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Abstract – Formal verification of a software design 

is often much more costly than producing the design 

itself; and formal methods usually have limited use in 

real-world software design. In this work, we propose 

cost-effective methods – based on software design 

patterns – of applying mathematics and simulation to 

real-world software designs. 
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I. INTRODUCTION 

The cost of using formal methods to verify a 

software design is usually an order of magnitude 

greater than the cost of creating the design itself [1]. 

For many projects, formal methods are only worth 

using for reducing the risk of the most serious errors 

– flaws that may affect safety, for example [2]. We 

propose practical (cost-effective) methods of 

mathematics and simulation for real-world software 

designs. We introduce a method for validating the 

adequacy of software designs based on the 

mathematics of Pattern-Oriented Analysis and Design 

(POAD) Theory [3], [4] and a technique for 

simulating software designs based on fuzzy logic. 

The result is the practical application of formal 

methods to a real-world software design. That is, we 

apply to an actual design for working software a 

formal method for validating the design and 

automating the analysis; and we do so in less time 

than it took to create the software design. 

We start by specifying the design for a real-world 

problem of interest.  We continue by using POAD 

Theory to structure an adequacy argument for the 

design.  We apply a simulation technique based on 

fuzzy logic to fully justify our adequacy argument.  

Finally, we close with an analysis of our technique 

and conclusions about the significance of this 

research. 

II. STATE OF THE ART 

Previous works like [5], [6] and [7] propose 

methods of pattern-based reasoning using rules 

generalized from specific design experiences.  The 

works of [5] and [6] build rules from observed 

correlations between patterns and a particular 

software quality.  The work of [7] places all possible 

pattern implementations into a limited set of 

categories, and then derives rules for each category.  

Works like [5], [6] and [7] required time-consuming 

tailoring of general rules before predictions could be 

made about real-world software designs. For 

example, the method described in [7] required users 

to make a complete formal model of a working 

system before it could be used to make predictions 

about the system’s design. By contrast, we make 

predictions about software designs based on 

subjective arguments and use general rules only to 

structure those arguments and demonstrate validity.  

Our method allows us to make predictions about the 

consequences of a design with an effort much smaller 

than that required by previous works. 

III. A COLLABORATIVE SYSTEM DESIGN 

Figure 1 is an example of a collaborative system  

[8] designed to report the environmental condition of 

a given region. Each sensor is capable of recording 

and reporting its local conditions, but to record and 

report the condition of the entire region requires that 

all sensor stations cooperate.  

The nodes in the network are autonomous and 

spatially distributed across the region shown. Each 

sensor is capable of autonomously recording and 

reporting its local environmental conditions to a 

controller in its region. Task execution is distributed 

across multiple nodes since reporting conditions for 

the entire region requires that a controller 

communicate with multiple sensor stations. Sensors 
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can enter and leave the network at anytime. Every 

station is wirelessly connected to every other station, 

so no single sensor failure can disrupt the overall 

network connectivity.  

We expect that node failures will be common and 

that the wireless communication links will be prone 

to frequent interruptions. For example, the sensor 

stations are exposed to adverse weather, they are 

knocked over and broken easily, and they can be 

expected to run out of power. If any of these things 

happen at the right time, a controller in a region may 

miss a sensor update and become out of touch with 

the current conditions in the region.  

 

Figure 1: Example Collaborative System [9] 

A robust design will allow the sensor stations 

(known as nodes) to both detect and mitigate these 

kinds of failures. A satisfactory design must satisfy 

the following requirements. 

Req.  1. Group Communication. Each node must be 

able to communicate with all other nodes and 

detect when a node becomes unresponsive.  

Req.  2. Fault Tolerance. The network must be 

capable of using node redundancy to compensate 

for the loss of any particular node. 

Req.  3. Degraded Mode Operation. Each node must 

be capable of performing limited functions while 

disconnected from the network, and be capable 

of resuming full function when network 

communication is restored. 

Figure 2 shows our design for a robust 

collaborative system. We consider Figure 2  a real-

world design since it was taken from the design of an 

actual software system built to provide fault tolerance 

in collaborative systems [10]. Each GroupNode gets 

its ability to collaborate through an association with a 

CommStrategy object. The CommStrategy has an 

association back to its GroupNode in case the 

GroupNode needs to be notified of events from the 

CommStrategy. Using the JGroup communication 

API [11] the PushPullStrategy gives each 

PushPullNode the ability to communicate with other 

PushPullNodes.  

 

Figure 2: Design for robust collaborative system. 

Figure 3 shows how the design works. The 

Controller relies on either sensor A or sensor B to 

report temperature for a given region. When the 

Controller wants a temperature reading from the 

zone, it joins the zone's group and executes the 

commstrategy.GroupOperation() operation. JGroups 

elects a leader within the group and calls getState() 

on that node (let's assume that sensor A was chosen).  

