
194

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Application-Aware Bandwidth Scheduling for Data Center Networks

Andrew Lester1 Yongning Tang2 Tibor Gyires2
1Cloud Networking Group. Cisco Systems, Inc. - San Jose, CA, USA

2School of Information Technology. Illinois State University. Normal, IL. USA
aeleste@cisco.com, ytang@ilstu.edu, tbgyires@ilstu.edu

Abstract—Recent study showed that many network
applications require multiple different network flows
to complete their tasks. Provisioning bandwidth to
network applications other than individual flows in
data center networks is becoming increasingly important
to achieve user satisfaction on their received network
services. Modern data center networks commonly adopt
multi-rooted tree topologies. Equal-Cost Multi-Path
(ECMP) forwarding is often used to achieve high link
utilization and improve network throughput. Meanwhile,
max-min fairness is widely used to allocate network
bandwidth fairly among individual network flows.
Today’s data centers usually host diverse applications,
which have various priorities (e.g., mission critical
applications) and service level agreements (e.g., high
throughput). It is unclear how to adopt ECMP
forwarding and max-min fairness in the presence of
such requirements. In this paper, we first propose
a flow-based scheduling mechanism (calledFlowSch)
to provide a prioritized Max-Min fair multiple path
forwarding to improve link utilization and improve
application performance. Then, we demonstrate and
discuss thatFlowSch may not perform effectively when
network applications commonly use multiple network
flows to accomplish their tasks. Accordingly, we design
an application-aware scheduling mechanism (called
AppSch) to tackle this challenge.AppSch can optimally
allocate available bandwidth to satisfy application
requirements. Our performance evaluation results show
that FlowSch can improve flow throughput 10-12% on
average and increase overall link utilization especially
when the total demanded bandwidth is close or even
exceeds the bisectional bandwidth of a data center
network. However, when most applications rely on
multiple network flows, AppSch can improve link
utilization more effectively and reduce the application
completion time 36-58%.

Keywords- application-aware; SDN; max-min fair;
scheduling.

I. INTRODUCTION

Elastic cloud computing is becoming pervasive
for many emerging applications, such as big data
online analysis, virtual computing infrastructure, and
various web applications. Various cloud applications
commonly share the same network infrastructure [2]
[4] [29] in a data center, and compete for the shared
resource (e.g., bandwidth). Many of these emerging
cloud applications are complex combinations of
multiple services, and require predictable performance,
high availability, and high intra-data center bandwidth.
For example, Facebook “experiences1000 times
more traffic inside its data centers than it sends
to and receives from outside users”, and the
internal traffic has increased much faster than
Internet-facing bandwidth [40]. Meanwhile, many data
center networks are oversubscribed, as high as40 :
1 in some Facebook data centers [41], causing the
intra-data center traffic to contend for core bandwidth.
Hence, providing bandwidth guarantees to specific
applications is highly desirable, in order to preserve
their response-time predictability when they compete
for bandwidth with other applications.

The challenge of achieving high resource utilization
makes cloud service providers under constant pressure
to guarantee quality of service and increase customer
satisfaction.

A Data Center (DC) refers to any large, dedicated
cluster of computers that is owned and operated
by a single authority, built and employed for a
diverse set of purposes. Large universities and
private enterprises are increasingly consolidating their
Information Technology (IT) services within on-site
data centers containing a few hundred to a few
thousand servers. On the other hand, large online
service providers, such as Google, Microsoft, and
Amazon, are rapidly building geographically diverse

195

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cloud data centers, often containing more than 10,000
servers, to offer a variety of cloud-based services
such as web servers, storage, search, on-line gaming.
These service providers also employ some of their data
centers to run large-scale data-intensive tasks, such as
indexing Web pages or analyzing large data-sets, often
using variations of the MapReduce paradigm.

Many data center applications (e.g., scientific
computing, web search, MapReduce) require
substantial bandwidth. With the growth of bandwidth
demands for running various user applications, data
centers also continuously scale the capacity of the
network fabric for new all-to-all communication
patterns, which presents a particular challenge for
traditional data forwarding (switching and routing)
mechanisms. For example, MapReduce based
applications, as a currently adopted default computing
paradigm for big data, need to perform significant
data shuffling to transport the output of its map phase
before proceeding with its reduce phase. Recent
study shows the principle bottleneck in large-scale
clusters is often inter-node communication bandwidth.
Traffic pattern study [27] showed that only a subset
(25% or less) of the core links often experience high
utilization.

The disruptive Software-Defined Networking (SDN)
technology shifts today’s networks that controlled
by a set of vendor specific network primitives
to a new network paradigm empowered by new
programmatic abstraction. OpenFlow provides a
protocol such that the logical centralized controller
can exploit forwarding tables on SDN switches for
programmatic multi-layer forwarding flexibility. One
of the fundamental transformations that flow based
forwarding presents is the inclusion of multi-layer
header information to make forwarding match and
action logic programmatically. Programmatic policy
is vital to manage the enormous combinations of
user requirements. For example, an SDN controller
can flexibly define a network flow using a tuple as
(incoming port, MAC Src, MAC Dst, Eth Type, VLAN
ID, IP Src, IP Dst, Port Src, Port Dst, Action), or
schedule specific flows onto desired network paths.
With the new flexibility and capability on network
traffic manipulation empowered by SDN, various new
network architecture and control mechanisms have
been proposed for data center networks to optimize
their resource allocation.

