of policy definition
languages available (ASL, LaSCO, PDL, XACML, SPARQLE,
SSPL, OVAL, etc.) all aiming to model security policies. Fur-
thermore, business process languages (BPEL, WADE, YAWL,
ADEPT, etc.) could be applicable as well, which increases
the size of languages to choose from. To be able to evaluate,
which language fits best a bottom up approach was taken by
first defining the policy scenarios, which need to be describable
by the security policy definition language.

1.) Policy Scenario Modelling Support The most important
criterion in our evaluation process is the ability to model
security requirements of Cloud components, such as VMs
and their interaction with each other. To have a basis for the
evaluation of this criterion a number of important example
policy scenarios have been identified:

P1 - Malware: Since malware affects availability, integrity
and confidentiality every VM image needs to be checked
for viruses and rootkits before being started within a cloud.
Running VMs must be checked on a regular basis. The
resulting policy could be: “The VM is free of malware”.

P2 - Filesystem changes: Malicious attacks often result in
change of the file systems’ content, such as modification of
config files or installation of malicious software. Therefore, a
Cloud audit policy should allow to define: a) A certain file (or
folder) may not be changed at all. Every single change should
raise an action. b) Validation of a certain file containing a
specific content. Latter is most important in config files, which
affect security relevant configurations. The resulting policy
could be: “File X may not be changed”.

TABLE II: Policy Example Scenarios

No. Policy

P1 The VM is free of malware

P2 File X has not been changes

P3 Upscaling of VMs in VM cluster “WWW-Server” is only permitted if
average requests per second ≥ Y

P4 Port Z is open, allowed protocols: HTTP

P5 Software X must (not) be installed

P6 The VM does not contain any personal information

P3 - VM scalability: One attribute of Cloud environments is
flexibility and on-demand availability of resources. Depending
on a currently existing demand additional VMs can be added
to a certain service cluster (VM upscale) and when demand
lowers, VMs can be decommissioned again (VM downscale).
But this could also be misused by attackers to compromise
the availability of a customer’s Cloud based infrastructure,
by downscaling VMs during a high demand period. Contrary,
unnecessary upscaling of VMs increases the running costs of
a customer. The resulting policy could be: “Upscaling of VMs
in VM cluster “WWW-Servers” is only permitted, if average
requests per second ≥ N”.

P4 - Technical attribute modelling: Security is expressed
if the infrastructure complies to certain technical attributes. A
very simple rule defines the state of a network port. A port can
be closed or open. Same can be used for allowed protocols. The
resulting policies could be: “Port 80 is allowed to be open”,
“Allowed network protocols: HTTP”

P5 - VM content: A VM contains software, such as an
operating system and certain application software. To increase
security by banning certain software products or specific
versions of a software, to prevent data leakage or just to be
compliant to existing software licenses it can be necessary
to restrict the existence of software on a VM. The resulting
policies could be: “Software X must (not) be installed”.

P6 - Data traces: In case of VM marketplaces, users
prepare VM images and offer them at the marketplace (role:
appliance creator). It is important, that these images don’t
contain any personal information of the VM image creator,
such as private key files or passwords, which could lead to
a security breach. It is to validate that files are cleared e.g.,
history file, and critical information is securely wiped (and
not be restorable anymore even with file carving tools). The
resulting policies could be: “The VM does not contain any
personal information”. Table II summarizes the elaborated
policy scenarios.

This is just a brief description of the policy language
requirements. A detailed description can be found in the
bachelor thesis “Design and Development of a Security Policy
Language for Automatic Cloud Audits” [17].

In addition to the specific functional requirements, there
are several additional generic criteria to be considered when
choosing a policy language. To model the scenarios described
above the following features must be supported by a security
policy language:

6

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Monitored Objects are any kind of entities in the Cloud
infrastructure, which shall be monitored (e.g., hosts,
virtual machines, files).

• Logical Policy Operations can be used to create more
complex policies by combining them with logical
operators such as AND and OR.

• Policy Scoping By grouping virtual machines or poli-
cies the process of creating and managing policies be-
comes easier. Also, incorporating the ability to define
provider-only policies or policies, which can only be
used by the provider, may prove to be beneficial.

2.) Technological Support Policies can be described using
textual as well as graphical methods. However, the focus of
SAaaS will be on a textual description of policies. All language
candidates will be analyzed with regards to their technological
basis, especially whether they build upon established standards
such as XML and JSON or they introduce completely new
language formats. Using widely accepted technologies may
be beneficial because there already exist a lot of tools such
as parsers, interpreters and comprehensive documentation.
Custom language formats however can be tailored to the
problem domain and might improve flexibility and readability.
To ensure a fast adoption by developers and leverage the
large amount of tools already available, XML should be the
preferred language base.

3. Development Activity Estimation Release cycles of tools,
the size of the developing community and the adoption of
a language by other projects indicates a high development
activity and is an indicator for a future proof implementation.

4. Documentation Quality A comprehensive documentation
is essential for understanding and evaluating a policy language.
The quality of the documentation is hereby defined by factors
such as the logical structure, accessibility, profoundness and
consistency.

5. Complexity & Integratability in SAaaS The target lan-
guage should be complex enough the fulfill all requirements
but also generalisable up to a certain point. Too much com-
plexity will affect the ease of learning by cloud administrators
and therefore indirectly and negatively influence the utilization
of the language, which affects its overall success. Furthermore,
it is essential to evaluate if the language can be integrated into
the SAaaS architecture, presented later in this paper in Section
V.

B. Evaluation of Existing Policy Languages

In this subsection, policy language candidates are evaluated
and compared for their suitability as a security policy language
in SAaaS.

REI is an OWL based language, developed by Lalana
Kagal in 2005. REI allows the definition of management,
security, privacy and conversation policies [18]. These policies
define the optimal behavior in a problem domain. A policy is
hereby defined by the prohibition, permission or the obligation
to perform an action on a target. The focus on semantic
technology is not needed for SAaaS and introduces needless
complexity. Additionally, REI has no practical relevance nor
has it spread beyond a PhD thesis, which it was developed for.

Common Information Model (CIM) is a model to describe
elements and the relationships between them (such as policies).
It addresses most of the SAaaS requirements and would have
been a suitable candidate. However, an implementation accord-
ing to the CIM standard would have gone way beyond the
requirements of the SAaaS project. Therefore, CAPL (Section
IV-C) only uses parts of CIM for its implementation.

Ponder is a policy specification language, which already
features tools and services for policy enforcement and evalua-
tion. One of the main concepts behind Ponder is the general-
purpose object management system and message passing
paradigm [19]. Here the language is meant to be implemented
in a way that the actual decision making process (deciding
whether a policy is fulfilled or not) needs to be as close as
possible implemented to its data source. In a Cloud scenario
this would mean, that the decision engine needs to be imple-
mented on each single machine. In addition to the proprietary
language base Ponder Talk, this is a knock-out criteria for the
usage of Ponder for our scenario.