The getState() operation of sensor A takes a 

temperature reading and sets the reading as the 

operation's return value. JGroups then calls setState() 

on the Controller, passing it the temperature reading 

from sensor A. In subsequent requests for the zone 

temperature, if sensor A becomes unresponsive, 

JGroups will failover to sensor B.  

 

Figure 3: Nodes participating in a group operation 
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We have a design, but is it adequate: does it solve 

our problem and satisfy our requirements? In the next 

section, we use the mathematics of POAD Theory to 

structure an adequacy argument for the design. 

IV. APPLYING PRACTICAL MATHEMATICS 

POAD Theory is based on Problem-Oriented 

Software Engineering (POSE) [12] where 

engineering design is represented as a series of 

transformations from complex engineering problems 

to simpler ones. In POSE a software engineering 

problem has context (a real-world environment), W; 

a requirement, R; and a solution (which may or may 

not be known), S.  We write        to indicate 

that we intend to find a solution S that, given a 

context of W, satisfies R. The problem,         , of 

designing a collaborative system can be expressed in 

POSE as: 

                

(1)  

where   is the real-world environment for the 

system (shown in Figure 1);   is the system itself and 

  are requirements Req.  1, Req.  2, and Req.  3. 

Equation (1) says that we can expect to satisfy R 

when the system S is applied in context W. 

POAD Theory uses POSE to represent software 

design patterns as justification for transforming a 

complex, unfamiliar problem into simpler, more 

familiar one [3], [4].  For example, the engineering 

expertise documented in the Object Group pattern 

describes how to achieve reliable multicast 

communication among objects in a network [14]. We 

can use the engineering judgment in the Object 

Group pattern (represented as     ) to justify a 

solution interpretation (represented by the rule 

        ) from         to      and    .  We 

write this as 

        

               
        
    

 

(2)  

Equation (2) implies that if we have a solution to 

     and     then we also have a solution to 

       .   The reliable multicast communication 

that we get from the Object Group pattern may be 

sufficient to satisfy Req.  1 and Req.  2, but we have 

not yet addressed Req.  3. To satisfy Req.  3, we need 

to insulate     so that it can continue to operate after 

losing communication with its environment. The 

Explicit Interface pattern describes how to achieve 

separation between an object and its environment 

[15].  We can use the Explicit Interface pattern 

      to justify the transformation of     into a 

     that is separated from its environment by an 

interface     . 

    
         

   
        
    

               
        
    

 

(3)  

Equation (3) is a solution tree with          at 

the root. Two problem transformations extend the 

tree upward into the leaves     ,     , and     .   

The equation structures an argument whose adequacy 

is established by the conjunction of all justifications – 

in this case by the engineering expertise contained in 

the Object Group pattern      and the 

engineering expertise contained in the Explicit 

Interface pattern     .  A solved problem is 

written with a bar over it; for example, if the Object 

Group pattern were sufficient to convince us that we 

have an adequate communication mechanism, then in 

(3) we could rewrite      to appear as              .  

The argument represented by (3) is not complete 

and fully-justified until all leaf problems have been 

solved. We complete the argument by adding 

transformations and justifications sufficient to solve 

    ,     , and     .  

 
             

    

        
    

                  

    

        
    

                 

    

        
    

 

(4)  

In (4) the problems      ,        , and 

       correspond to the Receiver, 

PushPullStrategy and PushPullNode  from Figure 2.  

The      is an implementation of the 

communication mechanism prescribed by the Object 

Group pattern,         is an implementation of the 

interface prescribed by the Explicit Interface pattern, 

and        is an implementation of the domain 
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object prescribed by the Explicit Interface pattern. 

Although we already have justifications     and   ; 

justifications   ,    ,  and    are assumed, yet 

unknown.  We can consider         solved by 

finding   ,    ,  and   .  In the next section, we use 

design simulation results to complete our missing 

justifications. 

V. APPLYING PRACTICAL SIMULATION 

In this section, we use Fuzzy Inference [16] to 

simulate the effects of the Receiver, PushPullStrategy 

and PushPullNode  (from Figure 2).  Fuzzy inference 

is based on a generalized modus ponens [16] where 

arguments take the form: 

 

           

  
            

 

(5)  

For example, suppose we accepted the general 

rule that: if the Object Group pattern were 

implemented as part of our collaborative system, then 

the group communication of our system would be 

good.  If we knew that, in our system, the Object 

Group pattern were implemented poorly, then fuzzy 

inference would allow us to conclude that the group 

communication of the system would also be poor.  

In works like [17], [18], and [19] fuzzy logic has 

been used to reverse engineer design patterns: use 

fuzzy inference to determine if an existing solution, 

known to satisfy certain requirements, matches a 

general design pattern.  In this work, we apply that 

idea in reverse. For a given design pattern, we use 

fuzzy inference to determine if a particular 

implementation of that pattern will lead to a solution 

that we can trust will satisfy particular requirements. 