Modern data center networks commonly adopt
multi-rooted tree topologies [2] [4] [29]. ECMP is
often used to achieve high link utilization and improve
network throughput. Meanwhile, max-min fairness is
widely used to allocate network bandwidth fairly
among multiple applications. Many current data center
schedulers, including Hadoops Fair Scheduler [37] and
Capacity Scheduler [35], Seawall [34], and DRF [38],
provide max-min fairness. The attractiveness of
max-min fairness stems from its generality. However,
today’s data centers usually host diverse applications,
which have various priorities (e.g., mission critical
applications) and service level agreements (e.g., high
throughput). It is unclear how to adopt ECMP
forwarding and max-min fairness in the presence of
such requirements.

In this paper, we first propose a Flow-based
Scheduling mechanism (calledFlowSch) to provide
a prioritized Max-Min fair multiple path forwarding
to improve link utilization and flow-based throughput.
FlowSch can optimally allocate current available
bandwidth to satisfy user demands specified by
per flow. When predefined user requirements are
available,FlowSchcan prioritize current demands and
allocate available bandwidth accordingly. Then, we
demonstrate and discuss thatFlowSchmay not perform
effectively when network applications commonly
use multiple network flows to accomplish their
tasks. Accordingly, we design an Application-Aware
Scheduling mechanism (calledAppSch) to tackle
this challenge. Our evaluation shows thatAppSch
can optimally allocate available bandwidth to satisfy
application requirements.

The rest of the paper is organized as the following.
Section II discusses the related research work.
Section III describesFlowSch. Section IV formalizes
the application-aware scheduling problem and presents
our solutionAppSch. Section V presents our simulation
design and results, respectively. Finally, Section VI
concludes the paper with future directions.

II. RELATED WORK

Current large data center networks connect multiple
Ethernet LANs using IP routers and run scalable
routing algorithms over a number of IP routers. These
layer 3 routing algorithms allow for shortest path
and ECMP routing, which provide much more usable
bandwidth than Ethernets spanning tree. However, the

196

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Core

Aggregation

Edge

Pod1 Pod2 Pod3 Pod4

S11 S22

P1 P2
P3

P4

L1

L2

L3
L4

L5

L6
App

Servers

Figure 1. Fat tree topology.

mixed layer 2 and layer 3 solutions require significant
manual configuration.

The trend in recent works to address these problems
is to introduce special hardware and topologies.
For example, PortLand [4] is implementable on Fat
Tree topologies and requires ECMP hardware that is
not available on every Ethernet switch. TRILL [5]
introduces a new packet header format and thus
requires new hardware and/or firmware features.

There have been many recent proposals for scale-out
multi-path data center topologies, such as Clos
networks [6] [8], direct networks like HyperX [9],
Flattened Butterfly [11], DragonFly [12], etc., and even
randomly connected topologies have been proposed in
Jellyfish [16].

Many current proposals use ECMP-based
techniques, which are inadequate to utilize all
paths, or to dynamically load balance traffic. Routing
proposals for these networks are limited to shortest
path routing (or K-shortest path routing with Jellyfish)
and end up under utilizing the network, more so
in the presence of failures. While DAL routing [9]
allows deroutes, it is limited to HyperX topologies. In
contrast, Dahu [29] proposes a topology-independent,
deployable solution for non-minimal routing that
eliminates routing loops, routes around failures, and
achieves high network utilization.

Hedera [17] and MicroTE [22] propose a centralized
controller to schedule long lived flows on globally
optimal paths. However, they operate on longer time

scales and scaling them to large networks with many
flows is challenging. Techniques like Hedera, which
select a path for a flow based on current network
conditions, suffer from a common problem: when
network conditions change over time the selected
path may no longer be the optimal one. While
DevoFlow [24] improves the scalability through switch
hardware changes, it does not support non-minimal
routing or dynamic hashing. Dahu can co-exist with
such techniques to better handle congestion at finer
time scales.

MPTCP [19] proposes a host based approach for
multi-path load balancing by splitting a flow into
multiple sub flows and modulating how much data
is sent over different subflows based on congestion.
However, as a transport protocol, it does not have
control over the network paths taken by subflows.
Dahu [29] exposes the path diversity to MPTCP and
enables MPTCP to efficiently utilize the non-shortest
paths in a direct connect network. There have also
been proposals that employ variants of switch-local
per-packet traffic splitting [30].

Traffic engineering has been well studied in the
context of wide area networks. TeXCP [31] and
REPLEX [32] split flows on different paths based on
load. However, their long control loops make them
inapplicable in the data center context that requires
faster response times to deal with short flows and
dynamic traffic changes. PDQ [10] and pFabric [36]
can support a scheduling policy like shortest flow first

197

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(SFF), which minimizes flow completion times by
assigning resources based on flow sizes. FLARE [11]
exploits the inherent burstiness in TCP flows to
schedule “flowlets” (bursts of packets) on different
paths to reduce extensive packet reordering.

