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Abstract—From viewpoints of complex network science and
biological foraging for communication networks, we propose a
system model of scalable self-organized geographical networks,
in which the proper positions of nodes and the network topol-
ogy are simultaneously determined according to population.
The fractal-like network structure is constructed by iterative
divisions of rectangles for load balancing across nodes, in order
to adapt to territory changes. In numerical simulations, we
show that, for searching targets concentrated around high
population areas, the naturally embedded fractal-like structure
by population has higher efficiency than the conventionally
optimal strategy on a square lattice. The adaptation of network
structure to the spatial distribution of realistic communication
requests gives such a high performance.
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I. INTRODUCTION

The size and complexity of communication and trans-
portation networks are growing year by year for the increase
of users, communication requests, mobility, and technolog-
ical innovations in real-world sensing or handling of rich
contents. For the design and control of growing networks,
scalability, adaptivity, and self-organization will be more
required in the near future. Here, we consider the adaptive
network structure [1] to be suitable for searching a target on
the network embedded in a space with population density,
because searching (or routing) is one of the important basic
tasks to establish a connected path on a network.

Many network infrastructures: power grids, airline net-
works, and the Internet, are embedded in a metric space,
and long-range links are relatively restricted [2], [3] for eco-
nomical reasons. The spatial distribution of nodes is neither
uniformly at random nor on a regular lattice, which is often
assumed in the conventional network models. In real data, a
population density is mapped to the number of router nodes
on Earth [2]. Similar spatially inhomogeneous distributions
of nodes are found in air transportation networks [4] and in
mobile communication networks [5]. Thus, it is not trivial
how to locate nodes within a space using patterns of points.
Point processes in spatial statistics [6] provide models for

irregular patterns of points in urban planing, astronomy,
forestry, or ecology, such as spatial distributions of rainfall,
germinations, plants, and animals. The processes assume
homogeneous Poisson and Gibbs distributions to generate
a pattern of random packing or independent clustering, and
to estimate parameters of competitive potential functions in
a territory model for a given statistical data, respectively.
However, rather than random pattern and statistical estima-
tion, we focus on a self-organized network infrastructure by
taking into account realistic spatial distributions of nodes and
communication requests. In particular, we aim at developing
adaptive and scalable networks by adding the links between
proximity nodes according to the increase of communication
requests. Because a spatial distribution of communication
requests affects the proper positions of nodes, which control
both the load of requests assigned to each node (e.g.,
assigned at the nearest access point of node as a base-station
from a user) and the communication efficiency depending on
the selection of routing paths.

Thus, we propose a scalable self-organized geographical
network, considering an interrelation of routing algorithms
in computer science, biological foraging, and complex net-
work science. Complex network science is a groundbreaking
science that has emerged from a physical society about ten
years ago for understanding the common network structures
in social, technological, and biological systems [7], [8], [9],
and the fundamental generation mechanisms. We show that
the naturally embedded fractal-like structure in the proposed
network [10] is suitable for searching inhomogeneously
distributed targets more efficiently than the square lattice
tracked by the Lévy flights, which is known as an optimal
biological search for homogeneously distributed targets [11].
Moreover, we investigate the performance for a cooperative
routing method in the fractal-like network, as an extension
of the conference paper [1]. We emphasize that a spatially
inhomogeneous distribution of communication requests is
important [10] for a realistic situation according to pop-
ulation density, and that an adaptive network structure to
population is self-organized.

The organization of this paper is as follows. For starting
a discussion, in Section II, we mention the miminimum
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necessity of related works. Because we treat several different
topics and the interrelations of network self-organization,
routing methods by a determinant or stochastic walker, bio-
logical search strategy, and cooperative routing by multiple
walkers. To avoid confusion, each detail is explained in
the most related section. In Section III, we briefly review
the conventional geographical network models, and propose
a new model based on iterative divisions of rectangles.
In Section IV, we show the basic search performance of
a random walk in the fractal-like network structure for
targets at unknown positions. In Section V, we investigate
the routing property by using cooperative agents on the
network structure, comparing that with the Lévy flights on
a square lattice. In Section VI, we summarize these results
and mention further studies.

II. RELATED WORK FOR ROUTING AND SEARCHING

For routing in ad hoc networks, global information, e.g.,
a routing table in the Internet, cannot be applied, because
many nodes and connections between them are likely to
change over time. Although there are many protocols [12],
[13] for energy saving, mobile networks, GIS-based location
awareness, QoS, and wireless sensor devices, we restrict
strongly related ones to our discussion.

In early works on computer science, some decentralized
routing methods were developed to reduce energy consump-
tion in sensor or mobile networks. However they lead to the
failure of guaranteed delivery [14]; in the flooding algorithm,
multiple redundant copies of a message are sent and cause
congestion, while greedy and compass routings may occa-
sionally fall into infinite loops or into a dead end. We do not
need to be particular about these simple and energy saving
methods in the current and future technologies. At least, it is
better to guarantee the delivery. In complex network science,
other no-failure efficient decentralized routing methods have
been also proposed. The stochastic methods by using local
information of the node degrees and other measures are
called preferential [15] and congestion-aware [16], [17]
routings as extensions of a uniformly random walk.

