

Practical Math and Simulation in Software Design

Jerry Overton

Computer Sciences Corporation (CSC)

joverton@csc.com

Abstract – Formal verification of a software design

is often much more costly than producing the design

itself; and formal methods usually have limited use in

real-world software design. In this work, we propose

cost-effective methods – based on software design

patterns – of applying mathematics and simulation to

real-world software designs.

Keywords – Software Design Pattern, Practical

Formal Method, POAD Theory

I. INTRODUCTION

The cost of using formal methods to verify a

software design is usually an order of magnitude

greater than the cost of creating the design itself [1].

For many projects, formal methods are only worth

using for reducing the risk of the most serious errors

– flaws that may affect safety, for example [2]. We

propose practical (cost-effective) methods of

mathematics and simulation for real-world software

designs. We introduce a method for validating the

adequacy of software designs based on the

mathematics of Pattern-Oriented Analysis and Design

(POAD) Theory [3], [4] and a technique for

simulating software designs based on fuzzy logic.

The result is the practical application of formal

methods to a real-world software design. That is, we

apply to an actual design for working software a

formal method for validating the design and

automating the analysis; and we do so in less time

than it took to create the software design.

We start by specifying the design for a real-world

problem of interest. We continue by using POAD

Theory to structure an adequacy argument for the

design. We apply a simulation technique based on

fuzzy logic to fully justify our adequacy argument.

Finally, we close with an analysis of our technique

and conclusions about the significance of this

research.

II. STATE OF THE ART

Previous works like [5], [6] and [7] propose

methods of pattern-based reasoning using rules

generalized from specific design experiences. The

works of [5] and [6] build rules from observed

correlations between patterns and a particular

software quality. The work of [7] places all possible

pattern implementations into a limited set of

categories, and then derives rules for each category.

Works like [5], [6] and [7] required time-consuming

tailoring of general rules before predictions could be

made about real-world software designs. For

example, the method described in [7] required users

to make a complete formal model of a working

system before it could be used to make predictions

about the system’s design. By contrast, we make

predictions about software designs based on

subjective arguments and use general rules only to

structure those arguments and demonstrate validity.

Our method allows us to make predictions about the

consequences of a design with an effort much smaller

than that required by previous works.

III. A COLLABORATIVE SYSTEM DESIGN

Figure 1 is an example of a collaborative system

[8] designed to report the environmental condition of

a given region. Each sensor is capable of recording

and reporting its local conditions, but to record and

report the condition of the entire region requires that

all sensor stations cooperate.

The nodes in the network are autonomous and

spatially distributed across the region shown. Each

sensor is capable of autonomously recording and

reporting its local environmental conditions to a

controller in its region. Task execution is distributed

across multiple nodes since reporting conditions for

the entire region requires that a controller

communicate with multiple sensor stations. Sensors

72

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

can enter and leave the network at anytime. Every

station is wirelessly connected to every other station,

so no single sensor failure can disrupt the overall

network connectivity.

We expect that node failures will be common and

that the wireless communication links will be prone

to frequent interruptions. For example, the sensor

stations are exposed to adverse weather, they are

knocked over and broken easily, and they can be

expected to run out of power. If any of these things

happen at the right time, a controller in a region may

miss a sensor update and become out of touch with

the current conditions in the region.

Figure 1: Example Collaborative System [9]

A robust design will allow the sensor stations

(known as nodes) to both detect and mitigate these

kinds of failures. A satisfactory design must satisfy

the following requirements.

Req. 1. Group Communication. Each node must be

able to communicate with all other nodes and

detect when a node becomes unresponsive.

Req. 2. Fault Tolerance. The network must be

capable of using node redundancy to compensate

for the loss of any particular node.

Req. 3. Degraded Mode Operation. Each node must

be capable of performing limited functions while

disconnected from the network, and be capable

of resuming full function when network

communication is restored.

Figure 2 shows our design for a robust

collaborative system. We consider Figure 2 a real-

world design since it was taken from the design of an

actual software system built to provide fault tolerance

in collaborative systems [10]. Each GroupNode gets

its ability to collaborate through an association with a

CommStrategy object. The CommStrategy has an

association back to its GroupNode in case the

GroupNode needs to be notified of events from the

CommStrategy. Using the JGroup communication

API [11] the PushPullStrategy gives each

PushPullNode the ability to communicate with other

PushPullNodes.

Figure 2: Design for robust collaborative system.

Figure 3 shows how the design works. The

Controller relies on either sensor A or sensor B to

report temperature for a given region. When the

Controller wants a temperature reading from the

zone, it joins the zone's group and executes the

commstrategy.GroupOperation() operation. JGroups

elects a leader within the group and calls getState()

on that node (let's assume that sensor A was chosen).

