
On the Evolvability of Code Generation Patterns:
The Case of the Normalized Systems Workflow Element

Herwig Mannaert and Peter De Bruyn

Department of Management Information Systems
Faculty of Applied Economics

University of Antwerp, Belgium
Email: {herwig.mannaert,peter.debruyn}

@uantwerp.be

Koen De Cock and Tim Van Waes

Research and Development Department
Normalized Systems eXpanders
Antwerp Science Park, Belgium

Email: {koen.de.cock,tim.van.waes}
@nsx.normalizedsystems.org

Abstract—Normalized Systems Theory (NST) aims to create
software systems exhibiting a proven degree of evolvability. The
theory contains a set of formally proven theorems and proposes
a set of elements (patterns) to realize the adherence to the
theorems in practice. While the development and evolution of
several information systems in practice (based on the theory) have
been documented, the evolution or enhancement regarding one
of the fundamental element patterns has not yet been presented.
Therefore, this paper discusses the evolution of one of these
patterns, the flow element, and what this means for the software
applications it is used in. This way, additional insight is provided
on how the theory enables the enhancement and simultaneous
evolution of large sets of information systems.

Keywords–Evolvability; Normalized Systems; Design Patterns

I. INTRODUCTION

Having evolvable information systems (IS) is important
for the survival chances of organizations, although the topic
has not yet received much attention within the IS research
area [1]. Normalized Systems Theory (NST) precisely focuses
on providing an ex-ante proven approach to build evolvable
software systems by using concepts from systems theory and
statistical thermodynamics [2]–[4]. In order to apply the theory
in practice, a code generation framework (NS expanders) was
developed, compliant with NST. During the last five years,
about 50 information systems have been developed using this
code generation framework, from which some cases have been
documented in previous publications [5]–[9].

While these cases describe the evolution of various versions
of specific information systems developed using NST and the
NS expanders, no specific evolution within the code generation
framework itself has currently been documented. Therefore,
this paper will discuss the evolution (the incorporation of
additional and improved functionality) of a specific part of
the NS expanders, i.e., the flow element. This way, we aim
to provide additional insight into how the theory (and more
specifically, the systematic improvement of the NS expanders)
enables the enhancement and simultaneous evolution of a large
set of information systems.

The remainder of this paper is structured as follows. In
Section II, we discuss some related work with an emphasis on
NST, which is the theoretical basis of both the evolutionary ap-
proach and the code generation framework. Section III explains
the structure of an initial version of the flow element. Next,

we discuss some additional developments and improvements
regarding the considered element in Section IV and some
empirical test results in the context of this element evolution
in Section V. Finally, our discussion is offered in Section VI.

II. RELATED WORK

In Sections II-A and II-B, we introduce and summarize the
theoretical underpinnings of NST and the associated expansion
and regeneration mechanisms, respectively. In Section II-C, we
briefly discuss the contrast with some existing approaches.

A. Normalized Systems Theory
The software applications and the patterns they make use

of, as we will discuss and analyze in the following section,
are based on NST. NST was proposed with the purpose of
allowing the design of software applications exhibiting ex-
ante evolvability [2]–[4]. In particular, the theory focuses on
the ripple effects (due to all kinds of coupling) occurring in
software systems when changes are applied and proposes some
ways to eliminate them. It is believed that such kind of ripple
effects may be one of the main causes of Lehman’s Law of
increasing complexity [10], which states that software systems
become more difficult to maintain and adapt over time due to
its deteriorating structure. Indeed, the more coupling and the
more ripple effects, the more difficult software applications
can be adapted.

NST starts from the concept of stability as defined in
systems theory as its theoretical basis. A system is considered
to be stable when a bounded input only results in a bounded
output, even for those cases where an unlimited time period
is considered. In the context of software applications, this
would require that a bounded set of elementary functional
changes should only result in a bounded impact to the software
system, even when considering an unlimited time period (and
therefore, an unlimited system size with an unlimited amount
of software construct instances). This reasoning, based on
stability, therefore also implies that the impact of changes to
a software system (i.e., the number of construct instances that
need to be created or adapted) cannot be dependent on the
size of that information system. The impact should only be
dependent on the size and property of the changes that are
applied and not the number of construct instances within the
system. Changes of which the impact is dependent on the
size of the software systems are called combinatorial effect,

51Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

Figure 1. A graphical representation of code generation and additional custom coding within a Normalized Systems application.

and are to be avoided. NST has proposed and proved that a
set of theorems should be complied with in order to avoid
combinatorial effects (as their presence negatively impacts the
evolvability of a software system) [2]–[4]:
• Separation of Concerns, which states that each con-

cern (i.e., each change driver) needs to be encapsulated
in an element, separated from other concerns;

• Action Version Transparency, which declares that an
action entity should be updateable without impacting
the action entities it is called by;

• Data Version Transparency, which indicates that a
data entity should be updateable without impacting
the action entities it is called by;

• Separation of States, which states that all actions in a
workflow should be separated by state (and called in
a stateful way).

