
27

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Algorithm for Variability Identification by
Selective Targeting

Anilloy Frank
Institute of Technical Informatics,
Graz University of Technology

Inffeldgasse 16, 8010 Graz, Austria
Email: frankanilloy@gmail.com

Eugen Brenner
Institute of Technical Informatics,
Graz University of Technology

Inffeldgasse 16, 8010 Graz, Austria
Email: brenner@tugraz.at

Abstract—Large companies have large embedded software
systems, where common and reusable software parts are dis-
tributed in various interrelated subsystems that also have lots of
uncommon and non-reusable parts. The approach finds software
parts that may or may not be reusable in a particular application
engineering project. It is the task of application engineering to
figure out whether the identified components and variants are
directly reusable and reuse them in application engineering. In
Software Product Lines, the identified reusable common and
variable components should be generalized and stored into asset
bases. In real life, it may be too much effort and costs to generalize
application level assets into domain assets and it is just more
feasible to try to find reusable common and variable components
directly from existing applications. The proposed approach is
selectively targeting the component-feature model instead of an
inclusive search to improve the identification. We explore the
components and their features from a predefined component node
list and the features node vector respectively.

Keywords—Design Tools; Embedded Systems; Feature Extrac-
tion; Software Reusability; Variability Management.

I. INTRODUCTION

This paper is an extension of the conference paper [1],
and aims at providing a greater insight into the algorithm for
managing software variants of embedded systems. It presents
a semi-automatic approach to identify reusable parts.

Embedded systems are microcontroller-based systems built
into technical equipment mainly designed for a dedicated
purpose. Communication with the outside world occurs via
sensors and actuators [2]. Although this definition implies that
embedded systems are used as isolated units, from 2006 it is
observed that there is a trend to construct distributed pervasive
systems by connecting several embedded devices as indicated
by Tanenbaum and van Steen [3].

The current development trend in automotive software is
to map software components on networked Electronic Control
Units (ECU), which includes the shift from an ECU based
approach to a function based approach. Also according to data
presented by Ebert and Jones [4] up to 70 electronic units
are used in a car containing embedded software, which is
responsible for the value creation of the car and consists of
more than 100 million lines of object code.

Ebert and Jones presents data about embedded software,
stating that the volume of embedded software is increasing
between 10 and 20 percent per year as a consequence of the

increasing automation of devices and their application in real
world scenarios.

An industrially accepted approach in the automotive appli-
cations is Model Based Software Engineering (MBSE). Model-
Driven Engineering (MDE) is the use of models as the main
artifacts during the software development and the maintenance
process. Model Driven Software Development (MDSD) is
typically realized in a distributed system environment.

Most MDSD approaches follow the Model Driven Archi-
tecture (MDA) concept. In this concept, we start with the
specification of a platform independent model, this is then
transformed to a platform specific model by applying several
generators. The layered Meta Object Facility (MOF) approach
is used for creating the models. This approach is also used as
the basis for the Unified Modeling Language UML.

While MDSD facilitates models for the abstract specifica-
tion of system architectures, their platform specific artifacts
are often realized by applying Component Based Software
Engineering (CBSE) techniques. Models become artifacts to
be maintained along with the code, by using model transfor-
mations and code generation.

MDE is related with the Object Management Group
(OMG) initiatives, Model-Driven Architecture (MDA R©) and
Model-Driven Development (MDD R©), which argue that the
use of models as the main artifact on software development
will bring benefits on software reuse, documentation, mainte-
nance, and development time.

Fig. 1. Software reuse history.

Reuse of automotive embedded software is difficult, as it is
typically developed for a small ECU that lacks both processing
speed and memory of a general purpose machine. Moreover,
the complexity of the embedded software is dramatically
increasing. In view of this complexity, achieving the required
reliability and performance is one of the most challenging
problems [5].



28

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1 shows a short history of the usage of reuse in
software development. In the 1960s, reuse of software started
with subroutines, followed by modules in the 1970s and objects
in the 1980s. Around 1990 components appeared, followed
by services at about 2000. Currently, Software Product Lines
(SPL) are state of the art in the reuse of software. Today,
many different approaches exist to the implementation of
Software Product Lines, but the complexity still remains at
unmanageable proportions.

