

Pattern-based Software Design and Adaptation

Hassan Gomaa
Department of Computer Science

George Mason University
Fairfax, Virginia 22030, USA

hgomaa@gmu.edu

Abstract - This paper describes how software
architectural design patterns can be used to build
software systems and how software adaptation
patterns can be used to dynamically adapt them at
run-time. The software architectural design patterns
consist of architectural structure patterns and
architectural communication patterns. This paper also
describes the concept of software adaptation patterns
and how they can be used in software system
adaptation.

Keywords - Software design; Unified Modeling Language
(UML); software architectural design patterns; software
adaptation.

I. INTRODUCTION

Software design methods have advanced considerably
over the past three decades from structured methods for
centralized systems to advanced design methods for
distributed applications and product lines. Recent
developments are the emergence of component-based
design, software product line design, service-oriented
architectures, and applying software architectural and
design patterns in the design process.

This paper describes how software architectural
patterns can be used to help build and evolve software
applications. The approach involves integrating software
architectural patterns into a model-driven software
development process. The patterns consist of architectural
structure patterns and architectural communication
patterns. This paper then describes how software
architectural patterns can be used for software adaptation.

The paper is organized as follows. Section II describes
software architectural design patterns. Section III
describes how these software architectural design patterns
are applied and integrated to create and evolve software
architectures for software applications. Section IV
describes the role of software adaptation in software
development. Section V describes the concept of software
adaptation patterns while Section VI describes several
software adaptation patterns that have been developed.
Section VII describes the process of run-time adaptive

change management for software adaptation patterns.
Section VIII provides concluding remarks.

II. ARCHITECTURAL DESIGN PATTERNS

Software architectural patterns [2, 10] provide the
skeleton or template for the overall software architecture
or high-level design of an application. These include
widely used architectures [1] such as client/server and
layered architectures. Design patterns [3] address smaller
reusable designs than architectural patterns, such as the
structure of subsystems within a system. The description
is in terms of communicating objects and classes
customized to solve a general design problem in a
particular context.

Basing a candidate software architecture on one or
more software architectural patterns helps in designing
the original architecture as well as evolving the
architecture. This is because the adaptation and
evolutionary properties of architectural patterns can also
be studied and this assists with an architecture-centric
evolution approach [7].

There are two main categories of software
architectural patterns [10]. Architectural structure patterns
address the static structure of the software architecture.
Architectural communication patterns address the
message communication among distributed components
of the software architecture.

 Most software systems can be based on well
understood software architectures. For example, the
client/server software architecture is prevalent in many
software applications. There is the basic client/service
pattern, with one service and many clients. An example of
this pattern is given in Figure 1 in which an ATM Client
communicates synchronously with a Banking Service by
sending a message and waiting for a response. However,
there are also many variations on this theme, such as
multiple client / multiple service architectures and
brokered client/service architectures. Furthermore, with a
client/service pattern, evolution can be introduced by
replacing a service with a newer version or adding new
services, which are discovered and invoked by clients.
New clients can be added that discover services provided
by one or more servers.

90

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

 Many real-time systems [4] provide overall control of
the environment through centralized control,
decentralized control, or hierarchical control. Each of
these control approaches can be modeled using a software
architectural pattern. In a centralized control pattern, there
is one control component, which executes a state
machine. It receives sensor input from input components
and controls the external environment via output
components. In a centralized control pattern, evolution
takes the form of adding or modifying input and/or output
components that interact with the control component,
which executes a state machine.

In a distributed control pattern, control is distributed
among several control components, each of which
controls local input and output components (Figure 2).
The control components communicate with each other to
inform each other of new events, as shown in Figure 2.

Another architectural pattern that is worth considering
because of its desirable properties is the layered
architecture. A layered architectural pattern allows for
ease of extension and contraction [13] because
components can be added to or removed from higher
layers, which use the services provided by components at
lower layers of the architecture.

In addition to the above architectural structure
patterns, certain architectural communication patterns
[10] also encourage adaptation and evolution. In software
architectures, it is often desirable to decouple
components. The Broker, Discovery, and
Subscription/Notification patterns encourage such
decoupling. With the broker patterns, services register
with brokers, and clients can then discover new services.
Thus a software system can evolve with the addition of
new clients and services. A new version of a service can
replace an older version and register itself with the broker.
Clients communicating via the broker would
automatically be connected to the new version of the
service.

The Subscription/Notification pattern also decouples
the original sender of the message from the recipients of
the message, as shown in Figure 3. A client (Operator
Interaction) subscribes to receive event notifications from
a service (Alarm Handling Service). The Alarm Handling
Service will then multicast event notifications, whenever
they are received from the Event Monitor, to all
subscribing Operator Interaction clients.

III. APPLYING SOFTWARE ARCHITECTURAL

PATTERNS

A very important decision is to determine which
architectural patterns—in particular, which architectural
structure and communication patterns—can be applied in
the design of a given software application. It is necessary

to decide first which architectural structure patterns can
be used for the application and then which architectural
communication patterns.