Decentralized routing has a potential performance to
search a target whose position is unknown in advance. Since
this situation looks like foraging, the biological strategy may
be useful for the efficient search. We are interested in a
relation between the search and the routing on a spatially
inhomogeneous network structure according to population.
Many experimental observations for biological foraging
found the evidence in favor of anomalous diffusion in the
movement of insects, fishes, birds, mammals and human
being [11]. As a consistent result, it has been theoretically
analyzed for a continuous space model that an inverse square
distribution of flight lengths is an optimal strategy to search
sparsely and randomly located targets on a homogeneous
space [18]. The discrete space models on a regular lattice
[19] and the defective one [20] are also discussed. Such

behavior is called Lévy flight characterized by a distribution
function P (lij) ∼ l−µ

ij with 1 < µ ≤ 3, where lij is
a flight length between nodes i and j in the stochastic
movement for any direction. The values of µ ≥ 3 lead
to Brownian motions, while µ → 1 to ballistic motions.
The optimal case is µ ≈ 2 for maximizing the efficiency
of search. Here, we assume that the mobility of a node
is ignored due to a sufficiently slow speed in compari-
son with the communication process. In current or future
technologies, wide-area wireless connections by directional
beams will be possible, the modeling of unit disk graph
with a constant transmission range is not necessary. Thus,
as a system model, we consider efficient search and routing
on an adaptive fractal-like network structure to spatially
inhomogeneous communication requests.
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(c) Geometric Attach.

Figure 1. Typical construction methods of geographical networks. At
each time step, a new node is added at a random position. Then, (a)
the new node i is linked to an existing node j chosen with a probability
Πj ∝ d−α

ij pop
β
j k

γ
j , where α, β, and γ are real parameters, dij denotes

the distance between nodes i and j, popj denotes the population in the
node j’s territory, and kj is its degree. The territory is a merged area of
mesh blocks, which nearest access node is j. The gradation (from while,
yellow, orange, to red) of background mesh blocks on a L × L square
lattice is proportional to the value of population given from a census data.
The case of α = β = 0 and γ > 0 is the degree based model, and the
case of α, γ > 0 and β = 0 is a combination of degree and distance based
model. On the other hand, the new node (D or E) is set at random (b) in a
chosen triangle or (c) outside of a chosen edge, and linked to (b) the three
nodes of the randomly chosen triangle or (c) both ends of the randomly
chosen edge. The initial configuration consists of triangles.

III. GEOGRAPHICAL NETWORKS

We introduce geographical network models proposed in
complex network science, which aims to elucidate a fun-
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damental mechanism for generating an efficient network
structure in a distributed manner.

A. Conventional Models

Geographical constructions of complex networks have
been proposed so far. Figure 1 (a) and (b)(c) shows the
typical methods. It is well known that the preferential
attachment [7] is fundamental to construct a scale-free
(SF) network that follows a power law degree distribution
found in many real systems [21], [22]. As a generation
mechanism of geographical SF networks, a spatially pref-
erential attachment is applied in some extensions [23], [24],
[25], [26], [27] from the topological degree based model
[28] to a combination of degree and distance based model
(Figure 1(a)). However, this construction tends to have
many long links, which are wasteful. The original degree
based preferential attachment is known as “rich gets richer”
rule that means a higher degree node tends to get more
links. It is a surprising thing that inhomogeneous complex
network structures emerge from such a simple rule. On the
other hand, geometric construction methods have also been
proposed (Figure 1(b)(c)). They have both small-world [29]
and SF structures generated by a recursive growing rule
for the division of a chosen triangle [30], [31], [32], [33]
or for the attachment aiming at a chosen edge [34], [35],
[36] in random or hierarchical selections. Here, small-world
means that the average path length counted by hops between
two nodes is very small as O(log N) even in a large size
N defined by the total number of nodes. These geometric
models are proper for the analysis of degree distribution
due to the regularly recursive generation process. Although
the position of a newly added node is basically free as far
as the geometric operations are possible, it has no relation
to population. Considering the effects of population in a
geographical network is necessary to self-organize a spatial
distribution of nodes that is suitable for socioeconomic
communication and transportation requests. Moreover, in
these geometric methods, narrow triangles with long links
tend to be constructed, and adding only one node per step
may lead to exclude other topologies from the SF structure.
Unfortunately, SF networks are extremely vulnerable against
the intentional hub attacks [37]. We should develop other
models of self-organized networks distinct from the con-
ventional models; e.g., a better network without long links
can be constructed by subdivisions of equilateral triangles,
which is a well balanced (neither fat nor thin) shape for any
directions as shown in Figure 2(a). In the network without
long links, a node with a small degree does not become hub,
therefore the attack vulnerability of connectivity disappears.