In our previous work [1], a flow-based bandwidth
scheduling approach has been introduced. Several
recent work [3] [7] [14] contributed to task-Aware
Schedulers and network Abstractions. Orchestra [13]
and CoFlow [7] argued for bringing task awareness in
data centers. Orchestra focuses on how task awareness
could provide benefits for MapReduce style workloads,
and focuses on improvement in the average task
completion time for batched workload. Baraat [3]
makes the scheduling decisions in a decentralized
fashion based on a revised FIFO mechanism. Baraat
can also improve the tail completion time, for dynamic
scenarios and multi-stage workloads. CoFlow [7]
focuses on a new abstraction that can capture rich
task semantics, which is orthogonal to Baraats focus
on scheduling policy and the underlying mechanism.
However, beyond the abstraction, CoFlow does not
propose any new scheduling policy or mechanism to
achieve task-awareness.

III. F LOW-BASED PRIORITIZED MAX -M IN FAIR

BANDWIDTH SCHEDULING

While ECMP is often used to achieve high
link utilization, max-min fairness is widely used to
allocate network bandwidth fairly among multiple
applications. However, today’s data centers usually
host diverse applications, which have various priorities
(e.g., mission critical applications) and service level
agreements (e.g., high throughput). It is unclear how
to adopt ECMP forwarding and max-min fairness in the
presence of such requirements. We propose Prioritized
Max-Min Fair Multiple Path forwarding (FlowSch)
to tackle this challenge. In the following, we first
formalize the problem, and then present howFlowSch
works.

A. Problem Formalization

Consider a data center network with K-ary fat-tree
topology as shown in Fig.1, composed of a set of core
switchesSc, a set of aggregation switchesSa, a set of
edge switchesSe, and a set of hostsH. Each switch
hask-port. There arek pods. Each pod containsk/2
aggregation switches andk/2 edge switches. In each

Input: A list of tasks {Ti}; current link utilization
U(Lj)
Output: Path assignmentPA with PAi for each taskTi

1: Sort {Ti} based on their priority levelsKi

2: Start from the highest priorityW = m /*m is the
highest priority level*/

3: for all Ti! = ∅ (PL(Ti) = W) do
4: /*The function PL() returns the priority level

of a given task*/
5: Find all paths for each taskTi

6: Assign a unit bandwidth (UB) to the least
utilized path for each task /*we choose UB =
100Kbps*/

7: PAi ← {Ti, {Pi}}
8: PA← PA ∪ {PAi}
9: if A pathP is saturated andP ∈ APL(Ti) then

10: APL(Ti)← APL(Ti)− P
11: end if
12: if APL(Ti) == ∅ then
13: RemoveTi

14: end if
15: if ({Ti} == ∅) and (W > 1) then
16: W = m− 1
17: end if
18: end for
19: returnPA

Figure 2. Multi-Level progressive filling algorithm

pod, eachk-port edge switch is directly connected to
k/2 hosts andk/2 aggregation switches. Theith port of
each core switchsi ∈ Sc(i ∈ [1, (k/2)2]) is connected
to pod i [4]. We assume all links (e.g.,L1 in Fig.1)
have the same bandwidth for both uplink (e.g.,Lu

1
) and

downlink (e.g.,Ld
1
) connections.

Recent study [27] showed that less than25% of
the core links have been highly utilized while packet
losses and congestions may still often occur. In this
paper, we only focus on inter-pod network traffic that
requires bandwidth from core links. We denote all links
between aggregation and core layers as a setLac, all
links between edge and aggregation layers as a setLea,
and all links between application server and edge layers
as a setLse. Generally, in a network with K-ary fat-tree
topology , there arek paths between any two hosts
from different pods.

198

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 20

 40

 60

 80

 100

1 10 20 40 80

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t t

o
F

S
 (

%
)

Number of Flows per Application

Flow-based vs. Application-based

SFF

FlowSch

Greedy

Figure 3. Completion time comparison

A network taskTi is specified by a source and
destination hosts (e.g.,S11 andS22) and the expected
traffic volume. We also consider each task with
different priority level wi. Here, wi ∈ [1,m] with
the lowest and highest priority levels as1 and
m, respectively. A network scheduler modular (also
simply referred to as scheduler) on an SDN controller
needs to decide how to allocate available bandwidth
to maximally satisfy the application requirements. We
define a valid Network Path AssignmentPAi for a
given taskTi is a set of paths and their corresponding
allocated bandwidths connecting the source to the
destination (e.g., a subset of{P1, P2, P3, P4}), in
which each path consists of a list of directional links
(e.g.,P1 = {Lu

1
, Lu

2
, Lu

3
, Ld

4
, Ld

5
, Ld

6
}) connecting the

source to the destination hosts. Here,Lu
1
, Ld

6
∈ Lse;

Lu
2
, Ld

5
∈ Lea; Lu

3
, Ld

4
∈ Lac.

There is a variety of applications on a data center
network, which have different service requirements
regarding throughput, packet loss, and delay. For
our analysis, we characterize the applications’
requirements through their priority levels, which can
be the output of some utility function. Priorities can
offer a basis for providing application and business
oriented service to users with diverse requirements. We
consider a model where the weight associated with the
different priority classes is user-definable and static.
Users can freely define the priority of their traffic, but
are charged accordingly by the network. We aim to
study the bandwidth-sharing properties of this priority
scheme. Given a set of network tasksT = {Ti} (i ≥ 1)
and their corresponding priority levelsK = {Ki}, we
consider a Network Path Assignment problem is to find

a set of path assignmentPA = {PAi} to satisfy the
condition of Prioritized Max-Min Fairness.