Complexity management has become a vital factor in an or-
ganization. To save costs a company needs to minimize internal
complexities arising from numerous factors like large products
portfolios, regulations that necessitate component variations in
different regions, requiring components from external sources
like Original Equipment Manufacturers (OEMs), requirements
for meeting certifications, and Virtual Organizations (VOs) [6].
It is also necessary to satisfy the range of customer require-
ments which determines external complexity. The dynamics
involved is due to three major factors:

• Globalization: For companies to be present in all
major markets and to be competitive the requirements
of customers with different cultural, technological,
economic, and legal backgrounds needs to be incor-
porated in products.

• Evolving Technology: With a need to reduce the time-
to-market, technology is evolving at an extremely
fast pace. The trend to launch new products quickly
in the market is increasing, which necessitate for
enhanced technology as well as convergence of tech-
nologies [7][8].

• Increasing market influence: The customers influence
to determine a product’s features and price is inducing
the manufacturers to provide more and more product
variants.

Fig. 2. Evolution of complexities [9].

Figure 2 depicts numerous methods and tools introduced
in the past to limit the impact of rising external complexity
onto internal complexity in manufacturing, information man-
agement, and processes.

With globalization, evolving technology, and increasing
market influence the complexity revolving in reuse of em-
bedded software is becoming extremely unmanageable mainly
due to large number of variants. The proposed strategy is
to introduce a variability identification layer that intends to
facilitate software reuse. We start by analyzing the model
structure. Based on this we form a concept to extract an

element list to facilitate the identification of variability. The
implementation section describes algorithm fragments of the
different functional blocks. The evaluation of the proposed
strategy is based on a technically advanced adaptation of a
formal mathematical model [10], which is beyond the scope
of this paper.

The rest of this paper is organized as follows. In Section
II, a brief summary of related work by other authors is given,
while in Section III, enumerates the objectives of the approach.
Section IV presents the concept and approach, algorithm frag-
ments, and evaluation. Section V discusses the contributions,
while Section VI draws conclusions and future work.

II. RELATED WORK

Usually, the product governs processes, manufacturing and
information. The product is an interface between external and
internal complexity. Designing modular products and applying
module variants results in product families [11]. The interfaces
between these modules need to be clearly specified. To address
modular product families from a holistic perspective it needs
to be managed in development and realization across the entire
life cycle.

With so many modular product families now being in place,
the following observations however indicate the following:

• Increasing number of variants: The number of variants
continues to rise and is unmanageable in most com-
panies. Due to cannibalization effects, new variants
often do not substantially increase sales but only lead
to redistribution from standard to special products. As
a result, increased costs are not passed on to the selling
price and the profit margin decreases [12].

• Insufficient decision basis: Many of the complexity
effects cannot be captured using traditional accounting
techniques, e.g., overhead calculation. The widely-
used methods and lack of technical knowledge on
the consequences can be misleading when it comes
to decisions in variant management.

• Unsuitable Methodologies: Modular product families
are treated with the same mechanisms as single prod-
ucts, which is unsuitable. Modular product families
require a different approach to variant management
than single products as interfaces and interactions
among modules is crucial.

Planning a standardized architecture within an organization
may address a part of these problems and facilitate reuse. With
constantly changing requirements within the set of products,
the variability needs to evolve. Many embedded systems are
implemented with a set of alternative function variants to
adapt to the changing requirements. Major challenges are
in identifying the commonality of functionality, where the
designs involve variability (ability to customize). In addition
to variants, versions/releases of functional blocks also play an
important role for the effective management over the entire
product cycle.

Figure 3 depicts a scenario where well established software
components tested for performance, safety, and reliability



29

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 3. External components are a hindrance to variability management.

procured from external sources and Original Equipment Man-
ufacturers (OEMs) are causes for a hindrance in managing
variability.

For achieving large-scale software reuse, reliability, per-
formance, and rapid development of new products, a software
product-line (SPL) is an effective strategy. A SPL is a family
of products sharing the same assets allowing the derivation of
distinct products within the same application domain.

