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Abstract—Spatial co-location mining has been used for dis-
covering spatial event sets which show frequent association
relationships based on the spatial neighborhood. This paper
presents a problem of finding co-location patterns on evolving
spatial databases which are constantly updated with fresh data.
Maintaining discovered spatial patterns is a complicated process
when a large spatial database is changed because new data
points make spatial relationships with existing data points on
the continuous space as well as among themselves. The change
of neighbor relations can affect co-location mining results with
invalidating existing patterns and introducing new patterns. This
paper presents an algorithm for effectively updating co-location
analysis results and its experimental evaluation.

Keywords–Spatial association mining; Co-location pattern; In-
cremental update

I. I NTRODUCTION

As one of the spatial data mining tasks, spatial association
mining is often used for discovering spatial dependencies
among objects [1]–[4]. A spatial co-location represents a set
of spatial features which are frequently observed together
in a nearby area [3]. Examples of frequently co-located
features/events include symbiotic species such as West Nile
incidents and stagnant water sources in epidemiology, and
interdependent events such as a car accident, traffic jam,
policemen and ambulances in transportation. In business, co-
location patterns can be used for finding relationships among
services requested by mobile users in geographic proximity.

Most of the spatial association mining works [3]–[10]
assume that all data is available at the start of data analy-
sis. However, many application domains including location-
based services, public safety, transportation and environmental
monitoring collect their data periodically or continuously. For
example, a police department accumulates, on average, 10,000
crime incidents per month [11]. For Earth observation, daily
climate measurement values are collected at every 0.5 degree
grid of the globe [12]. For keeping the analysis result coherent
with respect to the most recent database status, discovered
patterns should be updated.

The problem of updating spatial co-location patterns
presents more challenges than updating frequent itemsets in
a traditional transaction database. In the classical association
analysis, the database update means the simple addition of
new transaction records, or the deletion of existing records.
Newly added transaction records are separately handled from
existing records because the database is a collection of disjoint
transaction records. In contrast, when a spatial database is

updated, a new data point can make neighbor relationships
with existing data points as well as other new data points
on the continuous space. Thus, all neighbor relationships in
the updated database should be examined for the maintenance
of co-location patterns. The spatial pattern mining process
is a computational and data intensive task, therefore simply
re-executing a state-of-the-art co-location mining algorithm,
whenever the database is updated, can result in an explosionof
required computational and I/O resources. This paper proposes
an algorithm for effectively updating discovered co-location
patterns with the addition of spatial data points.

The remainder of this paper is organized as follows. Section
II presents the basic concept of co-location pattern miningand
the related work. Section III describes our algorithmic design
concept for incremental co-location mining and the proposed
algorithm. Its experimental evaluation is presented in Section
IV. This paper will conclude in Section V.

II. BASIC CONCEPT ANDRELATED WORK

The preliminary knowledge of spatial co-location pattern
mining and the related work are presented in this section.

A. Basic concept of spatial co-location mining

Let E = {e1, . . . , em} be a set of event types, and
S = {o1, . . . , on} be a set of their objects with geographic
location. When the Euclidean metric is used for the neighbor
relationshipR, two objectsoi and oj are neighbors of each
other if the ordinary distance between them is not greater than
a neighbor distance thresholdd. A co-location X is a set of
event types,{e1, . . . , ek} ⊆ E, whose objects are frequently
neighbors to each other on space. Theco-location instance
I of X is defined as a set of event objects,I ⊆ S, which
includes all types inX and makes a clique underR.