B. Generalized MSQ Network

Thus, we have considered the multi-scale quartered
(MSQ) network model [38], [39]. It is based on a stochastic
construction by a self-similar tiling of primitive shape.

(a) triangle

(b) square

Figure 2. Basic process of the division.

Figure 2(a)(b) shows the basic process of division in the
tiling of equilateral triangle or square. At each time step,
a face is chosen proportionally to the population in the
space. Then, the chosen face is divided into four smaller
equilateral triangles or squares. This process is repeated. The
MSQ networks without hub nodes have several advantages
such as the strong robustness of connectivity (due to the
small degrees) against node removals by random failures
and intentional attacks, the bounded short path as t = 2-
spanner [40], and the efficient face routing by using only
local information. The t-spanner means that the length of
shortest distance path (defined by the sum of link lengths on
the path) between nodes u and v is bounded at most t times
the Euclidean distance duv of the corresponding straight
line between them. In the face routing, the shortest distance
path can be found on the edges of faces that intersect the
straight line, since the MSQ network is planner, which is
also suitable for avoiding the interference among wireless
beams. Furthermore, the MSQ networks are more efficient
(economic) with shorter link lengths and more suitable
(tolerant) with lower load for avoiding traffic congestion [39]
than the state-of-the-art geometric growing networks [30],
[31], [32], [33], [34], [35], [36] and the spatially preferential
attachment models [23], [24], [25], [26], [27] with various
topologies ranging from river to SF geographical networks.
However, in the MSQ networks, the position of a new node
is restricted on the half-point of an edge of the chosen face,
and the link length is proportional to ( 1

2
)H where H is the

depth number of iterative divisions. Thus, from square to
rectangle, we generalize the division procedure as follows.
Figure 3 illustrates it.

Step 0: Set an initial square, in which the candidates of
division axes are the segments of an L×L lattice
(Figure 3(a)).

Step 1: At each time step, a face is chosen with a
probability proportional to the population counted
in the face covered by mesh blocks of a census
data (Figure 3(b)).

Step 2: Four smaller rectangles are created from the
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division of the chosen rectangle by horizontal and
vertical axes. For the division, two axes are chosen
by that their cross point is the nearest to the
population barycenter of the face (Figure 3(c)).

Step 3: Return to Step 1, while the network size N does
not exceed a given size.

Note that the maximum size Nmax depends on the value
of L; the iteration of division is finitely stopped, since the
extreme rectangle can not be divided any longer when one
of the edge lengths of rectangle is the initial lattice’s unit
length. We use the population data on a map in 80km2 of
160 × 160 mesh blocks (L = 160) provided by the Japan
Statistical Association. Of course, other data is possible.

(a) Initial square 

(b) chosen face (c) subdivision

Figure 3. Division procedure in generating a generalized MSQ network. (a)
Initial configuration: the outer square of 4 nodes and 4 links. For division,
dashed-lines represent the segments defined by the edges of L × L mesh
blocks. To each mesh block whose right-bottom corner is at 1 ≤ x ≤ L
and 1 ≤ y ≤ L, a value of population popx,y is assigned by a census
data. (b) As an example, a (shaded) face f is chosen with a probability
∝

∑
x,y∈Af

popx,y at the 4th time step. Where Af denotes the set of
x-y coordinate values included in the face f . (c) Then, the horizontal and
vertical axes, which cross point is nearest to the population varycenter
(black filled circle) of face f , are selected, and divide the chosen face into
four smaller ones.

It is worth noting that the positions of nodes and the
network topology are simultaneously determined by the divi-
sions of faces within the fractal-like structure. There exists
a mixture of sparse and dense parts of nodes with small
and large faces. Moreover, while the network is growing,
the divisions of faces perform a load balancing of nodes
in their adaptively changed territories for the increase of
population. Such a network is constructed according to a

spatially inhomogeneous distribution of population, which is
proportional to communication requests in a realistic space.
In the following, we show the naturally embedded fractal-
like structure is suitable for searching targets. Moreover, we
apply the good property to a routing task in Section V.