The getState() operation of sensor A takes a

temperature reading and sets the reading as the

operation's return value. JGroups then calls setState()

on the Controller, passing it the temperature reading

from sensor A. In subsequent requests for the zone

temperature, if sensor A becomes unresponsive,

JGroups will failover to sensor B.

Figure 3: Nodes participating in a group operation

73

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

We have a design, but is it adequate: does it solve

our problem and satisfy our requirements? In the next

section, we use the mathematics of POAD Theory to

structure an adequacy argument for the design.

IV. APPLYING PRACTICAL MATHEMATICS

POAD Theory is based on Problem-Oriented

Software Engineering (POSE) [12] where

engineering design is represented as a series of

transformations from complex engineering problems

to simpler ones. In POSE a software engineering

problem has context (a real-world environment), W;

a requirement, R; and a solution (which may or may

not be known), S. We write to indicate

that we intend to find a solution S that, given a

context of W, satisfies R. The problem, , of

designing a collaborative system can be expressed in

POSE as:

(1)

where is the real-world environment for the

system (shown in Figure 1); is the system itself and

 are requirements Req. 1, Req. 2, and Req. 3.

Equation (1) says that we can expect to satisfy R

when the system S is applied in context W.

POAD Theory uses POSE to represent software

design patterns as justification for transforming a

complex, unfamiliar problem into simpler, more

familiar one [3], [4]. For example, the engineering

expertise documented in the Object Group pattern

describes how to achieve reliable multicast

communication among objects in a network [14]. We

can use the engineering judgment in the Object

Group pattern (represented as) to justify a

solution interpretation (represented by the rule

) from to and . We

write this as

(2)

Equation (2) implies that if we have a solution to

 and then we also have a solution to

 . The reliable multicast communication

that we get from the Object Group pattern may be

sufficient to satisfy Req. 1 and Req. 2, but we have

not yet addressed Req. 3. To satisfy Req. 3, we need

to insulate so that it can continue to operate after

losing communication with its environment. The

Explicit Interface pattern describes how to achieve

separation between an object and its environment

[15]. We can use the Explicit Interface pattern

 to justify the transformation of into a

 that is separated from its environment by an

interface .

(3)

Equation (3) is a solution tree with at

the root. Two problem transformations extend the

tree upward into the leaves , , and .

The equation structures an argument whose adequacy

is established by the conjunction of all justifications –

in this case by the engineering expertise contained in

the Object Group pattern and the

engineering expertise contained in the Explicit

Interface pattern . A solved problem is

written with a bar over it; for example, if the Object

Group pattern were sufficient to convince us that we

have an adequate communication mechanism, then in

(3) we could rewrite to appear as .

The argument represented by (3) is not complete

and fully-justified until all leaf problems have been

solved. We complete the argument by adding

transformations and justifications sufficient to solve

 , , and .

(4)

In (4) the problems , , and

 correspond to the Receiver,

PushPullStrategy and PushPullNode from Figure 2.

The is an implementation of the

communication mechanism prescribed by the Object

Group pattern, is an implementation of the

interface prescribed by the Explicit Interface pattern,

and is an implementation of the domain

74

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

object prescribed by the Explicit Interface pattern.

Although we already have justifications and ;

justifications , , and are assumed, yet

unknown. We can consider solved by

finding , , and . In the next section, we use

design simulation results to complete our missing

justifications.

V. APPLYING PRACTICAL SIMULATION

In this section, we use Fuzzy Inference [16] to

simulate the effects of the Receiver, PushPullStrategy

and PushPullNode (from Figure 2). Fuzzy inference

is based on a generalized modus ponens [16] where

arguments take the form:

(5)

For example, suppose we accepted the general

rule that: if the Object Group pattern were

implemented as part of our collaborative system, then

the group communication of our system would be

good. If we knew that, in our system, the Object

Group pattern were implemented poorly, then fuzzy

inference would allow us to conclude that the group

communication of the system would also be poor.

In works like [17], [18], and [19] fuzzy logic has

been used to reverse engineer design patterns: use

fuzzy inference to determine if an existing solution,

known to satisfy certain requirements, matches a

general design pattern. In this work, we apply that

idea in reverse. For a given design pattern, we use

fuzzy inference to determine if a particular

implementation of that pattern will lead to a solution

that we can trust will satisfy particular requirements.