An SPL is a set of software-intensive systems that share
a common set of features for satisfying a particular market
segment’s needs. SPL can reduce development costs, shorten
time-to-market, and improve product quality by reusing core
assets for project-specific customizations [13][14].

The SPL approach promotes the generation of specific
products from a set of core assets, domains in which products
have well defined commonalities and variation points [15].

Enabling variability in software consists in delaying de-
cisions at different software abstraction levels, ranging from
requirements to runtime. The object-oriented approach to im-
plement variability is based on the development of a frame-
works of reusable software components described by a set of
classes and by way instances of those classes collaborate.

One of the fundamental activity in Software Product
Line Engineering (SPLE) is Variability Management (VM).
Throughout the SPL life cycle, VM explicitly represents vari-
ations of software artifacts, managing dependencies among
variants and supporting their instantiations [13].

To enable reuse on a large scale, SPLE identifies and
manages commonalities and variations across a set of system
artifacts such as requirements, architectures, code components,
and test cases. As seen in the Product Line Hall of Fame [16],
many companies have adopted this development approach.

As depicted in Figure 4, SPLE can be categorized into
domain engineering and application engineering [17][18]. Do-
main engineering involves design, analysis and implementation
of core objects, whereas application engineering is reusing
these objects for product development.

Fig. 4. Variability management in product lines.

Activities on the variant management process involves vari-
ability identification, variability specification and variability
realization [19].

• The Variability Identification Process will incorporate
feature extraction and feature modeling.

• The Variability Specification Process is to derive a
pattern.

• The Variability Realization Process is a mechanism to
allow variability.

To enable identification of variability for software compo-
nents in a distributed system within the automotive domain
[20][21], we enlist the specifications below:

• Specification of components by compatibility
The product is tested using software functions of
a certain variant and version. These products may
exhibit compatibility issues between functional blocks,
whilst using later version of the function may fail to
perform as expected.

• Extract, identify, and specify features
To enable parallel development, it is necessary to be
able to extract features, and to identify and specify the
functional blocks in the repository based on architec-
ture and functionality.

• Usability and prevention of inconsistencies
A process that tracks usability and prevents inconsis-
tencies due to deprecate variants and versions in the
repository is required.

• Testing mechanism for validations
A testing mechanism for validations in order to main-
tain high quality for components and its variants has
to be established.

• Mechanism for simplified assistance
The developer has to be assisted by a process to
intelligently determine whether a functional block or
its variant should exist in the data backbone to avoid
redesign of existing functions, thereby improving pro-
ductivity.



30

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Although variability management is recognized as an im-
portant aspect for the success of SPLs, there are not many solu-
tions available [22]. However, there are currently no commonly
accepted approaches that deal with variability holistically at
architectural level [23].

Based on the challenges discussed and the concluded re-
lated work presented, the following objectives can be derived.

III. OBJECTIVES OF THIS APPROACH

• Objective 1: Support heterogeneous models containing
hierarchically embedded software components con-
taining the complete specification of specific function-
ality to foster reuse.
Breaking down the models into several components
and logical clustering of components of the modeled
software is not targeted. In contrast, the proposed
methodology enables the identification of common-
alities of components in heterogeneous models. For
deployment and reuse purposes several partial models
are treated as one artifact. Furthermore, the architec-
ture should support reuse of these artifacts for the
development of new functionalities.
The challenge of the realized system of artifact het-
erogeneity should be based on existing component
technologies that provides mature techniques, that are
a consequence of the application independent and
generic definition of the system specific components
and ensures the portability of the proposed system on
other platforms.

• Objective 2: Enable dynamic configuration.
Each subsystem is modeled and simulated using
a domain-specific simulation tool, while the co-
simulation platform handles the coupling between
these subsystems that enables holistic simulation of
a system.
The challenge for identifying variability of software
components validating to numerous schemata of re-
spective simulation tools and dynamically loading
of plug-ins for specific set of components adhering
to respective schemata at execution time in model
interpretation architecture.