IV. BASIC SEARCH PERFORMANCE

As a preliminary, we consider the preferential routing [15]
which is also called α-random walk [41]; The forwarding
node j is chosen proportionally to Kα

j by a walker in the
connected one hop neighbors Ni of its resident node i of a
walker (packet), where Kj denotes the degree of node j and
α is a real parameter. We assume that the start position of
walker is set to the nearest node to the population barycenter
of the initial square. Figure 4 shows the length distribution
of visited links. The dashed lines in log-log plot suggest a
power law, for which the exponents estimated as the slopes
by a mean-square-error method are 2.336, 2.315, and 2.296
for α = 1, 0,−1, respectively. These values are close to
the optimal exponent µ ≈ 2 [18], [19] in the Lévy flight
on a square lattice. The exponents for the α-random walks
slightly increase as the network size N becomes larger.
Here, the case of α = 0 shows the length distribution of
existing links in a network. Since the stationary probability
of incoming at node j is P∞

j ∝ K1+α
j [42], especially at

α = 0, each of the connected links to j is chosen at random
by the probability 1/Kj for the leaving from j, therefore a
walker visits each link at the same number. Figure 5 shows
that the frequency of visited links by the α-random walks
at α = ±1 is different even for the degrees 3 and 4 in a
generalized MSQ network. On the thick lines, a walker tends
to visit high population (diagonal) areas colored by orange
and red in the case of α = 1, while it tends to visit low
population peripheral (corner) areas in the case of α = −1.
Thus, the case of α = 1 is expected to selectively cover high
population areas, which has a lot of communication requests
in cities. Note that the absolute value of α should be not too
large, since a walker is trapped a long time between high/low
degree nodes as the phenomena does not contribute to the
search of targets.

We investigate the search efficiency for the α-random
walk on a generalized MSQ network, and compare the
efficiency with that for Lévy flights on a L × L square
lattice with periodic boundary conditions [19]. As shown in
Figure 6, a walker constantly looks for targets (destination
nodes of packets) scanning on a link between two nodes
in the generalized MSQ network. If a target exists in the
vision area of rv for the up/down/left/right directions from
the center position, a walker gets it and return to the position
on the link for continuing the search on the same direction.
When more than one target exist in the area, a walker
gets all of them successively in each direction, and return
to the position. Only at a node of rectangle, the search
direction is changeable along one of the connected links.
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Figure 4. Length distribution of visited links on generalized MSQ networks
by an α-random walker in 106 time steps. The marks of blue diamond,
black circle, and red triangle correspond to the cases of α = 1, 0,−1,
respectively. These results are obtained by the average of 100 networks for
N = 2000.

Thus, the search is restricted on the edges of rectangle in
the generalized MSQ network. While the search direction of
a Lévy flight on the square lattice [19] is selectable from four
directions of horizontal and vertical at all times after getting
a target in the scanning with the vision area of rv , moreover,
the length of scan follows P (lij) ∼ l−µ

ij , lij > rv . We set a
target at the position chosen proportionally to the population
around a cross point in (L + 1)2, for which the population
is defined by the average of four values in its contact mesh
regions. In particular, we discuss the destructive case [19]:
once a target is detected by a walker, then it is removed and
a new target is created at a different position chosen with
the above probability. Similar results to below in this section
are obtained for the non-destructive case [10].

The search efficiency [18], [19], [20] is defined by

η
def
=

1

M

M∑

m=1

Ns

Lm

, (1)

λ
def
=

(L + 1)2

Nt2rv

, (2)

where Lm denotes the traversed distance counted by the
lattice’s unit length until detecting Ns = 50 targets from the
total Nt targets in the mth run. We consider a variety of
Nt = 60, 100, 200, 300, 400, and 500 for investigating the
dependency of the search efficiency on the number Nt of
targets. The quantity λ represents the mean interval between
two targets for the scaling of efficiency by target density. We
set M = 103 and rv = 1 for the convenience of simulation.
Intuitively, the sparse and dense structures according to the

Figure 5. Visualization examples of the visited links by α-random walks
at α = 1 (Top) and α = −1 (Bottom) on a generalized MSQ network
for N = 500. The thickness of link indicates the frequency of visiting in
106 time steps. From light to dark: white, yellow, and orange to red, the
color gradation on a mesh block is proportionally assigned to the population
data. Many nodes represented as cross points of links concentrate on high
population (dark: orange and red) areas on the diagonal direction. In the
upper left and lower right of square, corner triangle areas lighted by almost
white are the sea of Japan and the Hakusan mountain range.

network size N have the advantage and disadvantage in
order to raise the search efficiency in the generalized MSQ
network. Although the scanned areas are limited by some
large rectangle holes as N is small, a walker preferably visits
the high population areas that include many targets. While
the scanned areas are densely covered as N is large, the
search direction is constrained on long links of a collapse
rectangle, therefore it is rather hard for a walker to escape
from a local area in which targets are a few.

We compare the search efficiency of α-random walks on
the generalized MSQ networks with that of the Lévy flights
on the square lattice. Figure 7 shows typical trajectories until
detecting Ns = 50 targets. On the generalized MSQ network
and the square lattice, a walker tends to cover a local area
with high population and a wider area, respectively. Without
wandering in peripheral wasteful areas, the generalized MSQ
network has a more efficient structure than the square lattice
for detecting many targets concentrated on the diagonal
areas. Here the exponent µ = 1.8 of Lévy flight corresponds
to the slope of P (lij) in the generalized MSQ network at the
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x
target

rv

Figure 6. Searching in a generalized MSQ network. Each blue square
represents a vision area, and is scanned (from left to right, from top to
bottom in this example) by the walker on an edge between two nodes
(denoted by circles) of a rectangle. For a target in the area, the walker
moves to get it and returns on the link.

