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Abstract—Allen’s interval algebra is a calculus for temporal

reasoning that was introduced in 1983. Reasoning with quali-

tative time in Allen’s full interval algebra is nondeterministic

polynomial time (NP) complete. Research since 1995 identified

maximal tractable subclasses of this algebra via exhaustive

computer search and also other ad-hoc methods. In 2003, the full

classification of complexity for satisfiability problems over con-

straints in Allen’s interval algebra was established algebraically.

Recent research proposed scheduling based on the Fishburn-

Shepp correlation inequality for posets. We describe here three

potential temporal-related application areas as candidates for

scheduling using this inequality.

Keywords–Allen’s interval algebra, artificial intelligence; qual-

itative temporal reasoning; scheduling; smart-type reasoning.

I. INTRODUCTION

Temporal reasoning is a mature research endeavor and
arises naturally in numerous diverse applications of artificial
intelligence, such as: planning and scheduling [1], natural
language processing [2], diagnostic expert systems [3], be-
havioural psychology [4], circuit design [5], software tools
for comprehending the state of patients in intensive care units
from their temporal information [6], business intelligence [7],
and timegraphs, that is graphs partitioned into a set of chains
supporting search which originated in the context of story
comprehension [8].

Allen [9] introduced an algebra of binary relations on
intervals (of time), for representing and reasoning about time.
These binary relations, for example before, during, meets,
describe qualitative temporal information which we will be
concerned with here. The problem of satisfiability for a set
of interval variables with specified relations between them is
that of deciding whether there exists an assignment of intervals
on the real line for the interval variables, such that all of the
specified relations between the intervals are satisfied. When the
temporal constraints are chosen from the full form of Allen’s
algebra, this formulation of satisfiability problem is known
to be NP-complete. However, reasoning restricted to certain
fragments of Allen’s algebra is generally equivalent to related
well-known problems such as the interval graph and interval
order recognition problems [10], which in turn find application
in molecular biology [11][12][13].

TABLE I. [14] THE SET B OF THE THIRTEEN BASIC QUALITATIVE
RELATIONS DEFINED BY ALLEN.

Basic Interval Relation Symbol Endpoint Relations
X precedes (before) Y p (�) X

+
< Y

�

Y preceded-by (after) X p ^ (�)
X meets Y m X

+ = Y

�

Y met-by X m ^

X overlaps Y o X

�
< Y

�
< X

+
< Y

+

Y overlapped-by X o ^

X during Y d X

�
> Y

�
, X

+
< Y

+

Y includes X d ^

X starts Y s X

� = Y

�
, X

+
< Y

+

Y started-by X s ^

X finishes Y f X

�
> Y

�
, X

+ = Y

+

Y finished-by X f ^

X equals Y ⌘ X

� = Y

�
, X

+ = Y

+

A. Allen’s Interval Algebra
Allen’s [9] calculus for reasoning about time is based on

the concept of time intervals together with binary relations on
them. In this approach, time is considered to be an infinite
dense ordered set, such as the rationals R, and a time interval
X is an ordered pair of time points (X�

, X

+) such that X�
<

X

+.
Given two time intervals, their relative positions can be

described by exactly one of the members of the set B of 13
basic interval relations, which are depicted in Table I; note
that the relations X

�
< X

+ and Y

�
< Y

+ are always valid,
hence omitted from the table. These basic relations describe
relations between definite intervals of time. On the other hand,
indefinite intervals, whose exact relation may be uncertain, are
described by a set of all the basic relations that may apply.

The universe of Allen’s interval algebra consists of all the
binary relations on time intervals which can be expressed as
disjunctions of the basic interval relations. These disjunctions
are written as sets of basic relations, leading to a total of
213 = 8192 binary relations, including the null relation Ø (also
denoted by ?) and the universal relation B (also denoted by
>). The set of all binary relations 2B is denoted by A; every
temporal relation in A can be defined by a conjunction of
disjunctions of endpoint relations of the form X < Y,X = Y

and their negations.
The operations on the relations defined in Allen’s algebra
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are: unary converse (denoted by ^), binary intersection
(denoted by \) and binary composition (denoted by �), which
are defined as follows:

8 X,Y : Xr

^

Y $ Y rX

8 X,Y : X(r
T

s)Y $ XrY

V
XsY

8 X,Y : X(r � s)Y $ 9Z : (XrZ

V
ZsY ),

where X,Y, Z are intervals, and r, s are interval relations.
Allen [9] gives a composition table for the basic relations.

Fundamental reasoning problems in Allen’s framework
have been studied by a number of authors, including Golumbic
and Shamir [15] [16], Ladkin and Maddux [17], van Beek [18]
and Vilain and Kautz [19].