LaSCO follows a graph based approach to define policies.
Despite this being a rather interesting approach, it introduces
a lot of unnecessary complexity. Additionally, the problem of
conflict management is not addressed [20] and similarly to
REI LaSCO has not spread beyond academic boundaries (one
dissertation in [21]), which makes this language unsuitable for
SAaaS.

Evaluation Overview: Besides the aforementioned lan-
guages WS-Trust, IDMEF, SSPL, PAX PDL, CADF and KAoS
have also been evaluated. However, none of those languages
have proven to be useful for the SAaaS approach, which is
why we omit going into further detail. All language criteria
are listed in the evaluation summary, depicted in Table III.
All knock-out criteria (which do not fulfill our requirements
introduced in Section IV-A) are displayed in bold red. It is
shown, that none of the evaluated security languages fulfills
the established requirements. As a result an own Cloud audit
security policy language needed to be developed.

C. Cloud Audit Policy Language (CAPL)

CAPL is an extension of the Cloud Infrastructure Man-
agement Interface. Core features like the object model, the
protocol and a simplified variant of CIMI classes (e.g., Ma-
chine, MachineConfiguration, MachineImage) are inherited
by CAPL. However, due to the different focus of CIMI on
managing Cloud infrastructures some parts of CIMI have not
been adopted in CAPL because they are not required for the
SAaaS scenario. A detailed description of CAPL features is
provided in the following.

1) User Roles: CAPL uses slightly simplified definitions
of the CIMI roles Cloud Provider and Cloud Consumer. The
Cloud Provider manages and provisions Cloud services and
possesses full access rights. The Cloud Consumer uses cloud
services as well as the service for auditing his virtual machines.
The Cloud Consumer has a limited set of access rights, which
are required to define policies and triggering audits.

2) Service Interface: CIMI uses a REST based protocol for
communication. CAPL adopts the CIMI service interface.

7

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III: Comparison of existing security policy languages

Evaluation Property REI CIM Ponder LaSCO
Support Details Support Details Support Details Support Details

Technological Base 	 OWL Lite ⊕ MOF & UML,
XML through
WBEM

	 PonderTalk
(SmallTalk)

	 Directed graphs

Definition of monitored ob-
jects

⊕ Targets, user ⊕ PolicyInSystem ⊕ Managed Object
in Subject, Action,
Target Syntax

⊕ Knots

Combination of policies ⊕ Denotic objects ⊕ Conditions,
PolicyRule,
PolicySet

⊕ Obligation policy ⊕ Conjunctions

Area of validity ⊕ Constraints, groups
of objects, a single
assignment seems
difficult

c Unclear ⊕ Self managed cell ⊕ Domains

Conflict management ⊕ Priorities ⊕ Priorities ⊕ Yes 	 Not implemented

Last version c Updated 2005 ⊕ Currently revised
(version 2013)

⊕ 2011 c 2000

Acceptance 	 Just a PhD the-
sis work, cited in
different paper, no
practical applica-
tion

⊕ Windows
Management
Instrumentation[22],
SBLIM project[23],
IBM[24]

c Cited in multiple
papers

	 Only used in PhD
dissertation [21]
and paper [20] of
LaSCO author

Community support 	 None ⊕ None for CIM, but
for specific imple-
mentations

	 None 	 None

Documentation c Rough
description of
classes[18], paper,
presentations,
Examples[25]

⊕ UML Diagram[26],
Policy profile[27]

c Good examples, but
for old Ponder ver-
sion

c Only one PhD dis-
sertation

Complexity 	 Long training
period, complex &
nested architecture

	 High, due to incon-
sistencies of differ-
ent versions

c Policies are human
friendly readable,
but developing own
is difficult

	 Very complex due
to its graph based
origin

Support of SAaaS policy sce-
narios

⊕ Yes ⊕ Yes ⊕ Yes ⊕ Yes

Implementation effort c Unclear 	 Complete CIM
and WBEM
implementation
necessary

	 Very high, since
it brings its own
agents

	 Completely differ-
ent base layer

Integratability in SAaaS archi-
tecture

c Semantic of OWL
not necessary

⊕ Yes 	 No, own agents
necessary,
different
philosophy of
policy evaluation

	 No, due to graph
based nature

3) Language Basics: CAPL enhances CIMI by adding
several new classes:

• Machine
The Machine class represents a machine, which shall
be audited. CIMI uses Machines only for virtual
machines. However, CAPL enhances the scope of
Machines and includes host machines running virtual
machines because those might be as well targets for
audits.

• MachineTemplate
The MachineTemplate defines the initial configuration
of a VM.

• Policy
Defines a policy rule (e.g., “a virtual machine must
not contain malware”), which can be assigned to a
machine or a group.

• PolicySet
A PolicySet contains multiple Policies. Only if all
contained conditions of the rules are fulfilled, the Pol-
icySet evaluates to success. A PolicySet may be used
like a poliy and attached to machines or groups. Rules
contained in a PolicySet may be linked disjunctive or
conjunctive (using AND/OR). This behavior originates
from the CIM policy model [28].

• Group
Groups are used to manage related objects like multi-
ple rules and machines. In such a case all rules of the
group apply to all machines.

• RuleType
RuleType describes what a policy is supposed to check
and defines attributes and configurations, which the
policy has to set.

8

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An example, which depicts the key features of CAPL, is
shown in listing 1. This Policy describes the conditions under
which upscaling of Web server VMs is allowed. In this case,
it is measured whether upscaling is allowed or not.

Listing 1: CAPL Example
1 <Group xmnls=” h t t p : / / r e s e a r c h . c l o u d . hs−f u r t w a n g e n . de /

c a p l / ”>
2 <i d>h t t p s : / / r e s e a r c h . c l o u d . hs−f u r t w a n g e n . de /

CAPLPrototyp / g ro ups / wwwCluster1</ i d>
3 <name>C l u s t e r a t L o a d b a l a n c e r 1</ name>
4 <refName>WWWCluster1</ refName>
5 <d e s c r i p t i o n>Group of web s e r v e r s a t l o a d b a l a n c e r 1
6 </ d e s c r i p t i o n>
7 <c r e a t e d>2013−03−03</ c r e a t e d>
8 <u p d a t e d>2013−03−03</ u p d a t e d>
9 <e n a b l e d>t r u e</ e n a b l e d>

10 <machines>
11 <machine h r e f =” h t t p s : / / r e s e a r c h . c l o u d . hs−f u r t w a n g e n .

de / CAPLPrototyp / r e s t / machines / 6 ” />
12 <machine h r e f =” h t t p s : / / r e s e a r c h . c l o u d . hs−f u r t w a n g e n .

de / CAPLPrototyp / r e s t / machines / 7 ” />
13 </ machines>
14 </ Group>
15
16 <P o l i c y xmnls=” h t t p : / / r e s e a r c h . c l o u d . hs−f u r t w a n g e n . de /

c a p l / ”>
17 <i d>h t t p s : / / r e s e a r c h . c l o u d . hs−f u r t w a n g e n . de /