Definition 1. Prioritized Max-Min Fairness A
feasible path assignmentPAx is “prioritized max-min
fair” if and only if an increase of any path bandwidth
within the domain of feasible bandwidth allocations
must be at the cost of a decrease of some already
less allocated bandwidth from the tasks with the
same or higher priority level. Formally, for any
other feasible bandwidth allocation schemePAy, if
BW (PAy

Ti

) > BW (PAx
Ti
), then it decreases the

allocated bandwidth of some other path with the same
or higher priority level. Here,BW (PAy

Ti

) is the total
allocated bandwidth for the taskTi in the bandwidth
allocation schemePAy.

Definition 2. Saturated Path A path Pi is saturated
if at least one bottleneck linkLj exists on the pathPi.
A link is bottlenecked if the total assigned bandwidth
on this link from the given tasks is more than or
equal to the maximum bandwidth of the link. Formally,
a bottleneck link is the one that

∑
iBWTi

(Lj) ≥
BWmax(Lj).

B. The Algorithm of Multi-Level Progressive Filling

The network tasks can be dynamically and
continuously generated, and submitted to the scheduler.
In FlowSch, the scheduler can periodically query all
network switches to collect current link utilizations.
Once a new task list received, the scheduler will use
a practical approach called “progressive filling” [33]
provisioning available bandwidth that results in a
prioritized max-min fair allocation following the
priority order from the highest to the lowest priority
level. The idea is shown in Fig. 2: The scheduler
starts with all provisioned bandwidth equal to0 and
increases all bandwidths together at the same pace
for the tasks with the same priority level until one
or several saturated paths are found. The bandwidth
for the corresponding tasks that use these paths are
not increased any more and the scheduler continue
increasing the bandwidth for other tasks on the same
priority level. All the tasks that are stopped have a
saturated path. The algorithm continues until it is not
possible to increase the bandwidth for the tasks at
certain priority level. Then, the algorithm moves to
the next priority level and repeats the same bandwidth
provisioning operations until all tasks are assigned

199

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

Li
nk

 U
til

iz
at

io
n

Sequence Number of all Links

Higher Priority for Long Flows

Max-Min
Random

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

Li
nk

 U
til

iz
at

io
n

Sequence Number of all Links

Higher Priority for Small Flows

Max-Min
Random

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

Li
nk

 U
til

iz
at

io
n

Sequence Number of all Links

Higher Priority for Mixed Flows

Max-Min
Random

(c)

Figure 4. Path utilization with higher priority for (a) longflows (b)short flows (c)mixed flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

Li
nk

 U
til

iz
at

io
n

Sequence Number of Aggregation Links

Higher Priority for Long Flows

Max-Min
Random

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

Li
nk

 U
til

iz
at

io
n

Sequence Number of Aggregation Links

Higher Priority for Short Flows

Max-Min
Random

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

Li
nk

 U
til

iz
at

io
n

Sequence Number of Aggregation Links

Higher Priority for Mixed Flows

Max-Min
Random

(c)

Figure 5. Aggregation link utilization with higher priority for (a) long flows (b)short flows (c)mixed flows

to some paths. The algorithm terminates because the
total paths and tasks are finite. When the algorithm
terminates all tasks have been served at some time
and thus have a saturated path. By Definition 1 the
allocation is max-min fair for the tasks at the same
priority level.

min

|A|∑

k=1

Tk (1)

such that:
|P |∑

j=1

xkij = 1 (2)

xkij ∈ {0, 1} (3)

Bj ∈ {0, 1} (4)

IV. A PPLICATION-BASED SCHEDULING

Recent study [38] showed that70% of applications
involve30-100 flows,2% involve more than150 flows.
In a multi-flow based application, the application flows
may traverse different parts of the network and not
all of them may be active at the same time. Only

after all these related flows finish, the corresponding
application finishes and the user gets a response.
The distributed nature and scale of data center
applications results in rich and complex work flows.
Typically, these applications run on many servers
that, in order to respond to a user request, process
data and communicate across the internal network.
Traditionally, allocation of network bandwidth has
targeted per-flow fairness. Because latency is the
primary goal for many data center applications, recent
proposals [21] [36] indicate that per-flow fairness
scheduling that optimizes flow-level metrics (e.g.,
minimizing flow completion time) may not necessarily
improve user perceivable application performance.
Typical data center application applications can have
many flows, potentially of different sizes. Flow-based
scheduling presents some inefficiency when applied to
applications relying on multiple flows.

In the following, we first present the result
of a simple simulation that demonstrates the
different effect on application performance (i.e.,
completion time) improvement with three different
scheduling algorithms, namely Shortest Flow First

200

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(SFF), FlowSch, and an off-line greedy scheduling
algorithm (Greedy). Then, we tackle the inefficiency
of flow-based scheduling by introducing a new
application-aware scheduling approach calledAppSch.

A. Flow-based vs. Application-based Scheduling

FlowSch is designed as an application agnostic
scheduler that targets per-flow fairness among
applications with the same priority, which may
not improve the performance of multi-flow based
applications.

We validate this through a simple simulation
that compares performance improvement in terms
of application completion times with three different
approaches, namely Shortest Flow First (SFF),
FlowSch, and an off-line greedy scheduling algorithm
(Greedy). SFFschedules the shorter flows of every task
first, leaving longer flows to the end. This can hurt
application performance by delaying completion of
tasks.FlowSchconsiders max-min fair sharing among
all flows that allocates resources with a lower bound.
Greedy is an off-line greedy algorithm searching for
the “best” assignments for all flows, which also shows
the room for improvement.