The prevalence strength of a co-location is often measured
by participation index value [3]. Theparticipation index
PI(X) of X = {e1, . . . , ek} is defined as

PI(X) = min
ei∈X
{PR(X, ei)}, (1)

where1 ≤ i ≤ k, andPR(X, ei) is the participation ratio
of event typeei in X, which is the fraction of objects of
event ei in the neighborhood of instances ofX − {ei}, i.e.
PR(X, ei) = |distinct objects of ei in instances of X|

|objects of ei|
. If PI(X)

is greater than a given minimum prevalence threshold, we say
X is a prevalent co-located event setor a co-location.
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B. Related work

The problem of mining association rules based on spa-
tial relationships (e.g., proximity and adjacency) was first
discussed by Koperski et al. [1]. Shekhar, et al. [3] defines
the co-location pattern and proposes a join-based co-location
mining algorithm. Morimoto [2] studies the same problem
to discover frequent neighboring service class sets. A space
partitioning and non-overlap grouping scheme is used for
finding neighboring objects. Yoo et al. [4], [10] propose join
less algorithms to reduce the number of expensive spatial join
operations in finding co-location instances. Celik et al. [8]
extends the notion of co-location to a local zone-scale pattern.
Eick et al. [13] proposes a framework for mining regional co-
location patterns and Mohan et al. [14] presents a graph based
approach for regional co-location discovery. Recognizingthe
dynamic nature of database, much effort has been devoted
to the problem of incrementally mining frequent itemsets in
classical association rule mining literature [15]–[19]. However,
to find the problem to update co-location patterns in spatial
data mining literature is rare. The most similar work with
ours is He et al. [20] which is compared in our experimental
evaluation.

III. I NCREMENTAL CO-LOCATION M INING

Let Sold = {o1, . . . , on} be a set of old data points in a
spatial database andSin = {on+1, . . . , on+h} be a set of new
data points added in the database. LetS be all data points in
the updated database, i.e.,S=Sold∪Sin. There are two types of
co-location in the update. Theretained co-locationis an event
set prevalent in bothSold andS. Theemerged co-locationis an
event set not prevalent inSold but prevalent inS. We propose
an algorithm of Effective Update of COLOCation patterns
(EUCOLOC). The proposed algorithm has two update stages.
The first update stage examines only neighbor relationshipsof
new data points, and finds all retained co-locations and some
emerged co-locations. If an emerged set is found from the first
update, the second update stage is triggered for finding other
emerged co-location patterns in the updated database. Figure 3
shows the pseudo code of EUCOLOC algorithm.

A. Neighborhood Process

Directly finding all co-location instances forming clique
neighbor relationships from spatial data is computationally ex-
pensive. Instead, we process the neighbor relationships related
to the new data pointsSin.

Definition 1: The neighborhood of a new objecto ∈ Sin,
new neighborhoodnnew(o), is defined to{o, o2, . . . , op|oi ∈
S ∧ R(o, oi)=true∧ o’s event type< oi’s event type}, where
2 ≤ i ≤ p.

We assume there is a total ordering among the event types
(i.e., a lexicographic order�e). R is a neighbor relationship
function. Next, if an existing data point has a neighbor rela-
tionship with at least one new data point, its neighborhood is
changed.

Definition 2: Thechanged neighborhoodof an old object
o ∈ Sold, nchg(o), is defined to{o, o2, . . . , op|oi ∈ S ∧ ∃oi ∈
Sin ∧ R(o, oj)=true ∧ o’s event type< oi’s event type},
where2 ≤ i ≤ p.
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Figure 1. New, Changed and Updated Neighborhoods

Let Nnew = {nnew(o1), . . . , nnew(oh)} be a set of all new
neighborhoods forSn and Nchg = {nchg(o1), . . . , nchg(oq)}
be a set of all changed neighborhoods where{o1, . . . , oq} ⊆
Sold. We call the union ofNnew and Nchg to incremental
neighborhood set(Ninc).

When an incrementSin is added as shown in Figure 1 (b),
the EUCOLOC algorithm first finds all neighbors (NP ) of new
data points inS using a geometric method or a spatial query
method (Algorithm Line 2). The incremental neighborhood set
(Ninc) is prepared by finding new neighborhoods fromNP
and detecting changed neighborhoods from the old neighbor-
hoodsNold (Line 3 & Figure 1 (c)). Figure 1 (d) shows the
entire neighborhood information (N ) of the updated database
(Line 4).

