
Case Study Towards Implementation of Pure Aspect-oriented Factory Method

Design Pattern

Žilvinas Vaira
Vilnius University

Institute of Mathematics and Informatics
Akademijos 4, LT-01108 Vilnius, Lithuania

zilvinas.vaira@ik.ku.lt

Albertas Čaplinskas
Vilnius University

Institute of Mathematics and Informatics
Akademijos 4, LT-01108 Vilnius, Lithuania

albertas.caplinskas@mii.vu.lt

Abstract—The paper investigates a case of application of

Factory Method design pattern in the context of aspect-

oriented design. The case encompasses whole path of design

pattern transformation from object-oriented to aspect-oriented

design and its application to a particular design context. The

main assumption is that there exist design patterns that solve

design problems in a similar way for both programming

paradigms and that such design patterns can be expressed in

the terms of a corresponding programming paradigm. The

paper uses design pattern classification and design pattern

transformation technique proposing that 20 of Gang of Four

23 design patterns can solve design problems in a similar way

to both Object-Oriented Programming and Aspect-Oriented

Programming and can be successfully adapted for the needs of

aspect-oriented design. The research presents a detailed

explanation and examples how to apply proposed technique
and discusses elaborated results.

Keywords - Aspect-Oriented Programming; Object-Oriented
Programming; Design Patterns; Factory Method; Framework
design.

I. INTRODUCTION

The main intent of this paper is to present an exemplary
case showing how object-oriented (OO) design patterns can
be redesigned into pure aspect-oriented (AO) design patterns.
The complete description of the theoretical discussion,
design pattern classification and detailed pattern redesign
technique description is proposed in [19]. The research is
concentrated on Gang of Four (GoF) 23 [4] design patterns
and investigates the question of the possible similarities
between two programming paradigms – object-oriented
programming (OOP) and aspect-oriented programming
(AOP) [11]. As a result, it states that 20 of GoF 23 design
patterns can be adapted to solve problems of aspect design.
The main contribution of this paper is the experimental
evaluation of the [19] proposed redesign technique. It is
performed by detailed analysis of redesign technique
application to a real life system design. Vaira and Čaplinskas
[19] provided theoretical reasoning and models of the
redesigned patterns. However, it does not give any insight of
practical application of the technique except some
hypothetical application context. The results of this paper
provide strong evidence in the form of implementation

diagrams and detailed description that such design patterns
are applicable to real life systems design. It can be stated as a
qualitative experimental evaluation of the previous
theoretical research. To perform this evaluation, the Factory
Method design pattern has been chosen for this research. The
case of Factory Method design pattern can be treated as a
critical case [16] because it corresponds to the creational
design patterns, which are less to be likely acceptable for
redesigning into aspects, because they are highly related to
creation of objects. Creation of aspects is far different from
creation of objects, because aspects are singletons by their
nature and its creation in most AO language implementations
is handled by aspect weaver automatically. Hence, this paper
presents strong evidence that even creational OO design
patterns can be adapted to design AO ones.

The major part of the paper includes details of the OO
Factory Method design pattern redesign process into AO
Factory Method pattern and investigates its application in the
context of AO framework design. The main questions that
we aim to answer in this paper include: are such AO design
patterns applicable in real life applications and does AO
representation of Factory Method design pattern change its
purpose anyhow? All examples are presented using (Unified
Modeling Language) UML class diagrams and stereotyped
class diagrams for aspects. The resulted applications are
implemented using Java and AspectJ [12] programming
languages.

The remaining part of this paper is organized as follows.
Section 2 describes the process of Factory Method pattern
redesign. Section 3 demonstrates the applicability of pure
AO Factory Method design pattern for designing an AO
framework. Section 4 analyses related works. Section 5
presents a discussion. Finally, Section 6 concludes the paper.

II. REDESIGNING FACTORY METHOD PATTERN FOR

ASPECTS

In this paper, we use terms “redesign” and “pure AO
design pattern” in order to distinguish the technique from
other design pattern transformation techniques proposed in
[6], [8], [9]. By redesign, we mean that design patterns must
be reworked from the perspective of its design problem and
solution, not by performing simple refactorings or other
transformations. Transformation techniques proposed in [8],

102

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Figure 1. Factory Method design pattern (OO solution)

Analyze
design pattern

Perform
redesign of
design pattern

Evaluate
resulted
design pattern

Figure 2. Redesign technique

[6], [9] search alternative solutions for the same design
problem. Our redesign technique redefines design problem
for aspects and searches for a design solution using aspects
only. More detailed comparison of these techniques could be
found in Section IV. The proposed redesign technique is
concentrated on two paradigms only, namely OOP and AOP.
Such paired paradigm use generates new types of design
structures that involve concepts and relations from both
paradigms. Moreover, it forces AO paradigm language
implementations, such as AspectJ, to inherit elements of a
larger scale base paradigm, on which it is built up. Resulted
AspectJ language implementation still includes other small
scale paradigm elements that are introduced by AOP [20].
This results in complex structures that are problematic to be
developed.