In this simulation, we use a simple single-stage
partition-aggregate work flow scenario [7] with60
applications comprising flows uniformly chosen from
the range[5, 40] KB. Fig. 5 shows SFFs improvement
over fair-sharing as a function of the number of
flows in a application. If an application has just a
single flow, SFF reduces the application completion
time by almost40%. However, as we increase the
number of flows per application, the benefits reduce.
The same observation also occurred with FlowSch,
which however, outperforms SFF due to its max-min
sharing. Comparing to the “best” scheduling offered by
the off-line greedy scheduling algorithm, application
agnostic flow-based scheduling does not perform well
in terms of the improvement on application completion
time, comparing to the performance of an off-line
application-aware scheduler referred to asGreedy in
Fig. 5.

B. Application Requirements Abstraction

Although many data-intensive applications are
network-bound [13] [17], network scheduling remains
agnostic to application specific network requirements.
In recent work, Coflow [7] argues for tasks (or

Coflows) as a first-order abstraction for the network
data plane to compensate the mismatch that often
affects application-level performance, even when
network-oriented metrics like flow completion time
(FCT) or fairness improve. The recently proposed
coflow abstraction [7] represents such collections of
parallel flows to convey application-specific network
requirements, for example, minimizing completion
time or meeting a deadline to the network and enables
application-aware network scheduling.

Allowing applications to expose their semantics
to the network could significantly help the network
optimize its resource allocation for application-level
metrics. For example, allocating network bandwidth
to applications in a FIFO fashion, such that they are
scheduled over the network one at a time, can improve
the average application completion time as compared
to per-flow fair sharing (e.g., TCP).

In this paper, we characterize two features of
application tasks in todays data centers: 1) the
task size, and 2) the number of flows per task.
Both information are critical when considering
application-aware scheduling for the network; the
first influences the scheduling policy, while the
latter governs when application-aware scheduling
outperforms flow-based scheduling.

In the following, we formalize the application-aware
scheduling as a variant bin packing problem, and
presents a heuristic algorithm to tackle this NP-hard
problem.

C. Bin Packing with Varying Capacities

We assume that the amount of data each flow in
an application needs to transfer is known before it
starts [13] [23] [36]. Analysis of production application
traces [14] shows wide variations in application flow
characteristics in terms of total size, the number of
parallel flows, and the size of individual flows. But
commonly these applications can be modeled as an
ordered flow request list.

Let A be a list of applicationsAi to be scheduled.
Each applicationAi has a list of flow volumesVi =
{vi1, · · · , vik}. Let P = {P1, · · · , Pm} be the set
of available network paths and letBi be the current
available bandwidth for pathPi. Without any loss of
generality, we assume that the bandwidths associated
with the network paths are integers.

201

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

Li
nk

 U
til

iz
at

io
n

Sequence Number of Core Links

Higher Priority for Long Flows

Max-Min
Random

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

Li
nk

 U
til

iz
at

io
n

Sequence Number of Core Links

Higher Priority for Short Flows

Max-Min
Random

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

Li
nk

 U
til

iz
at

io
n

Sequence Number of Core Links

Higher Priority for Mixed Flows

Max-Min
Random

(c)

Figure 6. Core link utilization with higher priority for (a)long flows (b)short flows (c)mixed flows

We define the path-selection variablesS =
(s1, · · · , sm), wheresj = 1 if path pj is selected and
sj = 0, otherwise; and the flow-to-path assignment
variables xkij , where xkij = 1 if flow fik from
applicationAk is scheduled on pathPj andxkij = 0,
otherwise. We want to schedule all application related
flows to optimally utilize all available bandwidth, so
as to minimize the total application completion time
(T). For applicationAk, the corresponding application
completion timeTk =

∑m
j=1

vij/(x
k
ij ∗Bj).

The objective function (1) minimizes the total
amount of application completion time. Constraint (2)
ensure that each flow request is assigned exactly to one
network path; and constraints (3) and (4) enforce the
integrality requirements for all decision variables.

The scheduling policy determines the order in which
applications are scheduled across the network paths.
Determining an ordering that minimizes application
completion time can be easily reduced to a bin packing
problem with varying bin sizes, which is NP-hard.
Some previous similar work like flow-shop scheduling
[14] [25], is considered as one of the hardest NP-hard
problems, with exact solutions not known for even
small instances of the problem [15]. Thus, we need
to consider heuristic scheduling policies. The heuristic
policy should help reduce both the average as well as
tail application completion time. Guided by flow-based
policies that schedule flows one at a time [17], we
consider serving applications one at a time. This can
help finish applications faster by reducing the amount
of contention in the network. Consequently, we define
application packing as the set of policies where an
entire application is scheduled before moving to the
next.

Specifically, for such a bin packing NP-hard

problem [18], we design a heuristic algorithm called
AppSch that adapts the well-known Best First
Decreasing loading heuristic [15] and extends a
number of fundamental concepts [15] [18] in the
bin covering and knapsack methodology. AppSch
first sorts all application flow requests according to
the non-increasing order of their data sizes, and
then sequentially assigns them into the path with
the maximum available bandwidth. For each flow
request, AppSch first attempts to assign it into the
“best” already-selected path to increase the path
utilization. If the flow request cannot be assigned to an
already-selected path, a new path is selected and the
flow request is assigned to it. One challenge in this
problem different from classic bin packing problem
where all bins are homogeneous, is how to choose a
new path when required. Inspired by the item-selection
rule for knapsack problems, we select paths according
to the non-increasing order of the ratios of their
data sizes and available path bandwidths, and in the
non-decreasing order of their data sizes when the data
sizes are equal.