B. First update and detection

Let an event set be aborder event setif the event set’s all
proper subsets are prevalent, but not prevalent itself. Thebor-
der sets are used for detecting an emerging co-location without
the generation and testing of many unnecessary candidates.
The candidate event sets for the first update are previous co-
located event sets (Pold) and border event sets (Bold) (Line 7).
The incremental co-location instances of the candidate event
sets are searched from the incremental neighborhoods (Ninc)
without examining the entire neighbor relationships. (Line 8
& Figure 1 (c)). A filter-and-refine search strategy is used
for finding co-location instances. LetSI = {o1, o2, . . . , ok}
be a set of objects of a candidate setc = {e1, e2, . . . , ek}
where e1 < e2 . . . < ek. If the first objecto1 has neighbor
relationships with all other objects in the set,SI is called a
star instanceof c. The start instances of{e1, e2, . . . , ek} are
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Figure 2. Event subsets and their instance search space

collected from the neighborhoods ofe1 according to Defini-
tion 1 and 2. The candidate instanceSI = {o1, o2, . . . , ok} of
c = {e1, . . . , ek} becomes a true co-location instance ofc if its
subinstance{o2, . . . , ok} forms a clique. The cliqueness of the
subinstance can be checked by simply querying the co-location
instances ofc’s sub event set{e2, . . . , ek} if the subinstance
has at least one new point, as shown in Figure 2.

The participation index of a candidate is computed with its
incremental co-location instances (CIc) and previousinstance
metadata(old PB info) which has the object information
of its old co-location instances (Line 13). The prevalence of a
candidatec = {e1, . . . , ek} is updated with

incPI(c) = min
ei∈c
{incPR(c, ei)}, (2)

where1 ≤ i ≤ k, andincPR(c, ei) is the updated participation
ratio of event typeei with the incremental co-location instances

of c, incPR(c, ei) =
|Oi

⋃
Ii|

|Soldi
|+|Sini

| , where |Soldi
| is the total

number of old objects ofei, |Sini
| is the total number of new

objects ofei, Oi is a set of distinct objects ofei in the old co-
location instances ofc, andIi is a set of distinct objects ofei in
the incremental co-location instances ofc. If the participation
index is greater thanmin prev, the event set is a co-location
(∈ P ) (Line 14-15). If this co-location is from the border set
Bold, it also becomes an emerged co-location (∈ ES) (Line
16-17).

C. Second update stage

If any emerged set is found from the first update stage, there
is a possibility of finding other emerged event sets according
to the following lemma.

Lemma 1:Let X be a co-located event set that is prevalent
in the updated setS = Sold ∪ Sin but not prevalent in the old
setSold. Then there exists a subsetY ⊆ X such thatY is an
emerged event set.

Proof: Let Y be a minimal cardinality subset ofX that is
prevalent inS, not in Sold. SinceY is a prevalent event set in
S, so are all of is proper subsets. However, by the minimality
of Y , none of these subsets are new prevalent sets inS. Thus,
Y is a border set inSold, andY ⊆ X as claimed.

In the second update, a candidate is an event set which
has at least one emerged event set as its subset (Line 29).

1: procedure PREPROCESS
2: NP ← searchneigh pairs(Sin, Sold, R)
3: Ninc ← gen incr neigh trans(NP , Nold)
4: N ← gen upd neigh trans(Nold, Ninc)
5: end procedure

6: procedure FIRSTUPDATEDETECTION
7: C ← Pold ∪Bold
8: SI ← scan incr star inst(C, Ninc)
9: k ← 2

10: while Ck 6= ∅ do
11: for all c ∈ Ck do
12: CIc ← find incr clique inst(SIc, NP )
13: PI← compute incPI(old PB info, CIc)
14: if PI ≥ min prev then
15: P ← P ∪ c
16: if c ∈ Bold then
17: ES ← ES ∪ c
18: end if
19: else
20: B ← B ∪ c
21: end if
22: end for
23: k ← k+1
24: end while
25: end procedure