• Objective 3: Enable shared usage of resources.
A scenario depicting the concept of virtual organiza-
tion should have a clear method to tackle resource
access, validation and verification of specific models.

IV. ACTIVITIES FOR VARIABILITY IDENTIFICATION

Models confirming to numerous tools like ESCAPE R©,
EAST-ADL R©, UML R© tools, SysML R© specifications and
AUTOSAR R© were considered. Although this concept is not
limited to automotive domain alone.

A. Project analysis

An analysis of the models exhibits a common architec-
ture. Figure 5 depicts the textual representation that underlies
several graphical models. The textual representation usually
is given in XML, which strictly validates to a schema. A

heterogeneous modeling environment may consist of numerous
design tools, each with its own unique schema, to offer
integrity and avoid inconsistencies. Developed projects have
to be strictly validated to the schemas of these tools.

Fig. 5. Mapping textual and graphical representations.

Fig. 6. XML Nodes that are not significant for variability.

A closer examination of the nodes in the textual represen-
tation of models depicted in Figure 6 reveals some interesting
information. The nodes outlined in rectangles provide impor-
tant information regarding the identity, specification, physical
attributes, etc. of a component, but are insignificant from the
perspective of variant.



31

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Concept and approach

The basic concept to identify variability is depicted in
Figure 7.

Fig. 7. Basic Concept.

The left side is a set of projects that have software compo-
nents hierarchically embedded. These projects validate to the
corresponding schemas. The middle layer is an identification
layer with three functional blocks. A set of component lists
is derived from the node list in the schema. Similarly, a
feature vector is derived from the schema that corresponds
to components. The second block is a customized parser
that generates a relevant lexicon from the set of software
components within a project. The third block is a set of rules
(viz., mandatory, optional, exclude) to govern the identification
of variability.

The basic concept can be extended to obtain a working
model for the identification of variants. The work flow is de-
picted in Figure 8. The top layer here represents the domain or
core assets. The middle layer is a semi-automatic identification
layer for variants. A component list and a feature vector is
derived manually from the schema of the project; a collection
of elements that represent components and their descriptive
features that significantly contribute to the identification of the
component’s variant.

The workflow can be further extended to adapt a heteroge-
neous environment, which consist of projects developed using
several modeling and simulation tools. The identification layer
is separated into two parts. Numerous component lists and
feature vectors can be derived for each distinct schema as
depicted in Figure 9, whereas a common lexicon and common
rules govern the identification process.

C. Implementation

In this section, several key aspects of the implementation
are discussed. The focus is to describe the architecture of
the identification layer, which forms the intermediate layer
for adapting the core assets from domain engineering into
application engineering.

The related approaches put on view a need for a generic
methodology in identification of software components devel-
oped using several design tools.

Fig. 8. Work flow of the identification process.

Fig. 9. Work flow of the identification process for heterogeneous systems.

1) Component list and feature vectors: As the project
structure for each tool is well defined and strictly validated
with corresponding schemata, these schemata can be used as
basis for deriving the list that can identify components.

The results are summarized in Table I.

a) Component list

An example of the list of elements that characterize com-
ponents derived manually from the schemata for design tool
ESCAPE [24] is



32

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

"CompoundFunction HWFunction
SWFunction Parameter"
+ " StructureElement SWBubbleType
ParameterType ParameterTypeTerminal
IntDataType FloatDataType
TimeDataType AliasDataType
VariantDataType HWFunctionType
TypeInterface FunctionTypeTerminal
HWTypeTerminal"
+ " StructureElement DeviceMapping
DeviceType BusCAN BusSegment
MappedFunction"

The list is a delimited string with whitespace or any other
delimiter.

A tool supporting multi-functional structures like ESCAPE
has three views: Functional structure builder (FSB), Function
type builder (FTB) and Hardware Structure Builder (HSB).
Each view can have an independent list

• Component list for FSB
FSB facilitates to build the structure of the model.

"CompoundFunction HWFunction
SWFunction Parameter"

• Component list for FTB
FTB provides defining hardware and software types.