V. EVALUATION

In this section, we present our evaluation metrics,
methodology and evaluation results.

A. Data Center Network Traffic Pattern

Several recent studies [26] [27] [28] have been
conducted in various data center networks to
understand network traffic patterns. The studied data
center networks include university campus, private
enterprise data centers, and cloud data centers
running Web services, customer-facing applications,
and intensive Map-Reduce jobs. The studies have

202

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 2

 4

 6

 8

 10

 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
bp

s)

Flow Sequence Number

Higher Priority for Long Flows

Max-Min
Random

(a)

 0

 2

 4

 6

 8

 10

 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
bp

s)

Flow Sequence Number

Higher Priority for Short Flows

Max-Min
Random

(b)

 0

 2

 4

 6

 8

 10

 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
bp

s)

Flow Sequence Number

Higher Priority for Mixed Flows

Max-Min
Random

(c)

Figure 7. Throughput with higher priority for (a) long flows (b)short flows (c)mixed flows

 0

 20

 40

 60

 80

 100

1 20 40 80 120 160 200

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t t

o
F

S
 (

%
)

Number of Flows per Application

Web-Service Applications

AppSch

FIFS

CoFlow

(a)

 0

 20

 40

 60

 80

 100

1 20 40 80 120 160 200

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t t

o
F

S
 (

%
)

Number of Flows per Application

Batch-request Applications

AppSch

FIFS

CoFlow

(b)

 0

 20

 40

 60

 80

 100

1 20 40 80 120 160 200

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t t

o
F

S
 (

%
)

Number of Flows per Application

Cluster-computing Applications

AppSch

FIFS

CoFlow

(c)

Figure 8. Application completion time for (a) Web Services (b) Batch Requests (c) Cluster Computing

shown some interesting facts: (1) The majority of
the traffic in data center networks is TCP flows. (2)
Most of the server generated traffic in the cloud data
centers stays within a rack, while the opposite is
true for campus data centers. (3) At the edge and
aggregation layers, link utilizations are fairly low and
show little variation. In contrast, link utilizations at
the core network are high with significant variations
over the course of a day. (4) In some data centers, a
small but significant fraction of core links appear to
be persistently congested, but there is enough spare
capacity in the core to alleviate congestion. (5) Losses
on the links that are lightly utilized on the average
can be attributed to the bursty nature of the underlying
applications run within the data centers.

B. Methodology and Metrics

In our experiments, we simulate a data center with a
fat-tree topology. We implementedFlowSchbased on
RipL [39], a Python library that simplifies the creation
of data center code, such as OpenFlow network
controllers, simulations, or Mininet topologies. We
comparedFlowSchscheduler with a commonly used

randomization based scheduling method.
In our evaluation, we use three different priority

policies for a mixture of traffic patterns: (1) high
priority for long TCP flows with the total data size
between1MB and100MB; (2) high priority for short
TCP flows with the total data size between10KB
and1MB; (3) high priority for random selected flows
including both short and long ones referred to as mixed
TCP flows.

We focus on two performance metrics: (1) Link
Utilization that demonstrates how effectively the
scheduler utilizes the network bandwidth. Intuitively,
when there are high bandwidth demands from user
applications, the overall link and path utilizations
should be kept in high. (2) Network throughput that
shows how efficiently the network serves different
applications.

For evaluating the performance of application-aware
schedulerAppSch, we setup different application
scenarios to mimics (1) web-service: a typical
web-service scenario with one pod dedicated to the
front-end nodes, while the other pods are used as
caching back-end. For the experiment, we consider an

203

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

online scenario where each user independently receives
requests based on a Poisson arrival process. Each
request (or application) corresponds to a multi-get that
involves fetching data from randomly chosen back-end
servers; (2) batched requests: to evaluate the impact of
varying the number of concurrent applications in the
system. For this experiment, one pod acts as a client
while the other pods in the network act as storage
servers. For the request, the client retrieves100− 800
KB chunks from each of the servers. The request
finishes when data is received from all servers; and
(3) cluster computing: our workload is based on a
Hive/MapReduce trace collected from a tier-1 ISP IDS
system. We consider jobs with non-zero shuffle and
divide them into bins based on the fraction of their
durations spent in shuffle.

C. Link Utilization

We created16 test scenarios to evaluateFlowSch
with different inter-pod traffic patterns. We ran5
tests for each scenarios. In all test scenarios, the
test traffic traversed all edge, aggregation, and core
links. The results of multiple test runs from the same
test scenario present similar results. In the following,
we only report the result of one test run for each
test scenario that created traffic between two pods
in both directions. Under the same three different
priority policies, Fig.4(a)∼(c) shows the overall path
utilization; Fig.5(a)∼(c) shows the aggregation link
utilizations; and Fig.6(a)∼(c) shows the core link
utilizations. Comparing to the randomization based
scheduler, our algorithm 2 achieves high utilization
on path level, aggregation and core link levels
by: (1) dynamically observing all link utilization
status, and (2) progressively filling the jobs of the
same priority with the available bandwidth with the
max-min fairness. The average gain on utilization is
approximately improved from59% to 66%. Note that
with the increase of link utilization, idle bandwidth
can be effectively utilized by demanding network
applications, which can correspondingly improve their
performance by reducing their network latencies.