CAPLPrototyp / p o l i c i e s / u p s c a l e</ i d>
18 <name>Upsca l e i s Allowed</ name>
19 <refName>u p s c a l e C l u s t e r 1</ refName>
20 <d e s c r i p t i o n>Upsca l e i s on ly a l l o w e d when r e q u e s t s on

machines i s h i g h e r t h a n 10</ d e s c r i p t i o n>
21 <c r e a t e d>2013−03−04</ c r e a t e d>
22 <u p d a t e d>2013−03−04</ u p d a t e d>
23 <e n a b l e d>t r u e</ e n a b l e d>
24 <r u l e T y p e h r e f =” h t t p s : / / r e s e a r c h . c l o u d . hs−f u r t w a n g e n . de

/ CAPLPrototyp / r e s t / r u l e T y p e s / u p s c a l e ” />
25 <i n t e r v a l T y p e>no</ i n t e r v a l T y p e>
26 <t a r g e t R e s o u r c e h r e f =” h t t p s : / / r e s e a r c h . c l o u d . hs−

f u r t w a n g e n . de / CAPLPrototyp / r e s t / machines / 5 ” />
27 <a t t r i b u t e key=” m e t r i c ”>r e q u e s t s p e r second</ a t t r i b u t e>
28 <a t t r i b u t e key=” t h r e s h o l d ”>10</ a t t r i b u t e>
29 <a t t r i b u t e key=” c l u s t e r ”>h t t p s : / / r e s e a r c h . c l o u d . hs−

f u r t w a n g e n . de / CAPLPrototyp / g ro ups / wwwCluster1
30 </ a t t r i b u t e>
31 </ P o l i c y>

V. SAAAS ARCHITECTURE

To support the presented use cases of a concurrent audit
system for Cloud environments (see Section II), an agent
system to monitor Cloud environments is proposed. Before
explaining the SAaaS architecture and advantages of agents
in detail, we briefly want to explain the whole Security as a
Service event processing sequence. To support this, consider
the following example.

A. Scenario Used to Explain the SAaaS Architecture

A typical Web application architecture consisting of one or
multiple Webserver(s) and a database backend is deployed at
VMs in a Cloud. The VMs are logically grouped together to
WWW-Cluster1. Initially, the Cloud customer’s administrator
installs the VMs with the necessary software, e.g., Apache web
server, MySQL database. After the functional configuration se-
curity policies are modelled to describe the target infrastructure
state, such as the policies P1 - P3 introduced in Table II. This
can be:

A) Technical rules like allowed network protocols and
connections between VMs, or that the web server configuration
is finished and a notification should be sent if changes to its

config files are detected. As a result of these policies software
agents called VM agents are configured with the neces-
sary tools to monitor these requirements and automatically
deployed to the VMs.

B) Business flow related security policies can be created as
well, such as a simple scalability policy: “If the cloud manage-
ment systems gets an upscale event request for components of
WWW-Cluster1, first the actual load of all web servers needs
to be checked. If the average load over all web servers is
not higher than a certain threshold, e.g., 100 http connections
/ Web server, the upscaling gets denied and an alarm gets
raised since the event must originate from a systems failure or a
successful hacker attack at the Cloud management system. The
same scenario works for downscaling in an inverse manner:
If a downscaling event for WWW-Cluster1 gets detected, but
the actual load is above a downscale threshold, an alarm gets
raised. Here, software agents are additionally located at the
Cloud management system and the scaling service.

B. Cloud Audits Using Agents

To generalize this scenario: in the SAaaS architecture a
modelled security state of certain components gets monitored
by agents, which are deployed at the specific resource, e.g.,
the Cloud management system (CMS), a Cloud host or a VM.

An agent can be defined as [29]:
“... a software entity, which functions continuously and au-
tonomously in a particular environment ... able to carry out ac-
tivities in a flexible and intelligent manner that is responsive to
changes in the environment ... Ideally, an agent that functions
continuously ... would be able to learn from its experience.
In addition, we expect an agent that inhabits an environment
with other agents and processes to be able to communicate
and cooperate with them ...”

Since the agents in the SAaaS architecture are running
independently, not necessarily connected to a certain central
instance agents can receive data from other instances (e.g., the
policy module) and send information to other instances like
other SAaaS agents or the SAaaS’ event processing system.
The “central” event processing system gets itself implemented
as an agent, which can be scaled and distributed over multiple
VMs.

C. Type of Agents

Agents collecting data are called Sensor Agents. If the
location of an agent needs to be expressed, they are also titled
as VM Agent (agent running at a VM), Host Agent (agent
running on a Cloud host monitoring, the hypervisor) or CMS
Agent (agent monitoring the Cloud management system).
Specific targeted security audits perform specific checks of
systems, which are affected by a change within the Cloud
environment. These checks are performed automatically by so-
called Audit Agents. The threshold values to be checked
are defined as metrics and get checked in case of an event by
Metric Agents. Changes to the Cloud infrastructure get
detected by sensor agents before sent out the central event
processing unit preprocessed and aggregated by a Event
Aggregator Agent, which also runs on same location as
the sensor agent, e.g., a VM. This is important to reduce the
overall messages sent to the global Cloud event processing

9

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 3: SAaaS event processing sequence

system especially in large Cloud computing environments.
The Event Aggregator Agent filters out possible VM
dependent events like a started Web application session from
IP 1.2.3.4. A more abstracted event gets send to the Cloud
event processing system to detect (possible) user overlapping
security incidences. This could be a message containing the
number of not completed Web shop transactions by IP IP 1.2.
3. 4 to pre-detect a Denial of Service attack.

D. SAaaS Event Processing

Figure 3 gives a high level overview how events are
generated, preprocessed, combined and forwarded within the
SAaaS architecture. It can be divided into three logical layers:
Input, Processing and Presentation.

Input: The SAaaS architecture gets its monitoring informa-
tion from distributed agents, which are positioned at key points
of the cloud’s infrastructure to detect abnormal activities in
a Cloud environment. Possible key points are: running VMs
of Cloud users, the VM hosting systems (Cloud hosts), data
storage, network transition points like virtual switches, hard-
ware switches, firewalls, and especially the Cloud management
system. A VM agent integrates several monitor and policy
enforcing tools. Therefore, it loads necessary VM agent plug-
ins to interact with stand-alone tools like process monitor,
intrusion detection system or anti virus scanner. It gets installed
on a VM likewise on a Cloud host. A logging component is

recording the chronological sequence of occurrences building
audit trails.

