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Abstract— In this paper, we present a novel wide baseline based
approach to detect and match feature points in image series. We
found the wide baseline correspondence problem with large scale,
rotation, illumination and affine transformations is still not
tackled very well. We proposed a new matching method which
based on multi-scale Harris algorithm and two-way guided
matching to achieve large number of accurate point
correspondences between un-calibrated image sequences of the
same scene for wide baseline. We apply our method in the
experiments of 3D object reconstruction with satisfied results. It
shows that the guided matching method can be used for severe
scene variations and provide evidence of improved performance
with respect to the SIFT distance and Harris matchers. It is also
useful to the matching in short baseline, and the results of this
method are better than that of the traditional method.
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L INTRODUCTION

Wide Baseline Matching (WBM) is one of the most
important issues that have been extensively studied in the field
of computer vision, as well as the foundation of many
computer vision theory and applications [1][2][3] such as
object identification, camera calibration, 3D reconstruction,
and motion analysis. Meanwhile, WBM is a bottleneck in the
field of computer vision research. Therefore, research on
WBM is of significant importance. WBM primarily divides
into two parts: feature point detection and matching.

The primary methods of feature point detection are Harris
feature point extraction algorithm and Scale Invariant Feature
Transform (SIFT [14]) feature point extraction algorithm.
Both of them have their own advantages and disadvantages.
To get better corner detection results, Keju [6] combined the
two algorithms during 3D reconstruction on demand. But this
method has limited the range of application, which means that
it is not applicable if we merely to get more and more accurate
feature points. Schmid [5] reported that corner extraction
algorithm, being invulnerable to camera pose and sunlight,
performs the best currently. However, as for vision systems
with large scale changing, this method can hardly guarantee
invariability of the feature points. In this case, the paper
provides a novel multi-scale corner detection approach which
combines scale space theory and Harris feature point detection
algorithm.

To match feature points, generally, the relative methods
are used to achieve the correspondence of two images’ point
sets. Considering noise interference, light conditions, and
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other factors which may result in a great number of
mismatches, however, removing mismatches is essential. One
of the direct ways to remove mismatches is to find an affine
transformation which is applicable to all the feature points in
the image, and then use it to pre-estimate the position of these
feature points located in the other image [4]. Nevertheless, it is
not applicable to complicated scenes. To solve this problem,
Ferrari et al. [3] proposed to estimate local affine
transformation matrix for every pair of corresponded feature
points, using least mean square method. Later it was suggested
in another approach that this affine transformation matrix
should be compared to the predetermined threshold to gather
the most similar points to the affine transformation matrix.
Although this method has been proven to be effective in
confirming mismatches, it pays a high cost of computational
complexity. Currently, a comparatively better method in the
field of removing mismatches is to use epipolar geometry
restriction proposed by Zhang [9]. This method can produce
excellent results on the condition that matching points are less
in quantity and parallax is small. However, there are two
issues remained to be solved. One is that the quantity of
matching points is relatively small. The other is the restriction
of disparity. Increasing the disparity means enlarging the
match searching window, while enlarged match searching
window will probably introduce mismatches.

In response to the above problems, we propose a novel
approach combining epipolar geometry, homograph constraint,
mismatch detection and guided matching which, to some
extent, greatly make up the deficiency in these two areas
mentioned above. At first, we use relative method to conduct
initial match of the image feature points set. Secondly, we use
RANSAC (Random Sample Consensus) method to estimate
fundamental matrix and homography matrix and remove
mismatches in correspondence. Then, we remove mismatches
again according to euclidean distance. Finally, we use
optimized fundamental and homography matrix guiding the
matching to get more and more accurate matching points.

In 3D objects reconstruction, the quality of WBM will
affect the result of reconstruction directly. The purpose of this
paper is to get a better algorithm in WBM, and apply it to 3D
reconstruction. Then the accuracy of 3D objects reconstruction
will be enhanced, and fewer cameras or video cameras will be
used in experiment.
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II. FEATURE POINT DETECTION

An effective feature point detection algorithm is
introduced in this section. We introduce the scale space theory
at first.