D. Network Throughput

Once the overall utilization can be increased, we
expect that the overall application throughput should
also be improved. The experiment results presented
some interesting results as shown in Fig.7(a)∼(c).

When we emulate more realistic application scenarios,
where short and long TCP flows are randomly mixed
together, ourFlowSchscheduler obviously outperforms
the performance of the random scheduler with about
10-12% improvement. In the scenario of the different
policies favoring either short or long flows, our
scheduler adopts max-min fairness, and thus, the
average throughput has been improved from2.52Mbps
in the random scheduler and to3.46Mbps in the
max-min scheduler.

E. Application Completion Time

The minimum completion time of an application
Ai can be attained as long as all flows in the
application finish at timeTi. We choose three
applications (1) Web service, (2) Batch request, and
(3) Cluster computing application that represent typical
application communication patterns in today’s data
center networks to validateAppSch and compare with
FIFS andCoF low [7]. From the experiment results
as shown in Fig. 8, AppSch performs steadily with
evident application performance (completion time)
improvement (36%-58%) for all different types of
applications.

VI. CONCLUSION

The role of the data center network is becoming
ever more crucial today, which is evolving into
the integrated platform for next-generation data
centers. Because it is pervasive and scalable, the
data center network is developing into a foundation
across which information, application services and
all data center resources, including servers, storage
are shared, provisioned, and accessed. Modern data
center networks commonly adopt multi-rooted tree
topologies. ECMP is often used to achieve high
link utilization and improve network throughput.
Meanwhile, max-min fairness is widely used to
allocate network bandwidth fairly among multiple
applications. However, today’s data centers usually
host diverse applications, which have various priorities
(e.g., mission critical applications) and service level
agreements (e.g., high throughput). It is unclear how
to adopt ECMP forwarding and max-min fairness in the
presence of such requirements. We propose Prioritized
Max-Min Fair Multiple Path forwarding (FlowSch) to
tackle this challenge.FlowSchcan prioritize current
demands and allocate available bandwidth accordingly.

204

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Our performance evaluation results show thatFlowSch
can improve application throughput10-12% on average
and increase overall link utilization especially when the
total demanded bandwidth close or even exceed the
bisectional bandwidth of a data center network.

REFERENCES

[1] A. Lester, Y. Tang, T. Gyires. “Prioritized Adaptive
Max-Min Fair Residual Bandwidth Allocation for
Software-Defined Data Center Networks,” In the
Thirteenth International Conference on Networks (ICN),
2014.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat, A Scalable,
“Commodity Data Center Network Architecture,” In
ACM conference of the Special Interest Group on Data
Communication (SIGCOMM), 2008

[3] F. R. Dogar, T. Karagiannis, H. Ballani, and A.
Rowstron, “Decentralized Task-Aware Scheduling for
Data Center Networks,” In ACM conference of
the Special Interest Group on Data Communication
(SIGCOMM), 2014

[4] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P.
Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat,
“PortLand: A scalable fault-tolerant layer 2 data center
network fabric,” In ACM conference of the Special
Interest Group on Data Communication (SIGCOMM),
2009

[5] R. Perlman, “Rbridges: Transparent routing,” In
IEEE Conference on Computer Communications
(INFOCOM), 2004.

[6] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C.
Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta,
“VL2: A Scalable And Flexible Data Center Network,”
In ACM conference of the Special Interest Group on
Data Communication (SIGCOMM), 2009.

[7] M. Chowdhury and I. Stoica, “Coflow: A networking
abstraction for cluster applications,” In ACM Hot Topics
in Networks (HotNets) workshops, 2012.

[8] V. Liu, D. Halperin, A. Krishnamurthy, and T.
Anderson, “F10: A Fault-Tolerant Engineered Network,”
In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2013

[9] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.
Schreiber, “HyperX: Topology, Routing, and Packaging
of Efficient Large-Scale Networks,” In ACM Conference
on High Performance Computing Networking, Storage
and Analysis, 2009.

[10] C. Hong, M. Caesar, and P. Godfrey, “Finishing flows
quickly with preemptive scheduling,” ACM SIGCOMM
Computer Communication Review (CCR), 2012.

[11] J. Kim, W. J. Dally, and D. Abts, “Flattened
butterfly: A Cost-efficient Topology for High-radix

networks,” In ACM International Symposium on
Computer Architecture (ISCA), 2007.

[12] J. Kim, W. J. Dally, S. Scott, and D. Abts,
“Technology-Driven, Highly-Scalable Dragonfly
Topology,” In ACM International Symposium on
Computer Architecture (ISCA), 2008

[13] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and
I. Stoica, “Managing data transfers in computer clusters
with Orchestra,” In ACM conference of the Special
Interest Group on Data Communication (SIGCOMM),
2011.

[14] M. Chowdhury, Y Zhong, and I. Stoica, “Efficient
Coflow Scheduling with Varys,” In ACM conference
of the Special Interest Group on Data Communication
(SIGCOMM), 2014.

[15] W T Rhee and M Talagrand, “Optimal bin covering
with items of random size,” SIAM Journal on
Computing. 1989.