We begin our simulation by creating fuzzy rules 

[16] that represent the design constraints of (3) and 

(4): 

Rule 1. If the Object Group pattern is implemented 

then group communication will be good 

Rule 2. If the Object Group pattern is not 

implemented then fault tolerance will be low 

Rule 3. If the Explicit Interface pattern is not 

implemented then degraded-mode operation will 

not be enabled 

Rule 4. If the PushPullNode  communicates 

statically then degraded-mode operation will not 

be enabled 

Rule 5. If the PushPullNode  communicates 

dynamically and the Explicit Interface pattern is 

implemented then degraded-mode operation will 

be enabled 

Rule 6. If the PushPullNode communicates 

dynamically and the Object Group pattern is 

implemented then group communication will be 

good and fault tolerance will be high. 

 

Each rule makes statements concerning input and 

output variables. Each variable has membership 

functions [16] that allow the inference engine to turn 

the numeric values of the variables into the more 

intuitive concepts used in the Rules 1-6.  For 

example, we defined membership functions (Poor, 

Good, and Moderate) for the Group Communication 

output variable so that a value of 0.7 would be 

considered mostly moderate, slightly good, and not at 

all poor.  As shown in Figure 4, input variables 

representing our implementation choices are fed into 

an inference engine, which has been loaded with 

Rules 1-6.  The inference engine calculates values for 

fuzzy output variables, which represent the results of 

the simulation.  

 

Figure 4: Process flow of the simulation. 

We simulate the design choices made in (4) by 

assigning specific values to the fuzzy input variables 

     ,        , and       .  Our variables range 

between 0 and 1 and we chose numeric values we 

believed best reflected our engineering judgment.  
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We assigned a value of 0.949 to the       variable 

because JGroups provides a faithful implementation 

of the Object Group pattern; we assigned a value of 

0.762 to the          variable since we consider it a 

good approximation Object Group pattern’s node 

element; and we assign a value 0.584 to the         

variable because we believe that it is not a very good 

representation of the intent of the Explicit Interface 

pattern.  

The results of the simulation predict that the 

design decisions described in (4) and shown in Figure 

2 will result in a collaborative system that satisfies 

Req. 1-3 (see Figure 5). The simulation predicts that 

the system will have good group communication 

(0.833), good fault tolerance (0.815), and will operate 

well in degraded mode (0.807).  

 

Figure 5: The results of collaborative system 
simulation. 

The positive simulation results along with our 

analysis of the design spaces provides the 

justification (  ,    ,  and   ), needed to complete the 

argument (given by (3) and (4)) that the design 

shown in Figure 2 is adequate.  

VI. ANALYSIS AND CONCLUSIONS 

Although the method we introduced does not 

provide us with proof that our design is adequate, it 

does provide us with a sound argument for a likely-

stable design. Generalized modus ponens – the basis 

of fuzzy inference – is sound in that its conclusions 

are true if the premises are true [20].  We can trust 

the results of our simulation as long as we trust the 

rules that we establish for governing the simulation.  

Stable software designs tend to be built from stable 

sub-designs [21] – although we recognize that using 

stable sub-designs does not necessarily guarantee 

overall design stability.  Because the mathematics 

that we use structures arguments based on software 

design patterns – known-stable designs – we have 

reason to believe that we are likely arguing for the 

adequacy of a stable design. 

Our method is practical in that, with a relatively 

small amount of effort, we were able to use math and 

simulation to discover things about the design that 

are not obvious.  With Eq. 1-5 and the associated 

explanatory text, we were able to create a 

mathematical model that had a meaningful 

correspondence to the collaborative system design in 

Figure 2. We were able to use those equations to 

structure an argument for the design’s adequacy and 

to predict that: given the argument structure defined 

by (3) and (4); and the engineering expertise 

contained in the Object Group and Explicit Interface 

patterns; all we needed to validate the design of 

Figure 2 was to find justifications   ,    ,  and   . We 

were able to provide that justification using Rule 1-6; 

fuzzy variable membership function definitions; and 

fuzzy inference. 

Our use of math and simulation is, essentially, an 

application of analogical reasoning [22] where we 

draw a comparison between the design of Figure 2 

and software design patterns.  We were able to argue 

for the adequacy of our design by replacing the more 

difficult task of predicting the consequences of the 

design with the much easier task of comparing the 

design with known software design patterns. We 

reason that the closer our design is to the solutions 

described in the design patterns, the closer our results 

will be to the consequences described in the design 

patterns. Our simulation tells us just how close our 

design needs to be in order to produce satisfying 

results. 

We started with a known software design, 

structured an argument for the adequacy of the 

design, and completed the argument using 

simulation. That order gave us a practical method of 

validation, but the individual methods are still valid 

even if we change the order.  Suppose, instead, we 

started by structuring the argument, and then ran the 

simulation, and last found a software design that fit 

the argument and simulation. Instead of validating 

existing software, we would be predicting the 

existence of unknown software.  We would have to 

simulate software that has not yet been designed; 

requiring us to guess at a likely implementation. In 

the future we will investigate if, by changing the 

order of our method (and overcoming the problems 

caused by that change), it is possible to use these 
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same techniques to create an equally practical method 

of software design prediction.   
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