B. NS Expansion and Regeneration
Applying the NST theorems in a systematic way results in a

software system having many (but small) modules. The design
of such fine-grained structure is far from trivial. Moreover, as
any theorem violation during the development process results
in combinatorial effects, it is very hard to create a perfectly
NST compliant application by manual coding. Consequently,
NST advocates the use of elements: design patterns which
are re-used (and parametrized) over and over again to build
a software system. Therefore, a software system is said to be
generated or “expanded” to a large extent. In particular, the
following set of five elements is currently proposed [3], [4]:
• data element: used to enter, update and retrieve data,

such as invoices or customers.
• task element: used to perform specific tasks, such as

creating and rendering an invoice.
• flow element: used to sequence and execute various

tasks on the instances of the data.
• connector element: used to enable input/output by

human users or external systems.
• trigger element: used to activate flows and tasks in a

periodic way.

A code generation framework, called the NS expanders and
built by a spin-off company of the University of Antwerp
(i.e., the Normalized Systems eXpanders factory or NSX),
has been created in order to further refine the elements. This
framework allows the creation of NST software in a relatively
straightforward way and has been used to generate several
applications in different types of industries. As schematically
represented in Figure 1, the generated code base or skeleton
is later on augmented with additional —manually written—
custom code. This custom code is divided into insertions (code
fragments embedded within the classes of the elements) and
extensions (separate software classes).

Insertions and extensions are harvested and stored in a
separate source code repository, enabling the possibility to
reinject this custom code base into future generations of
skeletons consisting of expanded elements. Such future ver-
sions could provide additional or improved functionality in
the element patterns (e.g., providing more advanced security
features, or allow the use of new (versions of) frameworks
for specific concerns like persistency or access control). This
process of regenerating the code skeleton using a new version
of the NS expanders, and reinjecting the existing custom
code into a new version of the information system, is called
regeneration or rejuvenation.

C. Related approaches
Other approaches than NST have obviously also already

advocated the use of (software) design patters. Typically,
the idea is to document and provide access to high quality
solutions for frequently occurring problems so that the same
problem does not need to be solved by every single developer
and he or she can immediately make use of a mature solution
that has proven its value in the past. A seminal work in this
respect was for instance the work of the Gang of Four [11].
While these design patterns represent the core reasoning of
the solution to a particular problem, most of them (such as
those from Gamma et al. [11]) still require a certain amount of
interpretation before they can be converted into actual working
code (i.e., they cannot be mapped one-to-one to software
code). The NS expanders, however, do not need this additional
interpretation and result directly in operational software code.

52Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

Recently, some work on Model-Driven Software Development
(MDSD) [12] has adopted a similar approach in which models
are created and can then be converted into working code. Our
approach differs in the sense that we specifically focus on
generating software with a high degree of evolvability.

III. INITIAL FLOW ELEMENT PATTERN

This section focuses on the initial design of the flow
element pattern and the additional requirements which arose
during its use in practice. In the next section, we will discuss
how these additional requirements were incorporated in an
improved version of the element.

A. The Flow Element Pattern
Figure 2 presents a sequence diagram documenting an

initial version of the inner pattern of the flow element (i.e.,
before the target development as discussed in Section IV was
applied). For every flow element called <Flow>, a number
of Java classes are generated or expanded, to implement the
automated processing of a state machine operating on a data
element called <Data>. The various operations or tasks of
the state machine are specified in the various entries of a
configuration data element called StateTask. The individual
operations or tasks are implemented in task elements called
<Task>, and every execution of a task on an instance of the
data element <Data> is logged in an entry of an history data
element called <Data>TaskStatus. In order to be able to
start/stop the processing of the flow element and set some other
parameters (such as time windows or time intervals), a control
data element EngineService is provided.

Let us focus on the orchestrate method of the central
class <Flow>EngineBean of the flow element <Flow> as
shown in Figure 2. First, based on the name of the flow,
the control data is retrieved from the appropriate entry of the
EngineService data element. If the flow engine is not stopped,
the various entries of the StateTask data element (configuring
the state machine) are retrieved for this workflow. Then, the
engine loops through the various state tasks or transitions.
For every state transition specified for this workflow element,
all instances of the target data element are retrieved whose
status corresponds to the begin state specified in the state
transition. In a second (embedded) iteration, the flow engine
loops through every instance of the data element and invokes
the task element (<Task>) as specified in the state transition
entry. In accordance with the internal structure of the task
element, this corresponds to an invocation of the perform
method of the <Task>Bean who will delegate the actual
implementation to a delegation class. For every execution
of a task on an instance of the data element, an entry is
created in a <Data>TaskStatus data element for the
purpose of logging and history tracking. As can be observed
in the sequence diagram, the entry is created before the task
is executed, and updated after execution (e.g., adding the
timestamp at completion, and specifying whether the result
was a success or failure).