"StructureElement SWBubbleType
ParameterType ParameterTypeTerminal
IntDataType FloatDataType
TimeDataType AliasDataType
VariantDataType HWFunctionType
TypeInterface FunctionTypeTerminal
HWTypeTerminal"

• Component list for HSB
HSB that allows networking ECUs and mapping the
software functions.

"StructureElement DeviceMapping
DeviceType BusCAN BusSegment
MappedFunction"

Similarly, in a heterogeneous modeling environment each
modeling tool will have its own schemata, and a corresponding
list may be derived for each tool.

b) Feature vector

Similarly, the elements that characterize features of the
software components are also derived manually from the
schemata, which forms the feature vector and are enlisted
below

"Name LongName DEScription
ConnectionSegment SourceTerminal
SinkTerminal Interface
CompoundTerminal HWTerminal
SWTerminal Input DataType"

c) Algorithm to identify components within projects

Using the string described in Section IV-C1a that charac-
terize the software components nodes list within a project, the
following algorithm can be devised.

componentListString ←
string described in Section IV-C1a;

Nodes ← doc.GetElementsByTagName(”*”);

for each Node in the Nodes (Length(Ln) ≥ 1), do

if Node.name in componentListString, then

componentList ← Node.name;

The order for matching the software components is O(N).

The prototype dataset used for evaluation of this algorithm
contained a total of 32909 nodes, of which only 1583 matches
were the software components.

Similarly, using the string described in Section IV-C1b
that characterize the features within software components, the
following algorithm can be devised.

featureVectorString ←
string described in Section IV-C1b;

Nodes ← componentList;

for each Node in the Nodes (Length(Lc) ≥ 1), do

if Node.name in featureVectorString, then

featureList ← Node.name;

The order for determining the corresponding features
within the software components is O(N).

From the prototype dataset a total of 13353 nodes matches
to the feature vector were found.

The results are summarized in Table II.

2) Lexicon: A simple customized parser has been devised
which automatically extracts words from the text within the
software components and features that match the component
list and feature vector respectively.

lexiconList ← NULL;

Nodes ← componentList ∪ featureList;

for each Node in the Nodes (Length(Lcf ) ≥ 1), do

wordList ← split(Node.innerText, delimiter) ;

for each word in the wordList (Length(Lw) ≥
1),do

if word not in lexiconList, then

lexiconList ← word;

lexiconList.frequency ← 1;



33

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

else

lexiconList.frequency ←

lexiconList.frequency+1;

End For;

A more sophisticated parser that discards non-words will
further improve the Lexicon.

The Lexicon assists the user to choose from a set of relevant
words along with their frequencies thereby improving the user
experience.

3) Rules: In every case, a full match of software compo-
nents to specification sets is not desired, but in many instances
specification sets contain elements that are mandatory (con-
tains all), optional (one or more) and exclude (omit). Providing
rules to execute these features enhances the performance in the
identification process.

ruleContainAll ←

Specification subset with Contain-all elements;

ruleOptional ←

Specification subset with Optional elements;

ruleExclude ←

Specification subset with Exclude elements;

Nodes ← componentList ∪ featureList;

for each Node in the Nodes (Length(Lcf ) ≥ 1), do

wordList ← split(Node.innerText, delimiter) ;

for each word in the wordList (Length(Lw) ≥
1),do

if word not in ruleExclude, then

if word in ruleContainAll, then

variantList ← word;

elseif word in ruleOptional, then

variantList ← word;

End For;

Using the rules enables to narrow down to a more realistic
list of variants that matches the specification set.