Processing: Each SAaaS agent receives security policies
from the security policy modeller component. Through security
policies each agent gets a rule set (its intelligence) specifying
actions in case of a specific occurrence (e.g., modification
of a frozen config file). Thus, every occurrence gets first
preprocessed by an agent, which reduces communication be-
tween VM agents and Cloud management agent. The Cloud
Audit Policy Modeller consists of a policy editor and
a VM security configurator. An example of a Cloud specific
security policy could be: “In case of a successfully detected
rootkit attack on a VM running on the same Cloud as a
users VM, the user VM gets moved to a different host to
diminish the risk of further damage.” whereas a security
configuration could state: “In case a modification attempt of
a file within / etc/php5/ gets detected, deny it and send an
email to the Cloud administrator.” Cloud audit policies get
send from the Policy Management to the Agent Management
to configure the corresponding agents. By using the monitoring
information of the distributed agents in combination with
the security policies a Cloud behaviour model is built
up for every Cloud user. Cloud audit policies are also used
as input for the Cloud management agent to detect user
overlapping audit events. Forwarded higher level events are
processed by an event processing engine. It is also fed with
the modelled security flows from the Security Policy

10

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 4: Basic SAaaS agent design

Modeller to aggregate information and detect behaviour
anomalies. Countermeasures can then be applied to early
detect and prohibit security or privacy breaches. The Report
Generator conditions events, corresponding security status
as well as audit report results in a human friendly presentation.

Presentation: As a single interaction point to Cloud users
the Security Dashboard provides usage profiles, trends,
anomalies and Cloud instances’ security status (e.g., patch
level). Information are organized in different granular hierar-
chies depending on the information detail necessary. At the
highest level a simple three colour indicator informs about a
users Cloud services overall status. It also provides a graphical
user interface to deploy agents to Cloud instances. Figure 5
shows a part of the security dashboard prototype, which gets
described in more detail in the next (but one) Section.

Communication between the distributed agents and the
security dashboard is handled by an Event Service.
Events will use the Agent Communication Language Format
(ACL) [30] and are exchanged using a FIPA[31] compli-
ant HTTPS Message Transfer Protocol (HTTPS-MTP) [32].
Events are also stored in an Event Archive.

E. How agents can improve incident detection

Incident detection in Cloud environments is a non trivial
task due to its characteristics as discussed in Section I.
Therefore, it is important to have a high number of sensors
capturing simple events. Preprocessed and combined complex
events can be generated reducing the possibility of “event
storms”. Combined with knowledge about business process
flows (specified in security policies), it will be possible to
detect security incidents while keeping the network load low.
The usage of agents delivers this possibility because agents are
independent units that can be added, removed or reconfigured
during runtime without altering other components. Thus, the
amount of monitoring entities (e.g., network connections of
a VM, running processes, storage access, etc.) of a Cloud
instance can be changed without restarting the incident detec-
tion system. Simultaneously using agents can save computing
resources since the underlying business process flow can be
taken into account.

While single sensor agents can monitor simple events
(e.g., user login on VM) and share them with other agents

Fig. 5: HFU Cloud management interface

complex events can be detected. Given the scenario of a suc-
cessful unauthorized login of an attacker at a virtual machine
VM2, misusing a web server’s directory to deposit malicious
content for instance a trojan. Agent A1 monitors the user
login, agent A2 detects the change of a directory content
and agent A3 detects a download of a not known file (the
trojan). Instead of sending those three simple messages to a
central event processing unit a VM agent can collect them,
conditioning one higher level event message that VM2 was
hijacked. This can result in a predefined action by the Cloud
Management Agent e.g., moving a hijacked VM into a
quarantine environment, alerting the user and simultaneously
starting a fresh instance of VM2 based on its VM image.

By ordering agents in a hierarchical structure and prepro-
cessing of detected events reduces network load originated
from the incidents detection system. Furthermore, this makes
the system more scalable by reducing data sent to upper system
layers. This concept is introduced and successfully used in
[33]. Combining events from system deployed agents (e.g.,
VM agents, host agent) and infrastructure monitoring agents
(network agent, firewall agent) incident detection is not limited
to either host or network based sensors, which is especially
important for the characteristics of Cloud environments. Using
agents has advantages in case of a system failure. Agents can
monitor the existence of co-located agents. If an agent stops
for whatever reasons this stays not undetected. Concepts of
asymmetric cryptography or Trusted Platform Module (TPM)
technology can be used to guarantee the integrity of a (re-
)started agent. If an agent stops the damage is restricted to
this single agent or a small subset of connected agents, which
are requiring information from this agent.

F. SAaaS Agent Architecture Implementation

For the SAaaS architecture we evaluated existing agent
frameworks with the following requirements:

• Agents can be deployed, moved, updated during run-
time

• Agent performance

• Open Source, documentation, community support

11

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 6: Automatic security audit in case of upscale event

Since our Cloud environment at HFU’s Cloud Research
Lab CloudIA [34] is built around the Cloud management
system Open Nebula another requirement was the agent pro-
gramming language: Java. As a result we choose the Java
Agent DEvelopment Platform (JADE), which enables the
implementation of multi-agent systems and complies to FIPA
specifications. Figure 4 illustrates a basic agent architecture.
It shows three VM Sensor Agents. Agents live in an agent
platform, which provides them with basic services such as
message delivery. A platform is composed of one or more
Containers. Containers can be executed on different hosts thus
achieving a distributed platform. Each container can contain
zero or more agents [35]. To provide monitoring functionality
a VM agents interacts through agent plugins with stand-alone
tools like process monitor, intrusion detection system or anti
virus scanner, as depicted in Figure 4. To harness the potential
of Cloud computing an agent can be deployed to a VM on-
demand according to the policies a user defines. Different
agents based on modelled business processes are stored within
an agent repository. To be able to move a JADE agent to a
running Cloud instance the Inter Platform Mobility Service

(IPMS) by Cucurull et al. [36] was integrated. This supports
the presented advantage of deploying agents on-demand if a
designed business process flow was started (as described in
Section V-E).

G. CAPL Integration & SAaaS Prototype

The described Cloud audit policy language, presented in
Section IV is seamlessly integrated into the SAaaS archi-
tecture. To show how SAaaS can increase transparency in
Cloud environments the following prototype scenario was
implemented. It is also depicted in Figure 6 and describes a
whole SAaaS life cycle:

1) A Cloud user creates three new VMs on the Web
based Cloud management interface, depicted in Fig-
ure 5. The VMs get configured as a typical Web
application installation: two Web servers, which are
delivering content from one database server.

2) After VM configuration is finished the user enables
the SAaaS features, starts the security policy modeller
and groups the VMs into group “WWW-Cluster1”.

12

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Then he activates a scalability monitoring policy
with a metric of HTTP requests per second and a
threshold of 100 for WWW-Cluster1. Furthermore, he
creates a policy saying that the “/etc/apache2” config
directory should be considered frozen and therefore
be monitored for changes.

3) As a result from enabling the SAaaS features and
the policy creation, a sensor agent for filesystem
monitoring gets deployed to the VMs of “WWW-
Cluster1”. It utilizes the linux tool inotify [37] to
watch the “/etc/apache2” directory.
Now let’s assume there is a lot of load on the
web servers due to a product launch of the user’s
company. Therefore, the Cloud management system
gets an upscale event for WWW-Cluster1, which gets
intercepted by a SAaaS agent monitoring the CMS.