B. Posets and the Fishburn-Shepp Inequality
We now consider novel research proposed in [20], namely

to specify heuristics for scheduling based on representing a
collection of intervals of time with constraints as a poset, and
applying the Fishburn-Shepp inequality to guide a scheduling
algorithm. In [20], applications are sought for this approach:
we address this first step here by describing potential applica-
tions which are also related to smart-type reasoning. First, we
commence with overviews of the scheduling problem and the
Fishburn-Shepp inequality.

Generally, a schedule of tasks (or simply schedule) is the
assignment of tasks to specific time intervals of resources,
such that no two tasks occupy any resource simultaneously
– additionally, a requirement can be that the capacity of
resources is not exceeded by the tasks. A schedule is optimal
if it minimizes a given optimality criterion. However, our
ultimate interest is in providing an algorithm to solve, or
schedule, temporal constraint satisfaction problems; since we
also consider indefinite qualitative temporal information, the
solution may assign events simultaneously to intervals.

Let Q be a finite poset (partially ordered set) with n

elements and C be a chain 1 < 2 < · · · < c. For (Q,C), a map
! : Q ! C is strict order-preserving if, for all x, y 2 Q, x < y

implies !(x) < !(y). Let � : Q ! {1 < 2 < · · · < n} be a
linear extension of Q, that is, an order-preserving injection.

A poset Q is equivalently a directed acyclic graph (DAG),
G = (V,E); for temporal reasoning, the vertices represent time
intervals, and edges between vertices are labeled with relations
in Allen’s algebra which satisfy the partial ordering. For
scheduling problems, a linear extension � of Q (or G) can be
used to schedule tasks: � must respect interval constraints, that
is relations between comparable elements. Algorithmically, a
linear extension of a DAG, G, can be determined in linear time
by performing a depth-first search of G; while G (Q) can be
represented by an adjacency matrix.

The Fishburn-Shepp inequality [21] [22] is an inequality
for the number of extensions of partial orders to linear orders,
expressed as follows. Suppose that x, y and z are incomparable
elements of a finite poset, then

P (x < y)P (x < z) < P ((x < y) ^ (x < z)) (1)

where P(*) is the probability that a linear extension has the
property *. By re-expressing this in terms of conditional

probability, P (x < z) < P ((x < z) | (x < y)), we see that
P (x < z) strictly increases by adding the condition x < y.
The problem posed in [20] concerns applying the Fishburn-
Shepp inequality to efficiently find a favourable schedule under
specified criteria, where a naive scheduling algorithm is also
given together with an illustrative example. However, our focus
here is in introducing application scenarios. The rest of the
paper is structured as follows.

In Section II, we describe various applications in temporal
reasoning that include applications in smart homes, applica-
tions in intelligent conversational agents, and also applications
in exercise physiology followed by Section III which describes
conclusion and future work.

II. APPLICATIONS IN TEMPORAL REASONING

A. Applications in Smart Homes
Buildings consume a considerable amount of energy.

Managing that energy is challenging, though is achievable
through building control and energy management systems.
These systems will typically monitor, measure, manage and
control services for the lighting, heating, ventilation and air
conditioning (HVAC), security, and safety of the building.
They also permit a degree of scheduling, albeit they are often
limited by static programming and may have no awareness
incorporated of external events. For example, a building’s
HVAC system may heat rooms that are unoccupied as the
setpoint has been programmed to be a certain temperature for
a specified interval of the day. Clearly this is quite inefficient,
and though motion detectors can play a role in actuating lights
during periods of room occupancy, maintaining a comfortable
indoor climate using similar sensors to detect people cannot
provide the same benefits. Furthermore, the indoor climate
is impacted by outdoor thermodynamic processes, as well as
internal heat gains which can be unaccountable (e.g., people,
mobile equipment, etc). However, most modern non-residential
building’s energy management systems will be configured to
turn building services on and off throughout the day using
a pre-programmed schedule (e.g., a repeating daily pattern of
heating use) and can also employ intelligent start-up controllers
with external temperature compensation to delay the turning
on of heating for example. Modern heating controllers (i.e.,
programmable thermostats) in homes can also have setpoints
configured in a daily schedule (e.g., 6-8am: increase setpoint
to 20�C, representing a waking-up phase; 9am - 4pm: heating
deactivated or set to a maximum (e.g., 15�C); and from 5pm
- 6pm: 21�C, representing a heating-up phase to anticipate
arrival of an occupant from a workplace, and so forth).