A. Scale Space Theory

Scale space theory is carried out by scaling the original
image to obtain multi-scale sequence of scale space, and
extracting the main contour based on the sequence as a feature
vector, to achieve edge detection, corner detection and feature
extraction on different resolutions. As an important concept in
scale space theory written by Lindbergh [12][13] that scale
space is describing original image at different levels, each layer
has a scale parameter which may be discrete and also can be
continuous. All scales of space should have the following
properties:

e All the signals should be defined in the same domain.

o  With the growth of scale parameters, the output image
is increasingly blurred.

e Details contained at the coarse level of a signal are
less than that at the fine level. If the local maximum is
a measure of smoothness, as the scale blurred, extreme
non-increasing, this property is known as the “scale
space causality”.

e All that is generated by a convolution operator.
Scale space kernel is defined as:
L(x,y,0) = K(x,y,0) X I(x,y) (M

In (1), I(x,y) is the original image, o is the scale parameter.

For all the images I, if the extremes of the image L(x,y, o)
obtained after its convolution with transform kernel K is less
than the extremes of original image, then we call K the scale
space kernel. Generally we only use the Gaussian kernel as the
scale convolution. Because in Gauss scale space, fine-scale
information on the parameter value with the increase in scale
was inhibited in the scale of the change from coarse to fine
process, no new structure. However, since Gauss kernel is
linear, translation invariant, rotation invariant, has subset
features and many other properties, it can be proved that Gauss
kernel is the only transform kernel to achieve scale space
transformation [8]. Feature points and edges of the same type at
different scales have a causal relationship, which means that
when scale changes, new feature points may arise while old
ones may be displaced or disappear. The ambiguity brought by
the causal relationship is inherent and inevitable which should
never be expected to be eliminated but it can be decreased.

B. Multi-Scale Harris Feature Point Detection Algorithm
Multi-scale Harris feature point detection algorithm was
introduced and the experimental results of this method was
given in this section.
1) Harris Operator of Scale Space
Harris operator R can be represented as:

R = det(C) — ktr?(C) )
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L) Lyw(x)

, () @1 ,
which usually between 0.04~0.06. To obtain the presentation of
Harris operator, I;, I, can respectively be represented as :

In (2), C(x) = k is empirical value,

L,(x,s0,) = 1,(x) * G, (x, s0y,) 3)
I,(x,s0,) = I,(x) * G,(x,s0y,) 4).
Then the C(x) function of Harris algorithm will become
. 12(x,0p)  L,(x,0p)
C(x,01,0p) = 05G [“’D AP 5
(x,0y,0p) = 05G (o) * L,(e0p)  I2(x,0p) (%)

In (5), oy = o, is the selected scale parameter to calculate
feature points; op = so, is the differential scale; G(o;) is
Gaussian function. Through judging to detect the feature corner
under o, scale level

R=det(C)—ktr?(C)>T (©).
2)  Multi-Scale Harris Feature Point Detection Algorithm

Arithmetic operator LOGV?g is forwarded by [7]. Two-
dimensional LOG operator can be represented as:

r2g = () exp (- 55) © F(x) )

Where f(x, y) is the function to be detected. Using a typical
template LOG operator in the text to detect whether the corner
point measured under a certain specified scale level is the
extreme value, which result in an invariant scale feature corner.
The procedure of multi-scale Harris feature point detection
algorithm procedure is as follows:

e  Primarily select scale variables o,, and the threshold
value T, using formula (6) and (7) to calculate the
candidate feature corner of each scale level.

e  Use iterative algorithm to detect whether the LOG
operator of each scale level candidate corner points to
obtain the maximum value, and determine the results
in the location and scale of the final feature corner.
Consider the entire scale space of the image, assumed
to detect the corner set C,p¢ under 0, = o large-scale
level. Decrease the image scale coordinate to 6,, = 04,
and detect new corner set Cey in the neighborhood
of the image. If there is Cpey , regard Cpey as the
corner feature set of the current image. Repeat the
above process until there is no change of Cey, OF
until the scale is small enough.

3) Compare Experimental Results of multi-scale Harris
Feature Point Detection Algorithm with That of Ordinary
Harris Algorithm

During experiment, taking the standard deviation
proportional constant of Gaussian kernel functionS = 0.7,
k = 0.04 [7], use a typical 5 X 5 LOG operator.