4) The event provokes the policy and configures a scala-
bility audit agent with a scalability check and deploys
it on the SAaas management VM (in the case of
a filesystem change event within a web server VM
the audit agent would have been deployed to that
particular VM).

5) The agent creates new metric agents, which get
deployed to the web server VMs of WWW-Cluster1
to check the current load of HTTP requests. They
report the result back to the audit agent. The audit
agent evaluates the result and decides, dependent on
the average load reported by the metric agents, if the
upscale event is okay or not.

6) The results get conditioned into an audit report.

As a first prototype, a two layered agent platform was
developed, consisting of a sensor agent running inside a
VM and a Cloud management system agent. Audit
reports get displayed in a Security Dashboard. Since
all Cloud VMs in CloudIA are Linux based, only Open
Source Linux tools were considered during our research. Two
notification mechanisms were implemented:

a) The tool sends agent compatible events directly to the
agent plugin.

b) The tool writes events in a proprietary format into a
logfile, which gets parsed by an agent plugin.

As for mechanism a) the filesystem changes monitoring
tool inotify was used, whereas for mechanism b) fail2ban
[15], an intrusion prevention framework was chosen. For demo
purposes a simple Web frontend was written, which offers
to launch several attack scenarios on a VM agents equipped
VM in CloudIA. Before/after tests were performed to validate
that an attack was detected and (depending on the plugin’s
configuration) prohibited. A prototype version of the security
dashboard, depicted in Figure 7 showing a signal light indicator
informed about occurring events. When started, it shows a
green light. After launching an attack, the security dashboard
indicator light changes its colour to yellow or red. The impact
of a monitored event is defined by a severity matrix, shown in
Table IV. Each severity value out of the Web server log file
gets associated with a certain score. This score gets summed
up for all events. Then the quotient gets calculated which is
directly connected to the resulting colour.

TABLE IV: Severity matrix for security indicator light

Severity Value of message Quotient Colour

info 0 < 1.4 green
low 1 <= 1.4 green
middle 2 > 1.4 < 2.5 yellow
high 7 >= 2.6 red

H. VM Automatic Audit Integration & SAaaS Prototype

As described in Section III especially for a public Cloud it
is necessary to audit VMs. Every time a VM is uploaded to the
Cloud an image audit agent is checking the image according
to the enterprise policies defined in CAPL.

VI. EVALUATION

This section evaluates the presented automatic audit system
approach of the SAaaS system. First, it is discussed how
SAaaS enhances the auditing of non-running virtual machine
images. Therefore, an evaluation scenario from a Cloud cus-
tomer’s perspective is presented. We describe necessary user
effort utilizing the presented automatic audit system and if
he would take a manual approach. Second, it is evaluated
how the presented Cloud audit policy language supports the
established requirements, introduced in Section IV-A. Finally,
it is elaborated how the presented concurrent audits of the
SAaaS system address Cloud specific security issues and
therefore enhance Cloud computing security and transparency.

A. Auditing of VM Images

To evaluate the automatic audit system the following sce-
nario is considered: A Cloud customer chooses an online shop
virtual appliance (containing a web server and a database)
out of a cloud’s store. Before transferring actual data to the
image the following security policies need to be evaluated:
P1: The image must not contain any malware. P2: The image
must not run any other software than the web server and the
database. P3: The web server and database connection must
be configured properly.

1) Customer uses Automatic Audit System Approach:
When using the automatic audit system, the appliance user
or appliance creator first describes his security policies. Since
malware checks are usually a default policy, provided by the
Cloud provider, there is no need to model those. Additionally,
to simplify black box scans of the proper interaction between
web server and database it is imaginable to deposit a predefined
default start page, which could be browsed. The automatic
audit system will parse the security policies and identifies the
necessary audit cases, which are fetched from the database.
The audit cases get sorted, dependent on how the checks can be
executed. There are two kinds of security audit modes. Offline
VM audits mount the VM’s image and perform audit tasks on
it, whereas online VM audits launch the VM in a quarantine
environment of the cloud. There, audit tasks, which can be
only performed on the running VM are executed, such as an
analysis of open ports. Again, the results of the single audit
cases will be submitted to the parser and saved as mini reports
in the audit system’s database.

13

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 7: Cloud security dashboard prototype

At last, the report generator conditions the results of all
mini reports. The cloud management system is informed if
the overall audit result is “passed” or “failed”. If the status
is passed, the image can be added to the store, otherwise the
release will be denied. Nevertheless of the result, the complete
audit report will be sent to the appliance creator, to inform
about necessary problems to be fixed.

2) Manual Approach: In contrast to the automatic audit
system an offline audit of the appliance’s image is not imme-
diately possible. This is due to the fact, that the appliance
user does not have direct access to images stored in the
appliance store. The only two approaches possible are down-
loading the appliance’s image, which enables offline auditing
or to limit the audit process to online auditing. This is done
by an administrator, who must have sufficient expertise in
virtualization technologies, auditing methods and must be an
audit tool expert. Additionally, for the sake of reproducibility
and documentation, the appliance user has to follow a very
well defined auditing process (assuming such a process exists).
Downloading VM images and evaluating them offline imposes
a significant network overhead on the appliance user as well as
the Cloud provider. Manual online auditing can be performed,
when a virtual appliance image is already started. The appli-
ance user has to log in to the appliance in order to execute
auditing tools and scripts. Additionally, the virtual appliance
also has to be checked externally to determine which services
are activated, for example by port scanning. Performing port
scans on virtual machines executed in the cloud may trigger
the Cloud provider’s intrusion detection systems or may even
be prohibited entirely by the Cloud provider’s terms of use.

This demonstrates the overall complexity of a manual
virtual appliance auditing process. The automatic audit system
delivers the following advantages for appliance creator/user
and Cloud provider: Improved security when using 3rd party
virtual appliances (appliance user), well documented and for-
malized audit process (all), customizable, machine-readable
audit policies (all) and additional revenue by offering audits
as a service (Cloud provider).

B. CAPL Evaluation

Because none of the evaluated languages fulfilled the
requirements of SAaaS on a policy language (e.g., missing
conflict management, combination of policies), while retain-
ing a reasonable complexity, CAPL was developed, which

specifically addresses all those requirements. CAPL is based
on XML and extends the Cloud Infrastructure Management
Interface CIMI by a definition of security policies. Cloud
providers as well as Cloud users are enabled to define policy
rules for virtual machines. Table V evaluates CAPL against the
requirements, established in Section IV-A. By staying closely
to the CIMI standard, it will be possible to define security
policy for any CIMI compatible cloud infrastructure. This also
increases the compatibility of the proposed SAaaS system.
Another advantage of CAPL is its simplicity, since it is tailored
to the SAaaS target scenario. However, developing a new
policy language also has some negative aspects. Our results are
used in the SAaaS project only, which leads to a rather poor
acceptance. Also, besides the SAaaS project members there is
no community surrounding and developing this language.