The main idea is that some design problems may be
stated as common to both paradigms and others as specific
with regard to paradigms analyzed (i.e. OOP and AOP). In
this case the solution of design pattern that solves these
design problems could be performed on both paradigms
involving specific paradigm constructs only.

A. Redesign technique

The redesign is based on statement alleging that when
OO design pattern can be implemented in AspectJ by using
AO constructs only, it can be considered as a pattern that
solves similar design problem. It seems that in such case
both OO and AO patterns solve the same design problem,
but their applicability differs. Thus, the problem in some
sense is also different: the OO pattern solves a design
problem for objects, whereas the AO pattern solves it for
aspects.

Redesign is based on the similarities between aspects and
classes, despite the fact that they are different concepts:

• Aspects, similarly as classes, can define data
members and behaviors for crosscutting
concerns [14]. They can also be defined as
abstract entities, or implement Java interfaces.

• Aspects can be used as collaborative entities and
build inheritance hierarchies in similar way as it
is done with classes.

However, one of the main differences is the fact that
aspects cannot be directly instantiated. There is a possibility
to use several instances of one aspect in a program by
declaring an aspect per object or per control flow in a
program. In such case the instantiation still differs from the
one that is done with classes. For this reason we refer to
aspects as singletons. Redesign technique involves 3 main
steps (see Figure 1):

• If a GoF 23 pattern can be implemented using
singletons only, it is regarded as a candidate to
be a design pattern for rewriting to AspectJ.

• All classes in the candidate pattern should be
replaced by aspects.

• The candidate pattern should be analyzed in
order to discover and remove irrelevant data
members and methods.

These steps are generalized from the original. More
detailed technique description can be found in [19].

B. Redesign description

In the case of Factory Method design pattern we are
dealing with, it may seem that the AO solution has no sense,
because Factory Method belongs to creational pattern
category and is highly related to creation of objects. In the
AO paradigm we in most cases deal with the singletons only
and in fact the creation of aspects cannot be managed
directly by other aspects. However, it does not mean that the
redesign technique can not be performed on Factory Method
design pattern. The creation of aspects can be replaced by
passing a reference to already created aspect. In order to do
this we can use AspectOf method instead of constructor
method. AspectOf corresponds to an analogue InstanceOf
that is used for referencing singletons. We will demonstrate
that AO solution of Factory Method can be redesigned using

proposed technique.
The first step is to perform analysis of the pattern to

inspect if it can be regarded as candidate for rewriting. The
Factory Method design pattern defines an abstract method
that can be overridden by subclasses for creating objects that
belong to different classes [4]. There are several other
variations of the pattern (e.g. the parameterized factory
method), but in this particular case we use the general one.
The main elements of the general case of Factory Method
(see Figure 2) design pattern are:

• Factory, an abstract class that contains abstract
operation factoryMethod, which is overridden
by its subclasses,

103

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Figure 3. Application of the AO Factory Method design pattern

• ConcreteFactory1 and ConcreteFactory2,
concrete Factory classes overriding
factoryMethod, which creates and returns the
object of ConcreteProduct1 or
ConcreteProduct2 respectively.

• Product, an abstract class that contains the
abstract operation getName and defines the
interface of Product type objects,

• ConcreteProduct1 and ConcreteProduct2,
concrete Product classes that implement the
getName operation using some concrete
method, and

• Client, the class that invokes the factoryMethod
of the Factory object.

There is no critical reason indicating that Factory Method
design pattern can not be implemented using singletons only.
Abstract classes can be replaced by abstract aspects,
subclasses by specializing aspects. The constructors of
ConcreteProduct1 and ConcreteProduct2 can be replaced by
AspectOf. All other operations remain the same as in classes.

When it is decided that the Factory Method is a candidate
for redesigning, the second step can be performed in Figure
3. The resulted AO Factory Method solution helps to get a

reference to the necessary aspect defined by specialized
Factory aspect. This is an analogous solution to that of OO
Factory Method design pattern. The main difference is that
instances of aspects are created only once and each time we
execute factoryMethod particular Product instance is passed
as an argument.