Aside from heating control, homes can now also em-
ploy smart home systems to perform some degree of energy
management and appliance automation. These systems are
becoming more commonplace, particularly as the Internet of
Things (IoT) paradigm is gaining more traction, whereby
humans are bypassed, and machine to machine communication
takes place (e.g., Smart Homes communicating with Smart
Grids [23]). This gives rise to smart automation and reasoning
where decision making can take place and determine when
home appliances can be scheduled, particularly in the case of
peak-load shaving [24] or demand response optimization [25].
In these cases, consumption patterns can be shifted to times
of lower cost electricity. Appliance scheduling can be further
classified by, for instance, their minimum required periods of
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operations, whether or not their operations can be interrupted,
and if a human occupant is involved (i.e., in climate control
scenarios). For instance, washing machines will have varying
periods of operation depending on the program (wash, spin,
dry) and cannot (typically) be interrupted if scheduled. Heating
or cooling systems will have optimum start-up times to turn
on in anticipation of occupants requiring the temperature of
the house to be at a preset setpoint upon arrival. The Internet
of Things has even enabled this particular scenario to be
influenced by the distance an occupant is from the home or
building, whereby the driving time is estimated via tracking
of a Global Positioning System (GPS signal) [26]. In [27],
driving patterns were analysed, and a programmable thermostat
augmented with GPS control enabled energy savings of 7%.

The emerging Internet of Things in this respect will be
responsible for huge volumes of temporal pattern data (i.e.,
timestamped sequences of events, be it a change in temper-
ature, or a light being turned on and off, or the duration of
activity of an entertainment system, etc), thus also incorpo-
rating quantitative temporal information. In the smart home,
the ability to detect user behaviour or house activities from
this kind of temporal pattern data can provide a better under-
standing of how to identify patterns of energy use and thus
determine when or how to gain energy savings. Naturally, the
accumulative savings factor is increased many-fold in the smart
city concept. Temporal pattern event detection inspired by
Allen’s relations has proved useful in smart environments: for
anomaly detection in assisted living applications [28], and in
activity monitoring [29]. In these examples, intervals represent
the sensed data (cooking would imply the stove being on while
an inhabitant is present in the kitchen [30]). Such kinds of
recognition are useful for determining normal behaviour of
elderly occupants, and thus, for instance, detecting any onsets
of dementia [31].

Clearly, efficient, or ideally optimized, scheduling of events
can lead to enhanced savings of time and energy – it is with this
goal that we propose applying the Fishburn-Shepp inequality,
possibly to a specified subset of events in a larger complex
system.

B. Applications in Intelligent Conversational Agents

Intelligent conversational agents (CA) enable natural lan-
guage interaction with their human participant. Following an
input string, the CA works through its knowledge-base in
search of an appropriate output string. The knowledge-base
consists of natural language sentences based on a specific
domain. Through the use of semantic processing using a lexical
database with grouped sets of cognitive synonyms, word
similarity is determined, with thus the highest semantically
similar ranked string returned to the user as output.

Scripts consist of contexts that relate to a specific theme
or topic of conversation. Each context contains one or more
rules, which possess a number of prototype natural language
sentences. An example of a scripted natural language rule is
shown below, where s is a natural language sentence and r is
a response statement.
<Rule-01>
s: I am having problems accessing my email account.
r: I’m sorry to hear that. Have you tried contacting IT support?

One such CA, as proposed by O’Shea et al. ([32] [33] [34]),
uses semantics as a means to measure sentence similarity.
The CA is organized into contexts consisting of a number of
similarly related rules. Through the use of a sentence similarity
measure, a match is determined between the user’s utterance
and the scripted natural language sentences. Similarity ratings
are measured in the range from 0 to 1, in which a value of
0 denotes no semantic similarity, and 1 denotes an identical
sentence pair. The highest ranked sentence is fired and its
associated response is sent as output. The following algorithm
describes the application:

1. Natural language dialogue is received as input from the
user.

2. Semantic-based CA receives natural language dialogue
from the user which is sent to the sentence similarity measure.

3. Semantic-based CA receives natural language sentences
from the scripts files which are sent to the sentence similarity
measure.

4. Sentence similarity measure calculates a firing strength
for each sentence pair which is returned and processed by the
semantic-based CA.

5. The highest ranked sentence is fired and its associated
response is sent as output.

Natural language interaction between two participants (hu-
man or otherwise) can be modeled using Allen’s interval
algebra: the intervals of speech could satisfy the basic relation
p, if one speaks before the other, or the relation o if their
speech overlaps, and so on. In terms of scheduling a set of
speech events with specified relations, that is constructing a
linear extension by applying the Fishburn-Shepp inequality,
we envisage an application for the learning impaired which
schedules the events sequentially to reduce confusion from
simultaneous speech. This could then be integrated with a CA
facility.