4) Transforming naming convention: Moreover, the nam-
ing convention within an organization also lead to ambiguity
in the identification of components when the number is large.

a) Naming convention

A list for a naming convention for a distributed business
process is illustrated below

"WorkSpace DOMain GRouP PRoJect
FunctionBlock PartNo VARiant"

b) Algorithm to transform names

The string described above characterizes the naming con-
vention within an organization, the scattered software compo-
nents can be organized by splitting the names along a delimiter
and transforming them into a hierarchical structure, then the
following algorithm can be devised:

nameConv ← List described in Section IV-C4a;

SWcompNameList ← doc.readCompName(”*”);

for each SWcompNameConv in

SWcompNameList (Length(Lnc) ≥ 1), do

SWcompNameSplit ←

split(SWcompNameConv.name, delim-
iter);

for each SWcompNamePart in

SWcompNameSplit (Length(Lsn) ≥ 1), do

if not exist SWcompNamePart0, then

RootElementNode ← SWcompNamePart;

else

ParentElementNode← RootElementNode;

for each SWcompNamePart in

ParentElementNode.ChildNodes

(Length(Lcn) ≥ 1),do

if not exist SWcompNamePart, then

ParentElementNode.addChildNode
←

SWcompNamePart;

else

ParentElementNode ←

ParentElementNode.ChildNodes;

End For;

This algorithm can be further extended to assist the user
to identify, search, and construct the names and display them
as a hierarchy. A procedure to navigate and simplify the
construction of such names will enable the user to quickly
build long names uniformly over the entire project.



34

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. SUMMARY OF ELEMENTS IN SCHEMA OF THE SAMPLE DATA
SET

Schema
Description Count
Total elements collection 171
Components list 23
Features vector 12

TABLE II. SUMMARY OF ELEMENTS IN PROJECT OF THE SAMPLE
DATA SET

Project
Description Count Category
Total elements 32909 all
Components 1583 23
Features within components 13353 12

D. Evaluation

A prototype of the architecture presented here has been
implemented. The case studies targeted the design of model-
based software components firstly in an industrial use case
where the project model was developed using the design
tool ESCAPE R© [24], and secondly in a case study targeting
the execution of specific paradigms based on the naming
convention of AUTOSAR R© [25].

The number of elements in schema and project of sample
data set that was used to evaluate the implementation is
summarized in Table I and Table II, respectively. It consists of
a total of 32,909 elements. Of these a total of 1583 elements
signify components which are categorized into 23 categories
that form the Component List is summarized in Table III,
where as a total of 13353 elements that signify features which
are categorized in 12 categories that form the Feature Vector
is summarized in Table IV.

Three different approaches were adopted to evaluate and
determine the performance with respect to matches.

TABLE III. COMPONENT LIST DERIVED FROM SCHEMA

Component List
Description Count
CompoundFunction 58
HWFunction 182
SWFunction 46
Parameter 6
StructureElement 50
SWBubbleType 130
ParameterType 5
ParameterTypeTerminal 8
IntDataType 14
FloatDataType 2
TimeDataType 1
AliasDataType 1
VariantDataType 4
HWFunctionType 46
TypeInterface 181
FunctionTypeTerminal 580
HWTypeTerminal 91
StructureElement 50
DeviceMapping 10
DeviceType 4
BusCAN 3
BusSegment 3
MappedFunction 108

1583

TABLE IV. FEATURE VECTOR DERIVED FROM SCHEMA

Feature Vector
Description Count
Name 7500
LongName 0
Description 0
ConnectionSegment 537
SourceTerminal 538
SinkTerminal 538
Interface 292
CompoundTerminal 269
HWTerminal 292
SWTerminal 302
Input 1543
DataType 1542

13353

Fig. 10. Occurrence graph for a single element specification set.

• Evaluation using a single element specification set
The first experiment was conducted on a single ele-
ment specification set. A group of ten sets formed the
input to determine the result set in both comprehensive
(global) search and selective search as illustrated in
Figure 10.
The notion of comprehensive search is used, when
scanning all occurrences of the specification set within
projects, irrespective of whether they are components
or features of those components. This can return a
result set that contains false matches.
The pattern of the results displayed similar behavior.

Observations
◦ The comprehensive search yields a result set

that contains every occurrence of the specifica-
tion set, even if these nodes do not characterize
a component.

◦ The nodes representing components yield a
result set which is somewhat realistic, though
these do not epitomize the complete set de-
sired. This is often observed when the com-
ponent nodes do not match, but their features
collectively match the specification set.



35

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

◦ These nodes along with the feature set yield a
more elaborate result set. A match contained
by any node in a set of features would result
in representing the component to which it
belongs.