The last step of evaluation of resulted pattern involves
possible refactorings to enhance the resulted design and to
test its applicability. The main variation of the pattern can be
performed by changing or adding pointcuts and advice. The
current model includes pointcuts and advice in subaspects of
Factory aspect and in this way it is defined when

factoryMethod operation is invoked. Another place for
defining pointcuts and advice could be subaspects of Product
aspect. More comprehensive designs of pattern behavior
could be resulted by predefining some pointcus or advice in
abstract aspects. The important difference of AO design
pattern comparing to its OO analogue is that the developer is
limited with a number of predefined subaspects it can use at
the same time (except of above mentioned cases per object
or per control flow aspects). However, it does not change the
principal behavior of this design pattern and demonstrates
that AO design pattern preserves all essential elements of the
OO pattern.

An example of the application of the AO Factory Method
pattern is analyzed in the following part of the paper. In this
example, we are dealing with the complex logging concern
in a simulation domain framework.

III. APPLICATION OF PURE AO FACTORY METHOD

SimJ simulation framework is used as experimental
application providing necessary context for implementing
AO Factory Method design pattern. The main research
interest is concentrated on logging concern, which has a
crosscutting issues that need to be eliminated and the feature
of logging needs to be made customizable. SimJ is a
simulation framework used for developing simulation
applications based on discrete events.

The logging concern in a framework suffers from
crosscutting. Pieces of the code belonging to it are scattered
and tangled through the remaining part of a framework. The
complexity of a logging functionality of this framework
makes it a sufficient candidate to apply the AO Factory
Method design pattern presented in Figure 3. The framework
has several different kinds of things to be logged and must
remain customizable in a concrete specialization of a
framework. The current version of the framework allows
customizing logging. However, it is handled beyond the
bounds of logging concern individually by every entity that
needs to be logged. The main purpose of application of AOP
is to exclude all pieces of code related to logging concern
and combine them in aspects. Although the design of these
aspects is not an ordinary task to complete, design pattern
could be applied to handle it.

The AO Factory Method design pattern was introduced
to deal with the following issues: different logging behavior
for resources and several kinds of events was necessary and
the complexity of triggering of this behavior required its
separation. Different behavior of logging was modeled using
product hierarchy in Factory Method pattern. The triggering
structure of logging behavior was designed using hierarchy
of factories Figure 3. The resulted implementation of logging
concern is presented in Figure 4. The UML diagram contains
complete design that includes two additional instances of
Template Method (design pattern is usually used in
composition with factories). The stereotype “Hook” is used
to denote customizable framework methods in aspects.

Consequently, several advantages can be noticed: all the
logging functionality and related code is localized in one
place and the customization of the logging concern can be
carried out separately from the rest of the hot spots. This also

104

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Figure 4. Factory Method desgin pattern (AO solution)

means that maintenance and unplug ability features of the
logging were increased. This implementation allows flexible
customization so that logging of events and resources can be
done separately and the joinpoints triggering logging
behaviors can be customized independently. A high number
of aspects can be considered as a shortcoming. This is
probably related to the complexity of the logging concern
behavior.

IV. RELATED WORKS

OO design patterns can be redefined for the AO
paradigm in several different ways. Implementation of the
OO design pattern in Java, can be directly replaced by the
analogous code written in AspectJ [6], [8] a native AO
solution can be introduced to the same problems that are
addressed by the OO design pattern [9] or pattern solving
AOP specific design problems can be elaborated [2], [7],
[14], [15]. There is no concrete technique describing how to
discover patterns solving AOP specific design problems.
However, two different design pattern transformation
techniques can be distinguished and compared to the one
analyzed in this paper:

a) The authors of [6] and [8] use very similar
pattern transformation technique. They
introduce AOP constructs to deal with the
problems related to crosscutting in the pattern
solution. The design problem solved by the
pattern does not change and the main idea of the
solution remains the same.

b) Authors of [9] use slightly different technique.
The main idea is that design solution still must

deal with the same problem. However, aspects
are used to search for an alternative solution,
different than the main idea provided by original
design pattern. Both of these techniques provide
solutions to the same design problems. Such
solutions are alternatives and can be compared.

c) Our technique, presented in [19], is slightly
different, because we redefine a design problem
for aspects. Considering the similarities between
AOP and OOP paradigms we say that a similar
design problem that occurs when designing
objects can also occur while designing aspects.
In such a case we can use the same design idea
that has solved the design problem for objects,
but this time only aspects are used. In result, the
design pattern achieved using this technique is
not an alternative solution to the same design
problem. It is more like a new AOP design
pattern solving a similar to OOP design problem
in a similar to OOP way.