Figure 7. Trajectories of a random walk (Top) at α = 0 on a generalized
MSQ network for N = 500 and of a Lévy flight (Bottom) for µ = 1.8 on
the square lattice with periodic boundary conditions until detecting Ns =
50 targets in Nt = 200. Black circle, red circles, and gray rectangle marks
denote the start point at the population barycenter, the existing targets, and
the removed targets after the detections, respectively. Note that a walker
can travel back and forth on a link in the connected path.

optimal size N = 500 for the search efficiency. As shown in
Figure 8(a)(b), the generalized MSQ networks of N = 500
(the diamond, circle, and triangle marks are sticking out
at the left) have higher efficiency than the square lattice
(the rectangle mark). For the cases with many nodes of
N ≥ 1000, the efficiency decreases more rapidly than that

of the Lévy flight, however this phenomenon means that an
extremely large network size is wasteful and unnecessary to
get a high search performance in generalized MSQ networks.
When the number Nt of targets increases in cases from
Figure 8(a) to (b), the curves are shifted up, especially for the
generalized MSQ networks. The peak value for Nt = 200
is larger than the optimal case of the Lévy flight at µ = 2.0.
Therefore denser targets to that extent around Nt = 200 is
suitable, although a case of larger Nt > 300 brings down
the search efficiency even for inhomogeneously distributed
targets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1  1.5  2  2.5  3

λη

µ

(a) Nt = 100
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Figure 8. The scaled efficiency λη vs. the exponent µ. The marks of blue
diamond, black circle, and red triangle correspond to the cases of α =
1, 0,−1, respectively, in which the increasing values of µ are estimated for
generalized MSQ networks at N = 500, 1000, 2000, 3000, 4000, 5000,
and 5649: Nmax from left to right. The magenta rectangle corresponds to
the case of Lévy flights on the square lattice. These results are obtained by
the average of 100 networks.

In more details, Figure 9 shows the effect of the number
Nt of targets on the search efficiency λη. The efficiency
firstly increases, then reaches at a peak, and finally decreases
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Figure 9. The number Nt of targets vs. the scaled efficiency λη of α-
random walks on the generalized MSQ networks for N = 500 and of the
corresponding Lévy flights for µ = 1.8 (see Figure 8) on the square lattice.
The maximum (optimal) efficiency appears in Nt = 200 ∼ 300. These
results are obtained by the average of 100 networks.

for setting more targets. This up-down phenomenon is
caused by a trade-off between Lm and Nt in Eqs. (1) and (2).
Please note that the case of size N < 500 is omitted for the
generalized MSQ networks. Because sometimes the process
for detecting targets until Ns is not completed, moreover, the
variety of link lengths is too little to estimate the exponent
as a slope of P (lij) in the log-log scale. In other words, the
estimation is inaccurate because of the short linear part.

V. ROUTING BY MESSAGE FERRIES

When a communication network is often disconnected but
resilient due to node mobility, limited radio power, node or
link failure, etc., it is known as a Delay/Disruption Tolerant
Network (DTN) where a mobile device or software agent
temporary stores and carries local information for forward-
ing messages until an end-to-end route is re-established
or re-generated. It is used in disasters, battlefields, and
vehicular communications. There are many protocols in the
concept of DTN routings [43], [44]. A message ferrying
scheme is one of the DTN routing strategies, in which a
device or agent called ferry stores, carries, and forwards
messages in partitioned ad hoc networks. It is classified
into a single ferry [45] or multiple ferries, stationary or
mobile node, node-initiated or ferry-initiated moving to
communicate [46], single-route or multi-routes, and node
relaying or ferry relaying [47] according to the protocol
components: a movement of ferry, interactions between node
and ferry or between ferries, how much and which type of
local information is stored in a ferry or at a node, and so
on.

We focus on cooperative multiple ferries as software
agents, because the ferries interact asynchronously through
a mediator node sharing partial information or exchanging it
for their routing tasks. This method can avoid the problem
of very rare encounter between ferries because of their
random walks. During a routing, we assume a network is
fixed to distinguish the effects by the network structure
and by the disconnections on the performance, since we
consider the network structure is a primal factor to control
a ferry’s movement. In addition, we distinguish between
how to determine a route and how to deliver a message
(data packets), thus we do not care whether or not a ferry
should move with its message. The appropriative delivery
depends on the ability of devices, the amount of message,
and communication environment. However, our approach
will be applicable to an opportunity networking with node
mobility. Note that a Lévy walk of a single ferry is applied
for searching on a continuous space with the Euclidean
distance in order to maximize the opportunity of encounter
with the destinations of mobile nodes [48], though the
problem setting is different from ours. In the following, we
consider only the case of α = 0 in the α-random walks, to
simplify the discussion, since the difference for the cases of
α = ±1 is small.