Fig. 11. Occurrence graph for multiple element specification sets.

• Evaluation using multiple element specification set
The second experiment was conducted using one up to
seven element specification sets as a group illustrated
in Figure 11.

Observations
◦ The comprehensive search often yielded large

result sets, as it searches in individual nodes
that are treated as atomic.

◦ The exhibited behavior is similar to the vary-
ing size of the specification set. As observed
in Figure 11, the selective component-feature
search result set demonstrates a value when
the size of specification set exceeds 3, because
in this case the matches take place across the
boundary of the feature within the component.
On the other hand, the other methods return
null result set as the search is only within the
boundary of the element.

◦ For any given size of specification set, the
selective component-feature search returns a
much smaller result set and is more precise.

◦ Convergence is optimal with a specification set
of size 3. If the size of the specification is too
large, the result may be null for both methods
as shown in Figure 11.

• Evaluation using different starting points for ele-
ments in specification sets
The third experiment was conducted searching for ele-
ments within specification sets using different starting
points. Figure 12 depicts the result sets in comprehen-
sive search and selective search.
To determine the effect of different starting points,
a multiple-element specification set was used, where

Fig. 12. Occurrence graph for different starting points.

the orders of the elements were changed to obtain five
sets.
The result set for this exhibits the same pattern as the
two experiments above.

V. CONTRIBUTIONS OF THIS APPROACH

• Contribution 1: Model-based Variability Management
for Complex Embedded Networks.
The concept of Model-based Variability Management
is proposed in the paper, which contemplates on the
definition of a problem and specification of the cases.
Furthermore the concept specified is used for feature
extraction to extract spatial, functional, and name for
the realization of new functionality. These models has
been evaluated for data models in IV-D.

• Contribution 2: A generic approach to envisage the
identification of variability.
The primary mechanism for determining commonality,
allowing dynamic extension in the identification of
variability of software components which are embed-
ded in hierarchical model confirming to numerous
tools like ESCAPE R©, EAST-ADL R©, UML R© tools,
SysML R© specifications, and AUTOSAR R©. The ap-
proach is based on the adaption of a formal mathe-
matical model presented in the publication [10].

• Contribution 3: An approach to visualize, navigate
and simplify the unintelligible naming conventions.
Mapping highly indecipherable naming conventions
and transposing to hierarchical structures using pre-
determined delimiters, to assist the user to identify,
search, and construct these names, comfortably dis-
playing them as hierarchy, as well as having a proce-
dure to navigate and simplify the construction of such
names.



36

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. CONCLUSION

Managing variants is of utmost importance in today’s large
software bases as they reflect legal constraints, marketing
decisions, and development cycles. As these software bases
often grew from different sources and were developed by
different teams using different tools it is in many cases very
complicated if not nearly impossible to find artifacts that might
be variants, both for historical reasons as for development
purposes.

The algorithms presented here reflects both the capability to
match keywords and to reflect the structure that characterizes
a component. It can be applied directly to application engi-
neering for identification of software component variants. Fur-
thermore, it may also be applied for variability identification
of software components in core assets of domain engineering
in SPL. Our proposed method is capable of both aspects and
therefore helps the developer to find matches even in large and
heterogeneous databases.

The developed prototype is itself independent of a specific
tool as it works on textual descriptions that typically are
available in XML. The future work may comprise to extend
the concept to specify and verify reusable components.

REFERENCES

[1] A. A. Frank and E. Brenner, ”Variability identification by selective
targeting of significant nodes,” ICCGI 2012, The Seventh International
Multi-conference on Computing in the Global Information Technology,
2012, pp. 148-153.

[2] C. Ebert and J. Salecker, ”Guest editors’ introduction: embedded software
technologies and trends,” Software, IEEE, Vol 26(3), 2009, pp. 14-18.

[3] A. S. Tanenbaum and M. Van Steen, ”Distributed Systems: principles
and paradigms (2nd Edition),” Prentice Hall, 2006.