A number of quantitative evaluations have attempted to
measure the effectiveness of the implementation [5], [8] and
[3]. As design patterns can be composed in many different
ways and crosscut each other, most of these quantitative
assessments agree that aspectization of patterns can
significantly improve OO implementations. However, in
some cases the results depend on the patterns involved,
design complexity, and other circumstances as discussed in
[3]. The main problems commonly reduced by the use of
aspects are related to code scattering and code tangling. So, it

105

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

is reasonable to expect that implementations in AO
languages will at least partly solve these problems.

A framework that is used to provide some contextual
evidence for AO Factory Method application is considered
as the software framework described in [10]. It states that
application framework is a reusable, „semi-complete”
application that can be specialized to produce custom
applications. The application of pure AO design patterns
produces a new kind of application framework that we refer
to an AO application framework. Similar AO framework
design, where aspects were used as glue code for gluing
framework core and its application was presented in [17]. A
more comprehensive and a more related to this paper AO
framework design, that includes the use of customizable
aspects, is presented by the following researches [1], [18],
including more complex design structures that involve some
idioms of AspectJ in [13].

V. DISCUSSION

There are several debatable issues that we would like to
discuss. The main of them is the use of aspects as
collaborative entities. The designs that include abstract
aspect hierarchies hold references and invoke calls to other
aspects help to create reusable and flexible implementation
structures. These are the main features used to create
collaborations of classes in OOP. However, such structures
also increase the tangling of the implementation code, which
is an issue that AOP used to deal with. It is not always clear,
what the constraints of collaborations in aspects are and
when a threat of creating too complex designs of aspects
appears. We assume that collaborations of aspects are
beneficial unless they overstep the boundaries of related
concerns.

The Singleton nature of aspects is the second issue.
Though, aspects in AspectJ are by default singletons, in
special cases aspects can be also instantiated per object or
per control flow. From this perspective it is still questionable
whether aspects should be treated as singletons or not. Direct
instantiation of aspects in AspectJ language is forbidden.
Aspects can be globally referenced using static method
aspectOf and it is not quite compatible with the direct
creation. Another problem is that if it were allowed to create
several instances of the same aspect at a time, the behavior
advised by aspects might repeat several times or act in other
unexpected ways. As a result, there may be difficulties
related to aspect instantiation control. This is the main reason
why we suggest following the Singleton nature of aspects
and treating per object and per control flow aspects as special
cases of singletons.

VI. CONCLUSIONS AND FUTURE WORK

The paper demonstrated that design patterns solving
similar design problems in both, AOP and OOP paradigms,
could be used to deal with crosscutting and to design
customizable aspects in frameworks. The investigated case
of Factory Method design pattern shows that even creational
design patterns can be applied for this purpose. It promotes
the elimination of crosscutting behavior and localization of
scattered implementations. Moreover, this crosscutting

behavior can be designed as a reusable hot spot in a
framework and customized in a framework application. The
purpose of Factory Method design pattern in AOP is slightly
changed comparing to OOP. Instead of creating factories it
only passes reference to the necessary aspect. In some cases
the use of the pure AO design patterns only may be
insufficient. They should be used in compositions with
available design patterns from other categories of AO design.
It is reasonable to expect that compositions with patterns for
designing pointcuts and advice could increase the
applicability of existing ones or even create new AO design
patterns.

Further investigations of pure AO design pattern
applications to design programs are necessary. The
investigation towards other patterns solving similar design
problems in other paradigms is also intended.

ACKNOWLEDGMENT

The authors wish to thank Software Engineering
Research Group headed by Prof. Jacques Pasquier for
providing SimJ framework for experimental application.
Personal thanks to Prof. Jacques Pasquier, Dr. Patrik Fuhrer
and Minh Tuan Nguyen for inspiring and initial guiding of
related research.

REFERENCES

[1] P. Arpaia, M.L. Bernardi, G. Di Lucca, V. Inglese, and G.
Spiezia, “Aspect Oriented-based Software Synchronization in
Automatic Measurement Systems”, In Proceedings of
Instrumentation and Measurement Technology Conference,
IMTC 2008, IEEE, pp. 1718 – 1721, 12-15 May 2008.

[2] M. Bynens and W. Joosen, “Towards a Pattern Language for
Aspect-Based Design”, In Proceedings of the 1st workshop on
Linking aspect technology and evolution (PLATE '09),
Charlottesville, Virginia, USA date:March 2 - 6, 2009. ACM,
pp. 13-15.