[16] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey,
“Jellyfish: Networking Data Centers Randomly,” In
USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2012.

[17] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N.
Huang, and A. Vahdat, “Hedera: Dynamic Flow
Scheduling for Data Center Networks,” In USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), 2010.

[18] A. S. Fukunaga and R. E. Korf, “Bin Completion
Algorithms for Multicontainer Packing, Knapsack, and
Covering Problems,” Journal of Artificial Intelligence
Research 28 (2007) pp. 393∼ 429

[19] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan,
“Data center TCP (DCTCP),” In ACM conference of
the Special Interest Group on Data Communication
(SIGCOMM), 2010.

[20] T. Benson, A. Akella, and D. A. Maltz, “Network
Traffic Characteristics of Data Centers in the Wild,” In
ACM Internet Measurement Conference (IMC), 2010.

[21] C. Wilson, H. Ballani, T. Karagiannis, and A.
Rowstron, “Better never than late: Meeting deadlines in
datacenter networks,” In ACM conference of the Special
Interest Group on Data Communication (SIGCOMM),
2011.

[22] T. Benson, A. Anand, A. Akella, and M. Zhang,
“MicroTE: Fine Grained Traffic Engineering for Data
Centers,” In ACM Conference on emerging Networking
EXperiments and Technologies (CoNEXT), 2011.

[23] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing
flows quickly with preemptive scheduling,” In ACM
conference of the Special Interest Group on Data
Communication (SIGCOMM), 2012.

[24] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,

205

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

P. Sharma, and S. Banerjee, “DevoFlow: Scaling Flow
Management for High-Performance Networks,” In ACM
conference of the Special Interest Group on Data
Communication (SIGCOMM), 2011.

[25] OpenFlow Switch Specification (Version 1.1),
www.openflow.org/documents/openflow-spec-v1.1.0.pdf,
(retrieved: Nov. 2014)

[26] S. Kandula, S. Sengupta, A. Greenberg, P. Patel,
and R. Chaiken, “The Nature of Data Center
Traffic: Measurements and Analysis,” In ACM Internet
Measurement Conference (IMC), 2009.

[27] T. Benson, A. Akella, and D. A. Maltz, “Network
Traffic Characteristics of Data Centers in the Wild,” In
ACM Internet Measurement Conference (IMC), 2010.

[28] G. Wang, D. G. Andersen, M. Kaminsky, M. Kozuch,
T. S. E. Ng, K. Papagiannaki, M. Glick, and L.
Mummert, “Your data center is a router: The case for
reconfigurable optical circuit switched paths,” In ACM
Hot Topics in Networks (HotNets) workshops, 2009.

[29] S. Radhakrishnan, M. Tewari, R. Kapoor, G. Porter,
and A. Vahdat, “Dahu: Commodity Switches for Direct
Connect Data Center Networks,” In Proceedings of
the 9th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS13),
October 2013

[30] D. Zats, T. Das, P. Mohan, D. Borthakur, and R.
Katz, “DeTail: Reducing the Flow Completion Time
Tail in Datacenter Networks,” In ACM conference of
the Special Interest Group on Data Communication
(SIGCOMM), 2012.

[31] S. Kandula, D. Katabi, B. Davie, and A. Charny,
“Walking the Tightrope: Responsive Yet Stable Traffic
Engineering,” In ACM conference of the Special Interest
Group on Data Communication (SIGCOMM), 2005.

[32] S. Fischer, N. Kammenhuber, and A. Feldmann,
“REPLEX: Dynamic Traffic Engineering Based on
Wardrop Routing Policies,” In ACM Conference on
emerging Networking EXperiments and Technologies
(CoNEXT), 2006.

[33] A. Ghodsi, M. Zaharia, S. Shenker and I. Stoica,
“Choosy: Max-Min Fair Sharing for Datacenter Jobs
with Constraints,” In European Conference on Computer
Systems (EuroSys), 2013.

[34] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
I. Stoica, and S. Shenker, “Dominant resource
fairness: Fair allocation of multiple resource types,” In
USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2011

[35] Hadoop Capacity Scheduler,
hadoop.apache.org/docs/r1.2.1/capacityscheduler.html,
(retrieved: Nov. 2014)

[36] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N.
McKeown, B. Prabhakar, and S. Shenker, “pfabric:

Minimal near-optimal datacenter transport,” In ACM
conference of the Special Interest Group on Data
Communication (SIGCOMM), 2013.

[37] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica, “Delay Scheduling: A
Simple Technique for Achieving Locality and Fairness
in Cluster Scheduling,” In European Conference on
Computer Systems (EuroSys), 2010.

[38] A. Shieh, S. Kandula, A. Greenberg, C. Kim,
and B. Saha, “Sharing the data center network,” In
USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2011.

[39] M. Casado, D. Erickson, I. A. Ganichev, R. Griffith,
B. Heller, N. Mckeown, D. Moon, T. Koponen, S.
Shenker, and K. Zarifis, “Ripcord: A modular platform
for data center networking,” UC, Berkeley, Technical
Report UCB/EECS-2010-93

[40] “Facebook Future-Proofs Data Center With Revamped
Network,” http://tinyurl.com/6v5pswv, (retrieved: Nov.
2014)

[41] N. Farrington and A. Andreyev, “Facebook’s
Data Center Network Architecture,” IEEE Optical
Interconnects, 2013.