C. Cloud Specific Security Issues Addressed by SAaaS

The German Federal Office for Information Security pub-
lishes the IT baseline protection catalogues enabling enter-
prises to achieve an appropriate security level for all types of
information. In a comprehensive study [38] on all IT baseline
protection catalogues as well as current scientific literature
available [2][39][40][4][5], we identified the following Cloud
specific security issues as solvable by the presented SAaaS
system:

Abuse of Cloud resources
Cloud computing advantages are also used by hackers, en-
abling them to have a big amount of computing power for
a relatively decent price, startable in no time. Cloud infras-
tructure gets used to crack WPA, and PGP keys as well as
to host malware, trojans, software exploits used by phishing
attacks or to build botnets like the Zeus botnet. The problem
of malicious insiders also exists in classical IT-Outsourcing
but gets amplified in Cloud computing through the lack of
transparency into provider process and procedure. This issue
affects authorisation, integrity, non-repudiation and privacy.
Strong monitoring of user activities on all Cloud infrastruc-
ture components is necessary to increase transparency. The
presented SAaaS use case A) Monitoring and audit of Cloud
instances addresses this problem.

Missing security monitoring in Cloud infrastructure
Security incidents in Cloud environments occur and (normally)
get fixed by the Cloud provider. But to our best knowledge no
Cloud provider so far provides a system, which informs user

14

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE V: Evaluation of CAPL

Requirement CAPL
Supp. Details

Technological Base ⊕ XML

Definition of monitored ob-
jects

⊕ Tailored to problem domain

Combination of policies ⊕ Groups

Area of validity ⊕ CIMI compatible infrastructures

Conflict management ⊕ Included

Last version c Under active but internal develop-
ment

Acceptance 	 Not spread beyond SAaaS

Community support 	 Only SAaaS

Documentation c CAPL documentation [17]

Complexity ⊕ Tailored to problem domain

Support of SAaaS policy sce-
narios

⊕ Full

Implementation effort c Own development

Integratability in SAaaS archi-
tecture

⊕ Fully integratable

promptly if the Cloud infrastructure gets attacked, enabling
them to evaluate the risk of keeping their Cloud services
productive during the attack. Thereby the customer must
not necessarily be a victim of the attack, but still might
be informed to decide about the continuity of his running
Cloud service. Furthermore, no Cloud provider so far shares
information about possible security issues caused by software
running directly on Cloud host machines. In an event of a
possible 0-day exploit in software running on Cloud hosts
(e.g., hypervisor, OS kernel) Cloud customers blindly depend
on a working patch management of the Cloud provider. The
presented SAaaS use case B) Cloud infrastructure monitoring
and audit addresses this problem.

Defective isolation of shared resources
In Cloud computing isolation in-depth is not easily achievable
due to usage of rather complex virtualization technology like
VMware, Xen or KVM. Persistent storage is shared between
customers as well. Cloud providers advertise implemented
reliability measures to pretend data loss like replicating data up
to six times. In contrast, customers have no possibility to prove
all these copies get securely erased in case they quit with the
provider and this storage gets newly assigned to a different
customer. While the presented SAaaS architecture does not
directly increase isolation in-depth it adds to the detection of
security breaches helping contain its damage by the presented
actions.

VII. STATE OF THE ART - RELATED WORK

To put the presented work described in this paper into
perspective, this section first discusses related research work
on Cloud security issues, followed by other Cloud security
research projects in contrast to SAaaS and the usage of agents
to increase security. It then discusses related work regarding
security of virtual appliance images. Afterwards, work on

security policy languages is elaborated, which are an important
part of the proposed work in this paper, too.

A rather high-level, but comprehensive view on the whole
topic of Cloud computing security is given by Mather et al
in the book “Cloud Security and Privacy” [41]. It provides a
very good introduction especially by laying out the necessary
groundwork. The most comprehensive survey about current lit-
erature addressing Cloud security issues is given by Vaquero et
al. in [4]. It categorizes the most widely accepted Cloud secu-
rity issues into three different domains of the Infrastructure as
a Service model: machine virtualization, network virtualization
and physical domain. It also proposes prevention frameworks
on several architectural levels to address the identified issues.

Pearson [42] proposes several software design guidelines
for delivering Cloud services taking privacy into account, such
as using a privacy impact assessment, allowing user choice and
providing feedback. While Chen et al. state in [5] that many
IaaS-related Cloud security problems are problems of tradi-
tional computing solved by presented technology frameworks
it also demands an architecture that enables “mutual trust”
for the Cloud user and Cloud provider. Both papers confirm
and complete the list of Cloud specific security issues iden-
tified by previous members of our research group, presented
in [43]. Furthermore, they identified a demand for a two-way
trust enabling architecture for Cloud infrastructures and the
ability of “choosable security primitives with well considered
defaults” [5]. The SAaaS architecture, proposed in this paper
is targeted to provide this mutual trust. SAaaS’ security audit
policy language enables the user to define its own security
policy and to choose from a spectrum of security subsystems
as demanded by [5].

Zamboni et al. present in [44] show traditional Intru-
sion Detection Systems (IDS) can be enhanced by using
autonomous agents. They confirm the advantages of using
autonomous agents in regards to scalability and system over-
lapping security event detection. In contrast to our SAaaS
architecture their research is focusing on the detection of
intrusions into a relatively closed environment whereas our
work applies to an open (cloud) environment where incidents
like abuse of resources needs to be detected. Mo et al.
introduce in [45] an IDS based on distributed agents using the
mobile technology. They show how mobile agents can support
anomaly detection thereby overcoming the flaws of traditional
intrusion detection in accuracy and performance. The paradigm
of cooperating distributed autonomous agents and its corre-
sponding advantages for IDS’ is shown by Sengupta et al. in
[46]. The presented advantages apply for our SAaaS agents as
well [1].

Amazon’s Cloud platform Elastic Compute Cloud (EC2)
allows users to create and share virtual machine images.
Balduzzi et al. [11] analyzed the security risks of running
third party images. The work gives a good insight about
the current risk, which comes from pre-configured Cloud
appliances. After the investigation of over 5000 Amazon
Amazon Machine Images (AMIs), they found that 98% of
Windows AMIs and 58% of Linux AMIs contain software with
critical vulnerabilities [11]. Furthermore, two VM images were
infected with malware, two were configured to write logs to
an external machine, 21.8% contained leftover credentials that
would allow a third party to remotely log into a machine [11].

15

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Their approach is to start AMIs on EC2 and then scan them
for security problems and privacy risks. However, their system
is not intended to be used as an auditing service. They execute
a predefined set of security and privacy checks and provide no
way of customizing policies, which will be supported by the
work proposed in this paper.

Wei et al. have worked on the problem of securing virtual
machine images [47], and propose the Mirage Image Manage-
ment System as a mitigation solution. Mirage is run by the
Cloud provider to secure virtual machine images in his repos-
itories. Mirage incorporates an access control framework and
image filters, which remove unwanted information automati-
cally from an image on publish/retrieve time. It incorporates a
change tracking system and repository maintenance services,
like periodic virus scanning. However, providing the appliance
user and creator with a facility for easily creating custom
policy definitions is not part of their work.