[4] C. Ebert and C. Jones, ”Embedded software: facts, figures, and future,”
Computer, IEEE Vol 42(4), 2009, pp. 42-52.

[5] D. Kum, G. Park, S. Lee, and W. Jung, ”AUTOSAR migration from
existing automotive software,” The Proceedings of International
Conference on Control, Automation and Systems, 2008, pp. 558–562.

[6] I. Foster and C. Kesselman, ”The Grid: blueprint for a new computing
infrastructure,” Elsevier Series in Grid Computing. Morgan Kaufmann,
second edition, 2004, pp. 672.

[7] B. L. Bayus, ”Are product life cycles really getting shorter?” Journal
of Product Innovation Management, Vol. 11 (4), 1994, pp. 300-308.

[8] S. Poole and M. Simon, ”Technological trends, product design and the
environment,” Design Studies, Vol. 18 (3), 1997, pp. 237-248.

[9] A. Ericsson and G. Erixon, ”Controlling design variants modular product
platforms,” Society of Manufacturing Engineers, Dearborn, MI, 1999.

[10] A. A. Frank and E. Brenner, ”A generic approach for the identification
of variability,” ENASE2012, 7th International Conference on Evaluation
of Novel Approaches to Software Engineering, 2012, pp. 167-172.

[11] T. W. Simpson, ”Product platform design and customization: status and
promise,” Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, Vol.18 (1), 2004, pp. 3-20.

[12] P. Child, R. Diederichs, F. H. Sanders, and S. Wisniowsk, ”The
management of complexity,” Sloan Management Review, Vol. 33 (1),
1991, pp. 73-80.

[13] P. Clements and L. Northrop, ”Software Product Lines: practices and
patterns,” Addison-Wesley, 2007.

[14] H. Gomaa and D. L. Webber, ”Modeling adaptive and evolvable Soft-
ware Product Lines using the variation point model,” The Proceedings
of the 37th Hawaii international Conference on System Sciences, 2004.

[15] E. Oliveira, I. Gimenes, and J. Maldonado, ”A variability management
process for software product lines,” CASCON 2005, The conference
of the Centre for Advanced Studies on Collaborative research, 2005, pp.
225 - 241.

[16] Product line hall of fame, ”http://splc.net/fame.html,” retrieved:
02,2013.

[17] F. Bachmann and P. C. Clements, ”Variability in Software Product
Lines,” Technical Report -CMU/SEI-2005-TR-012, 2005.

[18] J. Bosch, ”Design and use of Software Architectures: adopting and
evolving a product-line approach,” Addison-Wesley, 2000.

[19] L. A. Burgareli, Selma, S. S. Melnikoff, and G. V. Mauricio Ferreira,
”A variation mechanism based on Adaptive Object Model for Software
Product Line of Brazilian Satellite Launcher,” ECBS-EERC 2009, First
IEEE Eastern European Conference on the Engineering of Computer
Based Systems, 2009, pp. 24-31.

[20] A. A. Frank and E. Brenner, ”Model-based variability management for
complex embedded networks,” ICCGI 2010, The Fifth International
Multi-conference on Computing in the Global Information Technology,
2010, pp. 305-309.

[21] A. A. Frank and E. Brenner, ”Strategy for modeling variability in
configurable software,” PDES 2010, The 10th IFAC workshop on
Programmable Devices and Embedded Systems, 2010, pp. 88-91.

[22] P. Heymans and J. Trigaux, ”Software product line: state of the art,”
Technical report for PLENTY project, Institut d’Informatique FUNDP,
Namur, 2003.

[23] M. Galster and P. Avgeriou, ”Handling variability in software archi-
tecture: problem and implications,” WICSA 2011, Ninth Working
IEEE/IFIP Conference on Software Architecture, 2011, pp. 171-180.

[24] ESCAPE, ”http://www.gigatronik2.de/index.php?seite=escape
produktinfos de&navigation=3019&root=192&kanal=html,”

retrieved: 11,2012
[25] AUTOSAR, ”http://www.autosar.org/download/conferencedocs

/03 AUTOSAR Tutorial.pdf,” retrieved: 02,2013