In many applications, architectural patterns, including
client/service and control patterns, can be integrated with
the layered pattern. Integrating the client/service pattern
with the layered pattern involves placing clients at higher
layers than services, since clients depend on services.
With a centralized control pattern, the control component
is placed at a higher layer than the components it controls.
With the distributed control pattern, the control
components are all at the same level since communication
between them is peer-to-peer. With a hierarchical control
pattern, since the high level controller sends overall
control commands to the lower level control components,
it is placed at a higher layer in the hierarchy. Typically,
communication patterns are used to facilitate the
integration of the architectural structure patterns.

Consider an example of applying and integrating
software architectural patterns. A distributed emergency
control and monitoring system is to be designed. The
layered pattern is applied to facilitate the pattern
integration. This system has client/service characteristics
in that user interaction clients can request emergency
monitoring status and alarm status from emergency
monitoring services. This system also has distributed
control characteristics, since there are control components
at different locations that receive local sensor data, such
as fire or smoke sensors, and can output commands to
local actuators, e.g., to switch on sirens or sprinkler
systems. The system could be constructed by integrating
the client/service pattern (see Figure 1) and the distributed
control pattern (see Figure 2). Integrating these
architectural structure patterns could be achieved by using
architectural communication patterns such as a Broker
pattern or a Subscription/Notification pattern (see Figure
3).

For this application, the Distributed Controller, Event
Monitor, and Operator Interaction components are all
clients of the Event Handling Service (see Figure 1) and
are therefore placed at higher layers in a layered
architecture. The Distributed Controller (of which there
are multiple interconnected instances as shown in Figure
2) and Event Monitor components send asynchronous
event messages to the Event Handling Service. Operator
Interaction uses the subscription/notification pattern
(Figure 3) to subscribe to the Event Handling Service,
which sends multicast notifications to all subscribing
clients for each new event it receives. The integration of
these software architectural patterns is depicted in Figure
4.

91

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

IV. SOFTWARE ADAPTION

Software adaptation addresses software systems that
need to change their behavior during execution. In self-
managed and self-healing systems, systems need to
monitor the environment and adapt their behavior in
response to changes in the environment [12].

Software adaptation can take many forms. It is
possible to have a self-managed system which adapts the
algorithm it executes based on changes it detects in the
external environment. If these algorithms are pre-defined,
then the system is adaptive but the software structure and
architecture is fixed. The situation is more complex if the
adaptation necessitates changes to a software component
or more widely to the architecture. In order to
differentiate between these different types of adaptation,
adaptations can be classified as follows within the context
of distributed component-based software architectures:

a) Behavioral adaptation. The system dynamically
changes its behavior within its existing structure. There is
no change to the system structure or architecture.

b) Component adaptation. Dynamic adaptation
involves changing one component with another that has
the same interface. The old component has to be
dynamically replaced by a new component while the
system is executing.

c) Architectural adaptation. The software architecture,
consisting of multiple components, has to be modified as
a result of the dynamic adaptation. Old components must
be dynamically replaced by new components while the
system is executing.

 Model based adaptation can be used in each of the
above forms of dynamic adaptation, although the
adaptation challenge is likely to grow progressively from
behavioral adaptation through architectural adaptation.

V. CONCEPTS OF SOFTWARE ADAPTATION PATTERNS

The software architecture is composed of distributed
software architectural patterns, such as client/server,
master/slave, and distributed control patterns (Section III),
which describe the software components that constitute
the pattern and their interconnections. For each of these
architectural patterns, there is a corresponding software
adaptation pattern [9], which models how the software
components and interconnections can be changed under
predefined circumstances, such as replacing one client
with another in a client/server pattern, inserting a control
component between two other control components in a
distributed control pattern, etc.

A software adaptation pattern defines how a set of
components that make up an architecture or design pattern
dynamically cooperate to change the software
configuration to a new configuration given a set of

reconfiguration commands. A software adaptation pattern
requires state- and scenario-based reconfiguration
behavior models to provide for a systematic design
approach. The adaptation patterns are described in UML
with adaptation integration models (using communication
or sequence diagrams) and adaptation state machine
models [8, 9].

An adaptation state machine defines the sequence of
states a component goes through during dynamic
adaptation from a normal operational state to a Passive
state (in which it does not initiate any new transactions
but completes existing transactions), to a quiescent (idle)
state, as shown in Figure 5. Once quiescent, the
component is idle and can be removed from the
configuration, so that it can be replaced with a different
version of the component.

VI. SOFTWARE ADAPTATION PATTERNS

Several adaptation patterns have been developed and
are described below:

a) The Master-Slave Adaptation Pattern is based on
the Master-Slave pattern [2]. A Master component, which
sends commands to slaves and then combines responses,
can be removed or replaced from the configuration after
the responses from all slave components have been
received. Slave components can be removed or replaced
after the Master is quiescent.

b) The Centralized Control Adaptation Pattern is
based on the Centralized Control pattern, and can be used
in real-time control applications [10]. The removal or
replacement of any component in the configuration
requires the Central Controller to be quiescent.

c) The Client / Service Adaptation Pattern is based on
the Client / Service pattern [10]. A client can be added to
or removed from the configuration after completing the
service request it initiated. A Service can be removed or
replaced after completing the current service request.

d) The Decentralized Control Adaptation Pattern is
based on the Decentralized Control pattern and can be
used in distributed control applications [10]. A control
component in this Adaptation Pattern notifies its
neighboring control components if it plans to become
quiescent. The neighboring components cease to
communicate with this component but can continue with
other processing.