A. Multiple Message Ferries Routing

We explain the outline of routing algorithm. Note that
a ferry has no vision area in the routing problem unlike
the searching problem discussed in the previous section. In
addition, a walker moves to get many targets in the searching
problem, while multiple ferries move to cooperatively find
paths between source and destination nodes in the routing
problem.

Initially, there is no label at each node. Communication
requests by different pairs of source s and destination d are
labeled at a node. In other words, as a mediator between
ferries, each node handles more than one requests that are
carried from ferries. Similarly, a ferry can carry more than
one requests. Without global information, a node visited by
a ferry A at time t memorizes the node nA(t − 1) for each
ferry in the connected neighbors, where nA(t − 1) denotes
the visited node by A at t − 1. While a ferry memorizes a
set of passed links as the history in a limited size of buffer.
Thus, using only partial information, a path between any
two nodes is found as follows.

1) Comm. Request: A pair of s and d nodes is cho-
sen proportionally to the population counted in the
territory of each node (defined by the nearest access
point) for a census data referred in Subsection III. The
generation rate R is the number of generated s-d pairs
in the network per time step.
After the generation at node s, the communication
request REQ(s, d) is put on hold until a ferry encoun-
ters it for the carrying, because each node is fixed.



44

International Journal on Advances in Networks and Services, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Ferry’s modes. (Top) In free-mode, a ferry A encounters the
source node s for a request: REQ(s, d) on its walk. (Bottom) In search-
mode after the encounter, the ferry A carries the request REQ(s, d) to
other nodes, e.g., i, for searching the destination node d.

2) Ferry’s Action: At each time step, each ferry walks
at random on a generalized MSQ network, storing the
passed links into its stack-based buffer. Using a set of
the stored links, it interacts with the visited node as
mentioned in 3).
A ferry has two modes: free and search as shown in
Figure 10.

• Free-Mode: This mode is preliminary to search-
ing, but may contribute to a cooperation between
ferries: please see 4). When a ferry of free-
mode encounters a source node s or requests
handled and labeled at a visiting node, the mode
is changed to search-mode.

• Search-Mode: A ferry of search-mode carries a
set {REQ(s, d)} of requests to a node i through
the random walk.
Moreover the ferry A asks whether or not the
node i knows the REQ(s, d) in its label. If the
answer is “NO,” the visiting node i is labeled by
the REQA(s, d). Here, the suffix A is added to
distinguish which ferry carries the REQ(s, d) for
backtracking in the path finding. This inquiry is
tested for all requests carried by the ferry.
Of course, if the visiting node is d, then a path
between s and d is found: please see 5).

3) Node Mediator: A ferry interacts with the visiting
node at a time. For each request REQ(s′, d′) handled
at the node, the node asks whether or not the ferry has
a link to d′ in the buffer stored as the visiting history.
If the answer is “YES,” go to 4).

Some requests which the ferry does not have are
copied from the node to the ferry for the carrying.

4) Cooperation: As shown in Figure 11, when a ferry
B, which has a link to d in its buffer, visits a node
i labeled by REQA(s, d), a path between s and d
is found. Because the existence of label REQA(s, d)
means that the node i is already visited by another
ferry A, which comes from s (In more detail, a path
from i to s is obtained from the node’s information
through switching ferries A, C, . . ., Z, which carry
the REQ(s, d) via intermediate nodes from s to i′,
from i′ to i′′, . . ., and to i.).

5) Path Finding: A path between s and d is found in
a subgraph, which consists of the links (including a
link to the destination d) in the ferry’s buffer and the
backward connections of {nA(t − 1)} nodes for the
ferry A until reaching the source s.
If a ferry A starting from s visited d, then the ferry’s
buffer is unnecessary for the path finding. In other
words, this case has no cooperation, or is equivalent
to the case of zero buffer size.

After the find of a path between s and d, the multiple labels
of REQA(s, d), REQB(s, d), . . . by ferries A, B, . . . at a
node are deleted in a distributed manner, if the forward
connections of nA(t+1), nB(t+1), . . . nodes are memorized
for each related ferry A, B, . . . to the request REQ(s, d).

We investigate the average time step and movement
distance until a ferry encounters a source node s from the
generation of REQ(s, d). On a movement, the distance
means the sum of link lengths or flight lengths counted by
the unit of the square lattice. Figure 12(a)(b) shows that
both the time and the distance decrease as the number m
of ferries increase. The slope near 1/m is consistent with
the effect of speed-up in parallel walks [49]. Figure 13(a)(b)
shows the average time and distance for a path finding. They
roughly follow the 1/m property, but their slopes depend on
the buffer sizes. As the buffer ratio becomes large, both the
time and the distance decrease by the effect of cooperation
between ferries. These results do not depend on the size N
and the packet generation ratio R.