[3] N. Cacho, E. Figueiredo, C. Sant´Anna, A. Garcia, T. Batista,
and C. Lucena, “Aspect-oriented Composition of Design
Patterns: a Quantitative Assessment”, Monografias em
Ciência da Computação, vol. 5, no. 34. Pontifícia
Universidade Católica do Rio de Janeiro, Brasil, 2005.

[4] E. Gamma, R. Helm, R. Johnson, and J.Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Professional, 1994.

[5] A.Garcia, C.Sant'Anna, E. Figueiredo, and U. Kulesza,
“Modularizing Design Patterns with Aspects: A Quantitative
Study”, In: Proceedings of the International Conference on
Aspect-Oriented Software Development (AOSD'05), Chicago,
USA, 14-18 March 2005. ACM Press, pp. 3-14.

[6] O. Hachani and D. Bardou, “Using Aspect-Oriented
Programming for Design Patterns Implementation“, In
Proceedings of 8th International Conference on OOIS 2002,
Position paper at the Workshop on Reuse in Object-Oriented
Information Systems Design, Montpellier, France - Sept. 2-5
2002.

[7] S. Hanenberg and A. Schmidmeier, “Idioms for building
software frameworks in AspectJ”, In Y. Coady, E. Eide, D. H.
Lorenz (Eds.) Proceedings of the 2nd AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure
Software (ACP4IS), College of Computer and Information
Science, Boston, Massachusetts, 2003, pp. 55-60.

[8] J. Hannemann and G. Kiczales, “Design pattern
implementation in Java and AspectJ”, In Proceedings of the
17th Conference on Object-Oriented Programming, Systems,

106

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

Languages, and Applications (OOPSLA ’02), ACM Press,
2002, pp. 161-173.

[9] R.Hirschfeld, R. Lämmel, and M. Wagner, “Design Patterns
and Aspects – Modular Designs with Seamless Run-Time
Integration“, In Proceedings of the 3rd German Workshop on
Aspect-Oriented Software Development (AOSD-GI 2003),
2003, pp. 25–32.

[10] R. E. Johnson and B. Foote, “Designing Reusable Classes”,
Journal of Object-Oriented Programming, June/July 1988,
vol. 1, no. 2, pp. 22-35.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin, “Aspect oriented
programming”, In Proceedings of European Conference on
Object Oriented Programming, ECOOP, 1997, vol. 1241, pp.
220–242.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold, “Getting started with AspectJ”,
Communication of the ACM, October 2001, vol. 44, no. 10,
pp. 59–65.

[13] U. Kulesza, V. Alves, A. Garcia, C. J. P. de Lucena, and P.
Borba, “Improving Extensibility of Object-Oriented
Frameworks with Aspect-Oriented Programming”, In
Proceedings of Intl Conference on Software Reuse (ICSR),
Torino, Italy, pp. 231-245, 2006.

[14] R. Laddad, AspectJ in Action: practical aspect-oriented
programming, Manning Publications Co, 2003.

[15] R. Miles, AspectJ Cookbook, O'Reilly Media, 2004.
[16] Charles C. Ragin, ””Casing” and the process of social

inquiry”, In Charles C. Ragin and Howard S. Becker (eds),
What is a Case? Exploring the Foundations of Social Inquiry,
Cambridge: Cambridge University Press, 1992, pp. 217–26.

[17] A. Rausch, B. Rumpe, and L. Hoogendoorn, “Aspect-
Oriented Framework Modeling”, In Proceedings of the 4th
AOSD Modeling with UML Workshop, UML Conference
2003, October 2003.

[18] A. L. Santos, A. Lopes, and K. Koskimies, “Framework
specialization aspects”, In Proceedings of AOSD '07 the 6th
international conference on Aspect-oriented software
development, ACM New York, NY, USA 2007, pp. 14 - 24.

[19] Ž. Vaira and A. Čaplinskas, „Paradigm-independent design
problems, GoF 23 design patterns and aspect design“,
Informatica, Institute of Mathematics and Informatics,
Vilnius, in press.

[20] V. Vranić, “AspectJ Paradigm Model: A Basis for Multi-
Paradigm Design for AspectJ”, In Jan Bosch, editor, Proc. of
the Third International Conference on Generative and
Component-Based Software Engineering (GCSE 2001),
LNCS 2186, Erfurt, Germany, September 2001, pp. 48-57,
Springer.

107

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