VII. ADAPTIVE CHANGE MANAGEMENT

Adaptive change management is provided by a change
management model [9, 11], which defines the precise
steps involved in dynamic reconfiguration to transition
from the current software run-time configuration to the
new run-time configuration. For each software adaptation

92

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

pattern, the change management model describes a
process for controlling and sequencing the steps in which
the configuration of components in the pattern is changed
from the old configuration to the new configuration [5].

A component that needs to be replaced has to stop
being active and become quiescent, the components that it
communicates with need to stop communicating with it;
the component then needs to be unlinked, removed and
replaced by the new component, after which the
configuration needs to be re-linked and restarted. A
dynamic software reconfiguration framework is designed
and implemented to initiate and control the steps of the
change management model for automatic reconfiguration
of the architecture from one run-time configuration to
another [5, 8].

For example, if it is necessary to replace one of the
control components in Figure 2, the control component
would need to transition to a quiescent state in which it
has completed its current operation and has notified its
neighboring components that it is no longer
communicating with them. It can then be removed from
the configuration and be replaced with a new component
(e.g., with enhanced functionality), which is then
activated and resumes execution and interaction with its
neighbors.

VIII. CONCLUSIONS

This paper has described how software architectural
patterns can be applied and integrated in the design of
software applications. The paper has also described how
the application can be dynamically adapted at run-time to
replace one component with another. It is also possible to
create and integrate executable design patterns [14].
Current research is investigating software design and
adaptation patterns for software product lines [6], as well
as how these patterns can be used to assist with software
evolution.

REFERENCES

[1] L. Bass, P. Clements, R. Kazman, “Software Architecture in
Practice”, Addison Wesley, Reading MA, Second edition, 2003.
[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
“Pattern Oriented Software Architecture: A System of Patterns”,
John Wiley & Sons, 1996.
[3] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software”,
Addison Wesley, 1995.
[4] H. Gomaa, "Designing Concurrent, Distributed, and Real-
Time Applications with UML", Addison-Wesley Object
Technology Series, 2000.
[5] H. Gomaa and M. Hussein, “Software Reconfiguration
Patterns for Dynamic Evolution of Software Architectures”,
Proc. Fourth Working IEEE Conf. on Software Architecture,
Oslo, Norway, June, 2004.

[6] H. Gomaa, “Designing Software Product Lines with UML:
From Use Cases to Pattern-based Software Architectures”,
Addison-Wesley, 2005.
 [7] H. Gomaa, “A Software Modeling Odyssey: Designing
Evolutionary Architecture-centric Real-Time Systems and
Product Lines”, Proc. ACM/IEEE 9th Intl. Conf. on Model-
Driven Eng., Lang. and Systems, Springer Verlag LNCS 4199,
Pages 1-15, Genova, Italy, Oct. 2006.
 [8] H. Gomaa and M. Hussein, Model-Based Software Design
and Adaptation, Proc. ACM/IEEE ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems,
Minneapolis, MN, May 2007.
[9] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, and D.
Menascé, Software Adaptation Patterns for Service-Oriented
Architectures, Proc ACM Software Applications Conf. (SAC),
Sierre, Switzerland, March 2010.
[10] H. Gomaa, “Software Modeling and Design: UML, Use
Cases, Patterns, and Software Architectures”, Cambridge
University Press, February 2011.
[11] J. Kramer and J. Magee, The Evolving Philosophers
Problem: Dynamic Change Management, IEEE Trans. on
Software Eng., Vol. 16, No. 11, Nov. 1990.
[12] J. Kramer and J. Magee, “Self-Managed Systems: an
Architectural Challenge”, Proc Intl. Conf. on Software
Engineering, Minneapolis, MN, May 2007.
[13] D. Parnas, "Designing Software for Ease of Extension and
Contraction", in Software Fundamentals, edited by D. Hoffman
& D. Weiss, Addison Wesley, 2001.
[14] R. Pettit and H. Gomaa, “Modeling Behavioral Design
Patterns of Concurrent Objects”, Proc. Intl. Conf. on Software
Eng., Shanghai, China, May 2006.

93

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Figure 1: Client/Service pattern

Figure 2: Distributed Control pattern

Figure 3: Subscription/Notification pattern

94

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Figure 4: Emergency Monitoring and Control System

Figure 5: Software Adaptation State Machine

event event
Notification

«service»
: EventHandlingService

«data collection
component»

: EventMonitor «control
component»
: Distributed
Controller

sensor
Input

actuator
Output

«input
component»

»

: SensorNode

«output
component»

: ActuatorNode

event

subscribe

«user interaction
component»

: OperatorInteraction

95

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