We begin our simulation by creating fuzzy rules

[16] that represent the design constraints of (3) and

(4):

Rule 1. If the Object Group pattern is implemented

then group communication will be good

Rule 2. If the Object Group pattern is not

implemented then fault tolerance will be low

Rule 3. If the Explicit Interface pattern is not

implemented then degraded-mode operation will

not be enabled

Rule 4. If the PushPullNode communicates

statically then degraded-mode operation will not

be enabled

Rule 5. If the PushPullNode communicates

dynamically and the Explicit Interface pattern is

implemented then degraded-mode operation will

be enabled

Rule 6. If the PushPullNode communicates

dynamically and the Object Group pattern is

implemented then group communication will be

good and fault tolerance will be high.

Each rule makes statements concerning input and

output variables. Each variable has membership

functions [16] that allow the inference engine to turn

the numeric values of the variables into the more

intuitive concepts used in the Rules 1-6. For

example, we defined membership functions (Poor,

Good, and Moderate) for the Group Communication

output variable so that a value of 0.7 would be

considered mostly moderate, slightly good, and not at

all poor. As shown in Figure 4, input variables

representing our implementation choices are fed into

an inference engine, which has been loaded with

Rules 1-6. The inference engine calculates values for

fuzzy output variables, which represent the results of

the simulation.

Figure 4: Process flow of the simulation.

We simulate the design choices made in (4) by

assigning specific values to the fuzzy input variables

 , , and . Our variables range

between 0 and 1 and we chose numeric values we

believed best reflected our engineering judgment.

75

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

We assigned a value of 0.949 to the variable

because JGroups provides a faithful implementation

of the Object Group pattern; we assigned a value of

0.762 to the variable since we consider it a

good approximation Object Group pattern’s node

element; and we assign a value 0.584 to the

variable because we believe that it is not a very good

representation of the intent of the Explicit Interface

pattern.

The results of the simulation predict that the

design decisions described in (4) and shown in Figure

2 will result in a collaborative system that satisfies

Req. 1-3 (see Figure 5). The simulation predicts that

the system will have good group communication

(0.833), good fault tolerance (0.815), and will operate

well in degraded mode (0.807).

Figure 5: The results of collaborative system
simulation.

The positive simulation results along with our

analysis of the design spaces provides the

justification (, , and), needed to complete the

argument (given by (3) and (4)) that the design

shown in Figure 2 is adequate.

VI. ANALYSIS AND CONCLUSIONS

Although the method we introduced does not

provide us with proof that our design is adequate, it

does provide us with a sound argument for a likely-

stable design. Generalized modus ponens – the basis

of fuzzy inference – is sound in that its conclusions

are true if the premises are true [20]. We can trust

the results of our simulation as long as we trust the

rules that we establish for governing the simulation.

Stable software designs tend to be built from stable

sub-designs [21] – although we recognize that using

stable sub-designs does not necessarily guarantee

overall design stability. Because the mathematics

that we use structures arguments based on software

design patterns – known-stable designs – we have

reason to believe that we are likely arguing for the

adequacy of a stable design.

Our method is practical in that, with a relatively

small amount of effort, we were able to use math and

simulation to discover things about the design that

are not obvious. With Eq. 1-5 and the associated

explanatory text, we were able to create a

mathematical model that had a meaningful

correspondence to the collaborative system design in

Figure 2. We were able to use those equations to

structure an argument for the design’s adequacy and

to predict that: given the argument structure defined

by (3) and (4); and the engineering expertise

contained in the Object Group and Explicit Interface

patterns; all we needed to validate the design of

Figure 2 was to find justifications , , and . We

were able to provide that justification using Rule 1-6;

fuzzy variable membership function definitions; and

fuzzy inference.

Our use of math and simulation is, essentially, an

application of analogical reasoning [22] where we

draw a comparison between the design of Figure 2

and software design patterns. We were able to argue

for the adequacy of our design by replacing the more

difficult task of predicting the consequences of the

design with the much easier task of comparing the

design with known software design patterns. We

reason that the closer our design is to the solutions

described in the design patterns, the closer our results

will be to the consequences described in the design

patterns. Our simulation tells us just how close our

design needs to be in order to produce satisfying

results.

We started with a known software design,

structured an argument for the adequacy of the

design, and completed the argument using

simulation. That order gave us a practical method of

validation, but the individual methods are still valid

even if we change the order. Suppose, instead, we

started by structuring the argument, and then ran the

simulation, and last found a software design that fit

the argument and simulation. Instead of validating

existing software, we would be predicting the

existence of unknown software. We would have to

simulate software that has not yet been designed;

requiring us to guess at a likely implementation. In

the future we will investigate if, by changing the

order of our method (and overcoming the problems

caused by that change), it is possible to use these

76

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

same techniques to create an equally practical method

of software design prediction.

ACKNOWLEDGEMENTS

We would like to thank Dariusz W. Kaminski of

the Marine Scotland directorate of the Scottish

Government for his insightful review and

commentary.