Table I
RELATION OF THE NETWORK SIZE N AND THE BUFFER SIZE FOR THE

RATIO BR:2.0. NOTE THAT THE TOTAL NUMBER OF LINKS IS
PROPORTIONAL TO N IN A GENERALIZED MSQ NETWORK.

N buffer size
500 165

1000 333
2000 673
3000 1019
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Figure 11. Cooperation of two ferries. When the ferry B visits a node
i, which was visited by the ferry A with the request REQ(s, d), a path
between s and d is found from the concatenation of A’s information and
B’s information in the situations: (Top) 1: The ferry B notifies the visiting
experience at d to the node i, (Middel) 2: It backtracks the links from i to s
on the red line by using {nA(t−1)} in the token relay via nodes, (Bottom)
3: From the subgraph that consists of the above gathered links and the B’s
link set, a path between s and d is calculated, e.g, by a criterion of the
shortest distance. In this case, the ferry B does not have the REQ(s, d),
however it already visited d and stored the set of links connected to d into
its buffer.

B. Comparison with Lévy Flights

In the cooperative message ferries scheme, we compare
the performance of routing by random walks on a gen-
eralized MSQ network with that by Lévy flights on a
L×L square lattice with periodic boundary conditions. The
lattice is a background virtual space to determine a ferry’s
movement according to the Lévy flight. Note that only part
2) Ferry’ Action is replaced in the routing algorithm for
the Lévy flight version.

We investigate the average behavior over 50 realizations
for each case of m = 20 ferries (in order to save computation
time) in the combinations of the exponent µ of Lévy flights
or the corresponding size of generalized MSQ networks and
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Figure 12. Average time and distance over 50 realizations until a ferry of
free-mode encounters a node s at which a request REQ(s, d) is generated.
BR denotes the buffer ratio as the maximum stored size of links in a ferry
to the total number of links in the network. Although the encounter time
does not depend on the values of BR, because a cooperation of ferries
does not start, they are marked to be compared with the subsequent result
in Figure 13. Here, the generation rate of requests is R = 0.01, and the
network size is N = 1000.

the buffer ratio (BR). The following simulation conditions
are applied in both cases of random walks on a generalized
MSQ network and Lévy flights on the lattice. For the
generation of a communication request with rate R = 0.01, a
s or d node is not able to set all lattice points but restricted
on the node of a generalized MSQ network, and chosen
proportionally to the population in the territory of each node
in the network. Because a ferry that walks on the network
can not visit any lattice point, in contrast, a ferry that
moves according to the Lévy flight can visit any node in the
network. The BR is set as 0.2 based on the results in Figures
12 and 13. Note that a larger buffer size tends to be effective
in the routing in both short time and distance, however it
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Figure 13. Average time and distance over 50 realizations until a ferry
finds a path between s and d from the encounter with a request REQ(s, d).
BR denotes the buffer ratio as the maximum stored size of links in a ferry
to the total number of links in the network. Here, the generation rate of
requests is R = 0.01, and the network size is N = 1000.

gives more load for a ferry to store and carry the information
of a large number of links. Table I shows the relation of the
network size N and the buffer size for the same BR:0.2. In
the generalized MSQ networks, the slopes of P (lij) in log-
log plot correspond to µ = 1.414, 2.248, 2.692, and 3.034
for N = 500, 1000, 2000, and 3000, respectively. These
values of µ slightly differ from the example shown in Section
IV because of using other area in the census data, however
the obtained results are consistent.

Figure 14(a)(b) shows the average time step and distance
until a ferry of free mode encounters a node s. The time
step increases as the value of µ is larger, since the length
of movement in one hop tends to be small on the dense
network and on a Brownian motion. By the above effect,
the distance also increases as the value of µ is larger. In
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Figure 14. Average encounter time and distance over 50 realizations for
GMSQ: random walks on the generalized MSQ networks and LEVY: Lévy
flighst on the lattice. Inset shows the case of spatially sparser distributions
of communication requests for LEVY. The lines of GMSQ are duplicated.

the Lévy flights, the part of extremely large distance for
µ < 2 is due to a ballistic motion, and the shortest distance
is obtained around µ = 2.4. Remember that such a U-shape
graph of µ vs. distance is obtained as the inverse U-shape
graph of µ vs. scaled efficiency in Figure 8. Here, for the
Lévy flights of µ = 1.6 ∼ 2.8, the positions of s-d nodes are
set at the nodes of the generalized MSQ networks of a large
size N = 3000, while they are set at the nodes of them of a
small size N = 500 in Inset. We call these positions POS-
N3000 and POS-N500, corresponding to spatially dense
and sparse distributions of communication requests. Figure
15(a)(b) shows the average time step and distance until a
ferry finds a path between s and d from the encounter with
REQ(s, d). Similar behavior to Figure 14(a)(b) is obtained,
although there are dependences on the BR; The time step
and distance become shorter, as the BR is larger. In both
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Figure 15. Average search time and distance over 50 realizations for
GMSQ: random walks on the generalized MSQ networks and LEVY: Lévy
flights on the lattice. Inset shows the case of spatially sparser distributions
of communication requests for LEVY. The lines of GMSQ are duplicated.