Schwartzkopf et al. present an “Update Checker”, which
investigates the up-to-dateness of installed software within VM
images before they get launched in a Cloud environment [48].
They provide a graphical alerting method within the Cloud
management system to inform the user about outdated software
within a certain image. However, their approach only focuses
on Linux images so far, which are being mounted and only
checks for outdated software. The automatic audit system
proposed in this work supports a wider spectrum of security or
privacy checks through the concept of flexible security policies
and offline and online investigation of VMs. However, the
work proposed in [48] could be used to optimize the offline
checks proposed in this paper.

Al Morsy and Faheem identified the need for automated
policy enforcement systems [49]. Although, a lot of differ-
ent security policy definition languages exist (e.g., LaSCO,
XACML, SPARQL, etc.), it is shown that each of those has
different limitations in terms of policy constraints. Therefore,
Morsy and Faheem propose a policy automation framework
including a new language called Standard Security Policy
Language (SSPL), which tries to simplify the process of
creating machine-readable security policies. The results of their
policiy language analysis will be confirmed by the security
policy language evaluation presented in this work. We further
show why the developed Standard Security Policy Language
does not meet the requirements of our work.

VIII. CONCLUSION & OUTLOOK

In this paper, we introduced the Security Audit as a
Service architecture to mitigate the shortcomings traditional
audit systems suffer to audit Cloud computing environments.
It was shown that SAaaS provides automatic auditing of virtual
machine images according to custom user-defined policies. The
results are reduced security and privacy risks, a well defined
and reproducible audit process, as well as good documentation
of results, when using 3rd party virtual machine appliances,
while keeping the required technical understanding of the audit
process to a reasonable minimum. The description of audit
requirements in a Cloud audit policy language, allows abstrac-
tion of the audit requirements to a level, where even non-
technical experts should be able to transfer company security
and privacy policies into audit policy documents. A prototype

was presented where user enable an automatic evaluation of an
upscaling event. Furthermore, the advantages of using agents
as a source for sensor information were shown. By utilizing
lightweight, on-demand deployable agents it is possible to
perform specific targeted audits every time a change within a
user’s Cloud infrastructure is performed. The current status of
the work implements this on a user basis, but the system will be
even more valuable when customer-overspanning events will
be evaluated.

Therefore, as for future work an anomaly detection module
will be developed, which is targeted to learn “normal” usage
behaviour of Cloud instances by their users. As a result, this
will enable the SAaaS system to detect anomalies within a
Cloud infrastructure. For the presented Cloud audit policy
language CAPL the extension of the CAPL schema by CIMI
required objects is planned. This will enable the SAaaS
system to audit any CIMI compatible infrastructures and the
SAaaS system will be Cloud provider interoperable. Also, the
implementation of a graphical user interface for the security
policy modeller is planned. Thus, user will be able to easily
define policies. Furthermore, it is planned to extend the CAPL
class MetaResource, which provides a functions catalog
of CAPL policies. User then could access this catalog to
get automatically information about necessary parameters of a
policy they like to define. At last, a security evaluation of the
SAaaS system is planned to prove if it imposes new security
risks to a Cloud environment.

ACKNOWLEDGMENT

This research is supported by the German Federal Ministry
of Education and Research (BMBF) through the research grant
number 01BY1116.

REFERENCES

[1] F. Doelitzscher, C. Reich, M. Knahl, and N. Clarke, “Incident Detection
for Cloud Environments,” in Proceedings of the Third International
Conference on Emerging Network Intelligence (EMERGING 2011), no.
978-1-61208-174-8, 2011, pp. 100–105.

[2] Cloud Security Alliance, “Security Guidance for Critical Areas of Focus
in Cloud Computing v2.1,” 12 2009.

[3] European Network and Information Security Agency, “Cloud Comput-
ing Security Risk Assessment,” Tech. Rep., 2009.

[4] L. Vaquero, L. Rodero-Merino, and D. Moran, “Locking the Sky: A
Survey on IaaS Cloud Security,” Computing, vol. 91, pp. 93–118, 2010.

[5] Y. Chen, V. Paxson, and R. H. Katz, “What’s New About Cloud
Computing Security?” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2010-5, 01 2010.

[6] Cloud Industry Forum, “Cloud Adoption and Trends for 2013,” vol. 08,
2013.

[7] F. Doelitzscher, C. Reich, and A. Sulistio, “Designing Cloud Services
Adhering to Government Privacy Laws,” in Proceedings of 10th IEEE
International Conference on Computer and Information Technology
(CIT 2010), 2010, pp. 930–935.

[8] OpenNebula. (2012, July) OpenNebula Marketplace. [Online].
Available: http://marketplace.c12g.com/appliance-Accessed:10.06.2013

[9] Amazon. (2012, July) AWS Marketplace. [Online]. Available:
http://aws.amazon.com/marketplace-Accessed:10.06.2013

[10] Amazon Web Services. (2012, July) How To Share and Use
Public AMIs in A Secure Manner. [Online]. Available: http:
//aws.amazon.com/articles/0155828273219400-Accessed:10.06.2013

[11] M. Balduzzi, J. Zaddach, D. Balzarotti, E. Kirda, and S. Loureiro, “A
Security Analysis of Amazon’s Elastic Compute Cloud Service,” in Pro-
ceedings of the 27th Annual ACM Symposium on Applied Computing,
ser. SAC ’12. New York, NY, USA: ACM, 2012, pp. 1427–1434.

16

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] S. Bugiel, S. Nürnberger, T. Pöppelmann, A.-R. Sadeghi, and T. Schnei-
der, “Amazonia: When elasticity snaps back,” in Proceedings of the 18th
ACM conference on Computer and communications security, ser. CCS
’11. New York, NY, USA: ACM, 2011, pp. 389–400.

[13] N. A. Haroon Meer. (2009) Clobbering the
Cloud, part 4 of 5. [Online]. Avail-
able: http://www.defcon.org/images/defcon-17/dc-17-presentations/
defcon-17-sensepost-clobbering the cloud.pdf-Accessed:10.06.2013

[14] N E Case. (2012, July) Extundelete. [Online]. Available: http:
//extundelete.sourceforge.net-Accessed:10.06.2013

[15] WinRecovery. (2012, July) Winundelete. [Online]. Available: http:
//www.winundelete.com-Accessed:10.06.2013

[16] Distributed Management Taskforce Inc. (DMTF). Cloud Infrastructure
Management Interface (CIMI). Accessed: 10.06.2013. [Online].
Available: http://www.dmtf.org/standards/cloud-Accessed:10.06.2013

[17] T. Karbe, “Design and Development of an Audit Policy Language for
Cloud Computing Environments,” Cloud Research Lab - University of
Apllied Sciences Furtwangen, Tech. Rep., 2013. [Online]. Available:
http://wolke.hs-furtwangen.de/publications/theses

[18] L. Kagal. (2004) Rei Ontology Specifications. [Online]. Available:
http://www.csee.umbc.edu/∼lkagal1/rei/-Accessed:10.06.2013

[19] Imperial College London. (2013, March) Ponder2. [Online]. Available:
http://www.ponder2.net-Accessed:10.06.2013

[20] J. A. Hoagland, R. Pandey, R. P, and K. N. Levitt. A Graph-based
Language for Specifying Security Policies.