REFERENCES

[1] D. Jackson. Lightweight Formal Methods. FME
2001: Formal Methods for Increasing Software

Productivity, Lecture Notes in Computer Science,

Volume 2021, pp. 1, 2001

[2] J.P Bowen. Formal Methods in Safety-Critical

Standards. In Proceedings of 1993 Software

Engineering Standards Symposium (SESS'93),

Brighton, UK, IEEE Computer Society Press, pp.
168-177, 1993.

[3] J. Overton, J. Hall, L. Rapanotti, and Y. Yu.

Towards a Problem Oriented Engineering
Theory of Pattern-Oriented Analysis and Design.

In Proceedings of 3rd IEEE International

Workshop on Quality Oriented Reuse of

Software (QUORS), 2009.

[4] J. Overton, J. G Hall, and L. Rapanotti. A

Problem-Oriented Theory of Pattern-Oriented
Analysis and Design. 2009, Computation World:

Future Computing, Service Computation,

Cognitive, Adaptive, Content, Patterns, pp. 208-

213, 2009.

[5] D. J. Ram, P. J. K. Reddy, and M. S. Rajasree. An

Approach to Estimate Design Attributes of

Interacting Patterns.
http://dos.iitm.ac.in/djwebsite/LabPapers/Jithendr

aQAOOSE2003.pdf, Last Accessed: 30 January

2011.

[6] J. Paakki, A. Karhinen, J. Gustafsson, L.

Nenonen, and A. Verkamo. Software metrics by

architectural pattern mining. In Proceedings of
the International Conference on Software: Theory

and Practice (16th IFIP World Computer

Congress), pp. 325–332, 2000.

[7] P. Tonella and G. Antoniol. Object Oriented

Design Pattern Inference. In Proceedings of the

IEEE International Conference on Software

Maintenance. IEEE Computer Society
Washington, DC, USA, 1999.

[8] T. Clouqueur, K.K. Saluja, and P. Ramanathan.

Fault Tolerance in Collaborative Sensor
Networks for Target Detection. IEEE

Transactions on Computers. Vol. 53, No. 3, pp.

320-333, March 2004.

[9] http://www.citysense.net/, Last Accessed: May

2011

[10] J. Overton. Collaborative Fault Tolerance using

JGroups. Object Computing Inc. Java News

Brief, 2007,
http://jnb.ociweb.com/jnb/jnbSep2007.html, Last

Accessed April, 2011.

[11] The JGroups Project. http://www.jgroups.org/.
Last Accessed April, 2011

[12] J. G. Hall, L. Rapanotti, and M. Jackson.
Problem-oriented software engineering: solving

the package router control problem. IEEE Trans.

Software Eng., 2008.

doi:10.1109/TSE.2007.70769.

[13] Frank Buschmann, Kevlin Henney, and Douglas

C. Schmidt. Pattern-Oriented Software

Architecture: On Patterns and Pattern
Languages, Volume 5. John Wiley & Sons, West

Sussex, England, 2007.

[14] S. Maffeis. The Object Group Design Pattern. In
Proceedings of the 1996 USENIX Conference on

Object-Oriented Technologies, (Toronto,

Canada), USENIX, June 1996.

[15] F. Buschmann, K. Henney, and D. Schmidt.

Pattern-Oriented Software Architecture: A

Pattern Language for Distributed Computing
(Wiley Software Patterns Series), Volume 4. John

Wiley & Sons, 2007.

[16] K. Tanaka. An Introduction to Fuzzy Logic for
Practical Application. Berlin: Springer, 1996.

[17] J. Niere. Fuzzy Logic based Interactive Recovery

of Software Design. Proceedings of the 24th
International Conference on Software

Engineering, Orlando, Florida, USA, 2002, pp.

727-728.

[18] C. De Roover, J. Brichau, and T. D’Hondt.

Combining fuzzy logic and behavioral similarity

for non-strict program validation. In Proc. of the
8th Symp. on Principles and Practice of

Declarative Programming, pp. 15–26, 2006.

[19] I. Philippow, D. Streitferdt, M. Riebisch, and S.
Naumann. An approach for reverse engineering

of design patterns. Software Systems Modeling,

pp. 55–70, 2005.

[20] S.J. Russell and P, Norvig. Artificial Intelligence:

A Modern Approach. Englewood Cliffs, NJ:

Prentice Hall, 1995.

[21] R. Monson-Haefel. 97 Things Every Software

Architect Should Know. O’Reilly Media, Inc.

2009.

[22] G. Polya. Mathematics and Plausible Reasoning:
Volume II, Patterns of Plausible Inference.

Princeton University Press. 1968.

77

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