Figures 14 and 15, we emphasize that the cases of GMSQ
show shorter time and distance than the cases of LEVY.
The most efficient size is N = 500 corresponding to the
smallest µ plotted at the left end in the figures. We note
that, depending on the situation of movements of ferries and
locations of destination nodes, the links memorized in the
buffer of a ferry maybe not work well, since hundreds of
times are spent for the encounter and the search, especially
for a large µ.

The ratio of the path lengths obtained by the routing and
by the shortest distance on the generalized MSQ network is
between 1.1 and 1.8 as shown in Figure 16(a)(b). For the
reason that the case for BR:0.2 is worse than the case for
BR:0 without cooperations between ferries, the higher ratio
of Ls/Lt is caused from less information used for finding a
path as shown in Figure 17(a)(b). In addition, Figure 17(a)(b)

shows that the average number of used links in the subgraph
for calculating a path is between 20% and 40% of the total
number of links. There is a trade-off: In Figure 17(a) for
BR:0.2, GMSQ is slightly better than LEVY for using less
information, however the path length is longer as shown in
Figure 16(a). Figure 18(a)(b) shows that the average number
of requests carried by a ferry is less than 6 in the cases of
GMSQ, and smaller than that in the cases of LEVY. Thus,
in the cases of GMSQ for BR:0.2, a routing path is obtained
at most 1.4 times longer than the shortest distance by using
only partial information about 20% of the total number of
links, in average.
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Figure 16. Ratio of the path length Ls obtained by the routing and the
shortest distance path Lt. For LEVY, the spatially (a) sparse and (b) dense
distributions of communication requests are generated on the nodes of the
generalized MSQ networks for N = 500 and N = 3000, respectively.
Here, Ls is between 80 and 120, therefore Lt is in the same order.

VI. CONCLUSION

We have considered a scalable self-organized geograph-
ical network by iterative divisions of rectangles for load
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Figure 17. Rate of partial information: (the average number of used links in
the subgraph for calculating a path) divided by (the total number of links).
For LEVY, the communication requests are generated on the spatially (a)
sparse and (b) dense networks.

balancing of nodes in the adaptive change of their terri-
tories according to the increase of communication requests.
In particular, the spatially inhomogeneous distributions of
population and the corresponding positions of nodes are
important. For the proposed networks [1], [10], we have
investigated the search efficiency in the destructive case
[19] with new creations of target after the detections, and
shown that the α-random walks [17], [41] on the networks
within a small size have higher search efficiency than the
Lévy flights known as the optimal strategy [18], [19] for
homogeneously distributed targets on the square lattice with
periodic boundary conditions. One reason for the better
performance is the anisotropic covering of high population
areas.

Furthermore, we apply the good property to the decen-
tralized routing by cooperative message ferries. The key
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Figure 18. Average number of communication requests carried by a ferry.
For LEVY, the requests are generated on the spatially (a) sparse and (b)
dense networks.

point is also the adaptation of network structure to the
spatial distributions of source and destination which are
inhomogeneous according to a population data. As the
merit, by using only a simple protocol based on random
walks, the naturally embedded fractal-like sparse structure
contributes to the search of targets and to the find of a path
efficiently in such a realistic situation of spatially distributed
communication request.

However, we must take care of the size. Our method on
the generalized MSQ networks within a small size shows
better performance in both time and distance than the Lévy
flight version using only partial information of links. For
the scale up issues, since the performance goes down as
the size is larger, we should make various ideas to keep
the appropriate size (N ≈ 500), e.g., by the enhancement of
processing power at a node, instead of distribution of load in
a large size. The performance for both encounter and search
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times will be improved by considering further methods of
how to cooperate with ferries and nodes.

On the other hand, the message ferrying scheme is gener-
ally applicable to a temporal network, in which the positions
of nodes and connections between them are changed in a
short time. It is interesting to study such cases for the gener-
alized MSQ networks with temporal disconnections. Since a
human mobility pattern resembles to the Lévy flights, a good
performance of the proposed cooperative routing will be
expected for a temporal network that consists of multi-hop
mobile communication equipments, although how to treat
the temporal disconnections caused from node mobility will
be one of the important issues. Instead of the message ferry
scheme, it is worth to investigate the performance of other
DTN routing methods on the generalized MSQ network. For
more rigorous discussions about the performance, statistical
tests [50] may be useful to clarify the applicability of the
proposed method. The limitation for the applicability will
also depend on future technologies of wireless devices.
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