26: procedure SECONDUPDATE
27: if ES 6= ∅ then
28: k ← 3
29: Ck ← gen sizeK candidates(Pk−1, ESk−1)
30: while Ck 6= ∅ do
31: SI ← scan star instances(Ck, N )
32: for all c ∈ Ck do
33: CIc ← find clique instances(SIc)
34: if computePI(CIc) ≥ min prev then
35: P ← P ∪ c; ES = ES ∪ c
36: elseB ← B ∪ c
37: end if
38: end for
39: k ← k+1
40: Ck ← gen sizeK candidates(Pk−1, ESk−1)
41: end while
42: end if
43: Pold ← P ; Bold ← B; Nold ← N ; Sold ← Sold ∪ Sin
44: return P ;
45: end procedure

Figure 3. EUCOLOC algorithm

The star instances of candidates are collected from the entirely
updated neighborhood transactions (N ) (Line 31). The true co-
location instances are filtered from the candidate instances. The
prevalence value of a candidate is calculated using the original
participation index (Equation (1)) because this set is a new
candidate with no previous instance metadata. If the candidate
is prevalent, it becomes an emerged co-location. Otherwise,
the set is included in the border set for future update. The
second update is repeated with the increase of the pattern size
until no more candidate (Line 30-41).

IV. EXPERIMENTAL EVALUATION

We compared the performance of EUCOLOC with two
other co-location mining algorithms. One (denoted as IMCP
in this paper) has an update function [20]. The implementation
of this algorithm is based on our understanding of the work.
The other (denoted as GeneralColoc) does not have an update
function [4]. All the experiments were performed on a Linux
system with 8.0 GB memory, and 2.67 GHz CPU.
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Figure 4. Experiment Result (a) By incremental data size (b) Byprevalence
threshold

In the first experiment, we compared the performance of
EUCOLOC and IMCP by varying the incremental size of
synthetic data. The number of distinct event types was 50. The
number of old data points was 10,020. The first incremental
set has 1,200 data points. The second incremental set is two
times bigger than the first set. The third one was three times
bigger than the first set, and so on. The ratio of old data points
which have relationships with new points was increased with
the increase of new data (i.e., 5%, 10%, 15% and 20%). As
shown in Figure 4 (a), the execution times of both EUCOLOC
and IMCP increased with the incremental data size. The
EUCOLOC showed better performance than IMCP. When the
ratio of relationships with old data points was fixed to 5%, the
execution times of EUCOLOC were stable, or very slowly
increased. The performance of EUCOLOC depends on the
inter-neighbor relationship ratio.

We also conducted the evaluation of EUCOLOC with real
climate measurement data [12]. The total number of processed
event types was 18. 7,728 event records were used for the old
data. 7,787 new event records were added for the incremental
data. We used 6 as a neighborhood distance, which means 6
cells on latitude-longitude spherical grids, where each grid cell
is 1 degree× 1 degree. About half of the old event objects had
neighbor relationships with the new ones. Figure 4 (b) shows
the result. EUCOLOC showed slowly increasing execution
time than other algorithms when the prevalence threshold was
decreased.

V. CONCLUSION

In this paper, we presented an algorithm for efficiently
mining co-location patterns in evolving spatial databases. The
proposed algorithm has two update stages. The first update
stage is 1) to avoid the generation and testing of many unnec-
essary candidates using the border concept, 2) to search only
incremental neighborhoods for the update, and 3) to update the
prevalence value of current co-locations with their incremental
instances and minimal previous co-located object information.
The second update stage is used for only finding new co-
located event sets (emerged ones). The initial experimental
evaluation shows our algorithmic design decision is effective
in updating discovered co-location patterns. The proposed
algorithm can be easily extended to handle the case of deleted
data points. Our approach can be adopted for the cases of
change of important parameters, such as neighbor distance and

prevalence threshold. In the future, we plan to explore these
problems.
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