[21] James A. Hoagland, “Specifying and Implementing Security Policies
Using LaSCO, the Language for Security Constraints on Objects,” Ph.D.
dissertation, University of California Davis, 2000. [Online]. Available:
http://seclab.cs.ucdavis.edu/projects/arpa/LaSCO/dis/dissertation.pdf

[22] MS TechNet. (2004, 09) Windows Management Instrumentation. [On-
line]. Available: http://www.microsoft.com/germany/technet/datenbank/
articles/600682.mspx-Accessed:10.06.2013

[23] SBLIM. (2009) SBLIM Project Wiki. [Online].
Available: http://sourceforge.net/apps/mediawiki/sblim/index.php?title=
MainPage-Accessed:10.06.2013

[24] IBM. IBM Director. [Online]. Available: http:
//publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp?topic=
%2Fdiricinfo%2Ffqm0ccommoninfomodel-Accessed:10.06.2013

[25] L. Kagal. (2004) Rei Examples. [Online]. Available: http://www.csee.
umbc.edu/∼lkagal1/rei/examples/univ/-Accessed:10.06.2013

[26] DMTF Policy Working Group. CIM Schema Final Documentation.
[Online]. Available: http://dmtf.org/sites/default/files/cim/cim schema
v2340/cim schema 2.34.0Final-Doc.zip-Accessed:10.06.2013

[27] Distributed Management Taskforce Inc. (DMTF). (2007, 02) Policy
Profile. [Online]. Available: http://www.dmtf.org/sites/default/files/
standards/documents/DSP1003.pdf-Accessed:10.06.2013

[28] ——. Cim schema - policy model. [Online]. Avail-
able: http://www.wbemsolutions.com/tutorials/CIM/cim-model-policy.
html-Accessed:10.06.2013

[29] J. M. Bradshaw, An Introduction to Software Agents. Cambridge, MA,
USA: MIT Press, 1997, pp. 3–46.

[30] Foundation for Intelligent Agents. (2002) Fipa acl message structure
specification. [Online]. Available: http://www.fipa.org/specs/fipa00061/
SC00061G.html-Accessed:10.06.2013

[31] IEEE Computer Society standards organization. Founddation for
Intelligent Physical Agents - FIPA. http://www.fipa.org/. [Online].
Available: http://www.fipa.org/-Accessed:10.06.2013

[32] JADE Tutorials. HTTP MTP for Inter-Platform Communication.
[Online]. Available: http://jade.tilab.com/doc/tutorials/JADEAdmin/
HttpMtpTutorial.html-Accessed:10.06.2013

[33] S. Staniford-chen, S. Cheung, R. Crawford, M. Dilger, J. Frank,
J. Hoagl, K. Levitt, C. Wee, R. Yip, and D. Zerkle, “GrIDS - A
Graph Based Intrusion Detection System For Large Networks,” in
In Proceedings of the 19th National Information Systems Security
Conference, 1996, pp. 361–370.

[34] A. Sulistio, C. Reich, and F. Doelitzscher, “Cloud Infrastructure &
Applications - CloudIA,” in Proceedings of the 1st International Con-
ference on Cloud Computing (CloudCom’09), Beijing, China, 2009.

[35] David Grimshaw. JADE Administration Tutorial. [Online]. Available:
http://jade.tilab.com/doc/tutorials/JADEAdmin-Accessed:10.06.2013

[36] J. Cucurull, R. Marti, G. Navarro-Arribas, S. Robles, B. Overeinder, and
J. Borrell, “Agent mobility architecture based on IEEE-FIPA standards,”
Computer Communications, vol. 32, no. 4, pp. 712 – 729, 2009.

[37] inotify. - monitoring file system events. [Online]. Available: http:
//linux.die.net/man/7/inotify-Accessed:10.06.2013

[38] F. Doelitzscher and M. Ardelt and M. Knahl and C. Reich, “Sicherheit-
sprobleme für IT Outsourcing basierend auf Cloud Computing,” HMD
- Praxis der Wirtschaftsinformatik, vol. 281, 10 2011.

[39] Cloud Security Alliance, “Top Threats to Cloud Computing V1.0,”
2010, https://cloudsecurityalliance.org/topthreats.html, 06.09.2011.

[40] European Network and Information Security Agency, “Cloud Comput-
ing Security Risk Assessment,” Tech. Rep., 11 2009.

[41] T. Mather, S. Kumaraswamy, and S. Latif, Cloud Security and Privacy:
An Enterprise Perspective on Risks and Compliance. O’Reilly Media,
Inc., 2009.

[42] S. Pearson, “Taking Account of Privacy when Designing Cloud Com-
puting Services,” in Proceedings of the ICSE Workshop on Software
Engineering Challenges of Cloud Computing, Vancouver, Canada, May
23 2009.

[43] F. Doelitzscher, C. Reich, M. Knahl, A. Passfall, and N. Clarke, “An
Agent Based Business Aware Incident Detection System for Cloud
Environments,” Journal of Cloud Computing: Advances, Systems and
Applications, vol. 1, no. 1, p. 9, 2012.

[44] J. Balasubramaniyan, J. Garcia-Fernandez, D. Isacoff, E. Spafford,
and D. Zamboni, “An Architecture for Intrusion Detection Using
Autonomous Agents,” in Computer Security Applications Conference,
1998, Proceedings., 14th Annual, dec 1998, pp. 13 –24.

[45] Y. Mo, Y. Ma, and L. Xu, “Design and Implementation of Intrusion
Detection Based on Mobile Agents,” in IT in Medicine and Education,
2008. ITME 2008. IEEE International Symposium on, dec. 2008, pp.
278 –281.

[46] J. Sen, I. Sengupta, and P. Chowdhury, “An Architecture of a Distributed
Intrusion Detection System Using Cooperating Agents,” in Computing
Informatics, 2006. ICOCI ’06. International Conference on, june 2006,
pp. 1 –6.

[47] J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning, “Managing
Security of Virtual Machine Images in a Cloud Environment,” in
Proceedings of the 2009 ACM workshop on Cloud computing security,
ser. CCSW ’09. New York, NY, USA: ACM, 2009, pp. 91–96.

[48] R. Schwarzkopf, M. Schmidt, C. Strack, and B. Freisleben, “Checking
Running and Dormant Virtual Machines for the Necessity of Security
Updates in Cloud Environments,” in Cloud Computing Technology and
Science, 2011 IEEE Third International Conference on, 2011, pp. 239
–246.

[49] M. Al-Morsy and H. Faheem, “A new standard security policy lan-
guage,” Potentials, IEEE, vol. 28, no. 2, pp. 19 –26, march-april 2009.