C. Applications in Physiology
In exercise physiology, the study of complex rhythms

arising from the peripheral systems (for example, the cardio-
vascular system) and the central nervous system of the human
body is important to optimize athletic performance while using
a suitable type of pacing. Pacing plays an important part during
athletic competition so that the metabolic resources are used
effectively to complete the physical activity in the minimum
time possible, as well as to maintain enough metabolic re-
sources to complete that task [35]. Moreover, according to
the Central Governor Model (CGM) [36], there is a central
regulator that paces the peripheral systems during physical
activity to reach the endpoint of that physical activity without
physiological system failure. This central governor model of
fatigue is a complex integrative control model which involves
the continuous interaction, in a deterministic way, among all
the physiological, and that of the central systems.

In this context, the decision making process involved when
an athlete changes his or her pacing strategy during a particular
race (and especially during endurance exercise) seems quite
complex. However, the change in the decision making process
could be simply explained by the basic relations in Allen’s
interval algebra. Consider the following scenario where an
athlete or runner needs to complete a 20-km race. An experi-
enced runner will subconsciously be aware of the amount of
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energy resources they will need during the race so that they
can effectively complete the race without catastrophic failure.
During the race, there are both exogenous and endogenous
factors which will influence the optimal performance of the
runner, and therefore she or he has to make important decisions
as to when, or when not, change their pacing during the race so
that they can complete the race in the minimum time possible.

For instance, there may be three major changes in the pat-
terns of the running speed, power output, or pacing strategies
that the runner could adopt for a long distance race such as
the 20-km race [37]. Initially, on the first stage of the race, he
or she will accelerate from a resting standing (or crouching)
position to reach a constant optimal speed as determined by
the runner’s physical ability; meanwhile their heart rate (HR)
will accelerate as well as their volume of oxygen consumption
(VO2). In the second stage, they will maintain the same
constant running speed for most of the race while their heart
rate will be quite steady; moreover, the volume of oxygen
consumption will be kept practically constant throughout the
race. Finally, in the third stage of the race, the runner will
accelerate or sprint in order to complete the race, which will
at the same time, increase their heart rate as well as the rate
of volume of oxygen consumption.

This represents one possible scenario that may occur during
a race, which illustrates that Allen’s temporal relations can be
exploited to more clearly express the complex decision-making
processes related to the human body during physical exertion,
and hence allow for scheduling the pacing strategy adopted
by a runner during a particular race. Furthermore, smart-type
devices can be worn by an athlete which can also feed into
the decision-making process in real time.

III. CONCLUSION AND FUTURE WORK
Previous research in temporal pattern reasoning surround-

ing smart homes has largely focused on activity recognition
of inhabitants, and gaining an understanding from sensor data
retrieved from indoor environments (such as electricity, tem-
perature, light, or motion). The Internet of Things, however,
will provide further dimensions of data from people (wearable
sensors, tracking of GPS, etc.). This kind of outdoor data will
provide additional context to the smart home and enable it to
make better and more informed decisions as to how to actuate
and control building services.

For example, returning to the case of augmented heating
control using GPS - an occupant leaves the house and goes
for a short jog (automatically disabling the heating as they
leave) - as they run their own body temperature rises. The
wearable sensors will be monitoring their temperature and
their GPS coordinates. As they return and approach their
home, the augmented heating control with the GPS system
will turn on the heating, but will also take into account the
occupant’s current body temperature, and accordingly apply
the appropriate heating control strategy (i.e., reducing the
return-to-home setpoint from a previously higher setting and
actuation time). In this case, the quantitative temporal informa-
tion between arrival and heating activation will be lengthened
as the temperature setpoint requirement will be reduced. This
is just one of a myriad of possibilities that can be realized
from the abundance of potential sensor data generated from the
Internet of Things. We believe the relation between indoor and
outdoor sensing (as well as any other sensing source for that

matter) and reasoning strategies requires further exploration,
and as part of our future research strategy we will investigate
smart home event and action temporal reasoning from multiple
data streams beyond enclosed indoor scenarios. In particular,
smart-type scheduling is a key factor in energy-related issues.

We envisage enhanced synergy in the smart-environment
by integrating intelligent conversational agents. Useful re-
sponses to even simple sentences such as Where are my keys?
can have impact on human energy and stress levels and allow
for more efficient use of time.

To date, physiological research into pacing strategies has
focused on the amount of energy resources that are available
for a runner to complete a long distance race. We propose
that the future area in which the exercise physiology field
should endeavour to concentrate more on, is the optimal time
in switching between the different types of pacing strategies, so
that a race is completed successfully and in the minimum time
possible without homeostatic failure. In order to achieve this,
the various changes in pacing, namely, increasing, constant
or decreasing pace, depends on each individual’s resource
capacity and endurance for each type of pacing so as to
achieve the target in the least possible time. Moreover, we
suggest that the decision-making process underlying the choice
of the various pacing strategies can be informed through the
application of Allen’s algebra, and the resulting scheduling
can be applied to promote and improve world elite athletic
performance.
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