0 0 -1 0 0
0O -1 -2 -1 0
-1 -2 -16 -2 -1
0o -1 -2 -1 O
0 0 -1 0 0
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When o, is taken as 2, 1 and multi-scale, the results of
feature point extracting of the original image which is shown
highlighted are shown as follows:

Pickwicy
= |

Figurel. Traditional Harris feature point detection of different scales
compared with multi-scale Harris feature point detection

Stability ~criteria, reliability criteria, and anti-noise
performance can be applied to evaluate the superior or inferior
of the detection algorithm in a certain corner [8][12]. These
three criteria are determined by the repetition rate y of both
initial detection of the corner and the corner points that
detected after the change of parameters, threshold value, or the
increase of the noise. In our experiment, we test the stability
criteria of the multi-scale Harris feature point detection by
changing the scare.

y=—anel 1000 (8)
min(|Cy]|C2])

In (8), C; denotes the detected feature points set. |C;|
represents the number of elements in the collection C;. Formula
(8) shows that the bigger the repetition rate y is, the more
stable the algorithm will be. Results of different scales for
corner detection to the original image is showed in Figure 1, C;
is the corner set with fixed scale of 0 = 1, C, is the corner
points set with the scale of 6, € [2,6] , calculate the repetition
rate of C; and C, respectively. See the experimental results in
Figure 2.
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Figure 2. Comparison of 2 kinds Harris feature point repetition rate

It can be seen from the above graph that, when the scale
changes, repeatability of the scale space theory which based on
Harris feature point detection method for duplicate detection
rate is significantly higher than the original Harris method, that
is to say, Harris feature point detection method that based on
scale space theory is more stable and reliable .
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III. FEATURE POINT MATCHING

In this section, initial matching, epipolar geometry
constraint and homography constraint are introduced. Two-way
guided matching is proposed.

A. Initial Matching

Initial match consists of two steps: general matching and
specific matching. General matching is achieved by
respectively calculating the correlation coefficient of feature
points of the two images. When the correlation coefficient is
larger than a given threshold value, both the feature points are
considered to be reciprocal, and therefore become the candidate
of the corresponding feature points. x Is the feature point of I,
while x' is the feature point of I,. First of all, assume (x,x") is
a real corresponding feature point, then within its neighborhood
there might be more corresponding feature point (y,y’), where
y and y' are respectively within the neighborhood of x and x'.
The necessary condition that (y,y") is supported by real feature
point (x,x") is: the angle betweenx, y and X', y' should be
less than the preliminary set value. Search support strength
from the neighborhood to accumulate matching strength. Since
one feature point can match more than one candidate, each
corresponding point has support strength. Therefore, we just
consider the maximum support of each neighborhood and the
symmetry of such support.

B. Using Epipolar Geometry and Homography Constraint to
Eliminate Mismatches

In this section, fundamental matrix F and homography
matrix H are calculated, and the mismatches are removed at the
same time.

1) Epipolar Geometry Constraint

In two images that view from different view points,
epipolar geometry constraint is the certain limit between the
corresponding points of the same physical space point when
collecting. It can be algebraically described by the fundamental
matrix.

mTFm =0 9)

In (9), F is fundamental matrix, m and m’ is a pair of
matching points of two images. Because there are many
mismatches among the initial matching points, directly use of
usual least squares method to calculate the fundamental matrix
does not achieve good results. We choose the RANSAC
[10][11] method, which is thought to be more robust. The
process of using RANSAC method to get F is also the process
of removing the mismatches.

2) Homography Constraint

Homography constraint maps the points of one geometry
plane surface to another. It is a reversible mapping and obeys
keeping linear. m and m’ are corresponding match points of
the two images, so that the homography H should obey:

m' = Hm (10)

During experiment, we apply the RANSAC method again
to find the solution for H, at the same time, further eliminate
mismatches. The polar line runs through the entire image in
epipolar geometry constraint, which still has relatively large
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matching space. As for the images with lots of feature points,
there are still plenty of mismatches after using epipolar
geometry constraint. The mentioned homography constraint
method above can further diminish the scope of matching so
that matching precision is proved. H is a mapping of points
from one geometric plane surface to another, which is
inapplicable to the images of significant depth change.
Nevertheless, most physical scene images have little depth
change, by appropriately broadening the threshold of matching,
good results can be achieved in practice.

3) Guided Matching by Using Epipolar Geometry and
Homography Constraint

The above matching process has removed a large number
of mismatches, but it gets less correct matching points at the
same time. In order to solve this problem, we integrated the use
of epipolar geometry and homography constraint to guided
matching. Redirect and match all feature points of image I; and
I, to get more accurate matching points.

The epipolar geometry constraint show that m; which is the
matching point of m; (m; is the feature points detected in I,) is
necessarily adjacent to the corresponding polar line. According
to homography constraint, m{ is also near to estimation point
fi. S3 the intersection of the above two mentioned areas are
the approximate area where the matching points located, see

Figure 3below.
"’/-__k;:a H\\
/ ‘\rgfj:
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2
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Figure 3. The searching scope of guided matching

Compared with the initial match, selecting the area defined
in S3 to guided matching have greatly diminished the searching
range of finding matching points and reduced but cannot avoid
mismatching. Apply the euclidean distance detection method to
calculate the euclidean distance between m; and fij, sort the
matching points from short to long in accordance with the
euclidean distance, and select the top-ranked matching points.
Further diminish the threshold for interior points of RANSAC
method, and use top-ranked matching points to solve F, H.
Then to guided match and select the accurate matching points
with the euclidean distance again, see Figure 4, use two cycles
guided matching to obtain more accurate F and H and make
more accurate matching. The above steps have completed the
guided matching of the feature points of I, . Similarity, apply
the same method to guided matching the feature points of I,
and then take their union set.

Our experiment guides all the feature points for the second
round of guided matching rather than keep only top-ranked
points, because each round will get even better.

IV. EXPERIMENTS AND RESULT

The procedures and results of our experiment are shown in
this section.
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A. Experimental Operation

The entire process of experimental test operation is shown
in Figure 4:

(4) guided match

the featurg
/ points of Il \

P (3)Calculating (5)Selecting the
ng I}?ilnt ial | ] the F and H ‘/C;CD‘ relative accurate
ching base on I1 ngy matching point

I \_/

(1) Feature (7?
points Merging

detection (6)0 the
perate on the
matching point of T2 / results
follow (3) (4) (5)

6

Figure 4. Flow chart of the whole experiment

B. Experimental Results

In order to verify the feasibility of proposed algorithm,
this paper conducted experiments with two downloaded images
captured by an un-calibrated SLR camera from different view
points, and the parallax angle is 85 degrees. The two images
we used are as follow:

Figure 5. Original images

The results are showed in Figure 6-Figure 8. Every pair of
matching points in I; and I, is connected by a straight line in
the figure. Figure 6 shows the results of initial matching, Figure
7 shows the matching results of epipolar geometry and
homography constraint. Figure 8 shows the results of two-way
guided matching. The number of accurate matching points
before guided matching is 102, and the number of matching
points after two-way guided matching is 320 pairs. We can see
from the corresponding matching points from Figure 8 that the
amount of the feature points is relatively large and match each
other accurately, but the matching points which can express the
features of the box, such as feature points at the top side of the
box are not matched by our method for the epipolar geometry
constraint can fit the whole image, but the homography
constraint cannot. In our experiment, the method of WBM is
even applicable to the image pairs whose parallax angle are 85
degrees, but it is more suitable to that less than 80 degrees.
Figure 9-Figure 11 are the results of our approach by using the
proposed images whose parallax angle is 65 degrees. We can
easily find out that after applying two-way guided matching
algorithm, nearly all feature points are matched correctly, and
there is no error matching at all.
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Figure 7. The results of using epipolar geometry and homography constraint to
remove mismatches (102 pairs)

Figure 10. The results of using epipolar geometry and
homography constraint to remove mismatches (198 pairs)
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Figure 11. Two-way Guided matching (685 pairs)

To verify the correctness of our algorithm, we calculated
the parallax angle of the images and conducted experiments on
four groups of error rate testing. The results show that the
calculated parallax angle is in accordance with the real parallax
angle.

60%

Error Rai?a% | Initial
Matching
20% .
Guide-
Matching
0% 1 1 1

Expl Exp2 Exp3 Exp4

Figure 12. Results Statistics

Figure 12 shows the initial matching and the guided
matching error rate. As can be seen from the chart, this method
greatly reduces the matching error rate.

V. CONCLUSION AND FUTURE WORK

In this paper, we successfully solved the problem of how
to obtain sufficient and reliable matching points over two wide
baseline image pairs. First, a large number of feature points
are detected by using multi-scale Harris corner detection
algorithm. Then, we comprehensively apply epipolar geometry
and homography constraint to guided matching algorithm,
which effectively settle the conflict between wide baseline and
sufficient matching points without reducing the accuracy of
the matching points. Meanwhile we have applied Euclidean
distance to filter the matching points, making the matching
more precise. Finally, we have tested a number of wide
baseline image pairs under different severe camera motions
with illumination changes, self-similarities, and have obtained
the excellent results for all of the images. The experiments
show that this algorithm can effectively detect and match, and
it also has better match property compared with the traditional
corner detection and matching algorithm. This method can
increase the quantity of common points in 3D and then
enhance the accuracy of 3D reconstruction. However, due to
the homography constraint of geometric plane surface that
used in this algorithm, the pictures with great depth change
usually get poor test results, which still needs to be improved
in future research.
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