B. Additional Requirements
Certain requirements for highly demanding back-end pro-

cesses, related to data integrity and high performance, were
not provided out-of-the-box by the above described initial
flow element. However, such requirements are necessary when,

for example, processing millions of income or VAT tax
declarations. Consider for instance the need for locking or
claiming of instances of the target data element, the need
for the transactional encapsulation of the task execution and
the setting of the result state, and the need for the parallel
and simultaneous execution of a task on multiple instances
of the target data element. An improved version of the flow
element, incorporating these functionalities, should however
still allow the regeneration of all existing (i.e., previously
developed) applications, and therefore the regeneration of all
existing instances of flow elements across all these applicati-
ons. Therefore, backward compatibility is considered crucial:
the default behavior of the improved flow element needs to
correspond to the behavior of the original flow elements that
are being regenerated or rejuvenated.

IV. IMPROVED FLOW ELEMENT PATTERN

The flow element pattern was extended and improved in
order to accommodate the additional functional requirements
for high throughput processing as discussed Section III-B. In
this section, we will discuss how the structure of the flow
element pattern evolved, gradually introducing the additional
functionality that satisfies the various functional requirements
related to this high throughput processing.

A. Serial Instance Processing
After retrieving and applying the control data for the work-

flow engine, and following the retrieval of the various state
transition entries for the workflow engine, the first additional
piece of functionality is represented in the sequence diagram
of Figure 3. In some cases, it is desired to process all tasks
(or a number of them) in a serial or consecutive way on
a single instance of the target data element. Consider for
instance the consecutive processing of various tasks on a
single invoice (e.g., computing the invoice, entering the in
an accounting system, rendering the invoice document, and
mail the invoice), instead of performing every first, second,
etc. individual task on all invoices before processing the next
task. For this purpose, a StateTaskChainBuilder is used to
group the various state task transitions in consecutive chains. A
parameter specifying the chain building strategy (which might
for instance specify a maximal length for the chains) allows us
to perfectly emulate the old behavior by indicating a maximal
chain length equal to 1. The iteration to retrieve all instances of
the target data element based on a specified begin state now
loops over the various begin states of the state task chains,
instead of using all begin states of all individual state tasks.

B. Claiming for Data Integrity
The second additional piece of functionality is the need

for a data claiming mechanism. Before the actual processing of
tasks on instances of the target data element, these instances are
claimed using a claiming table in the database. Though it was
already impossible for two different engines running in parallel
to process the same instance of a target element simultaneously
(through the use of intermediate states), processing time could
be lost by using several parallel engines. Indeed, various
parallel engines retrieving the same data instances frequently
experienced during processing that data instances were already
being processed by another engine in the initial version of the
flow pattern. The mechanism of claiming data instances before
processing them, avoids this.

53Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

Figure 2. A sequence diagram representing the control flow of the initial flow element pattern.

Figure 3. A sequence diagram containing the creation of state task chains and the claiming of instances in the improved flow element pattern.

C. Parallelized Task Processing

Now that a specific set of data instances has been clai-
med, they can be processed. Instead of looping straight
away through all instances, the whole data set is passed to
a <Flow>Processor, which is able to perform a single
task —or a chain of consecutive tasks— in parallel threads
simultaneously on multiple instances of the target data element.
Note that backward compatibility can be achieved by using
a parameter to specify the maximum amount of concurrent
threads. This enables the emulation of the old behavior, by
simply setting the value of the parameter to 1. Or alternatively,

by using another <Flow>Processor implementation, which
might even not allow parallel processing.

The control flow for this parallel processing mechanism is
represented schematically in Figure 4. The parallel processor
retrieves first the above mentioned parameter for the task(s)
that are being processed, and starts the iteration through the va-
rious data element instances. For every instance, it is checked
whether this instance has indeed been claimed by this engine,
and a local hash map is retrieved to verify the maximum
amount of instances that are currently being processed. If this
maximum amount is reached, the flow engine will wait until a

54Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

Figure 4. A sequence diagram containing the simultaneous and parallel processing of instances in the improved flow element pattern.

processing slot becomes available. If a slot becomes available,
and the flow engine has not been ordered to stop in the
control table in the meantime, a <Flow>AsyncSequencer
is invoked to create a new processing thread. Within this
newly created thread, which is being added to the hash map
of running processing task threads, a <Flow>Sequencer is
invoked to perform the (chain of) task(s) on the data instance.
When processing threads have been launched for all instances
of the data set, the <Flow>Processor simply waits until
all processing threads have been completed.

D. Transactional State Transitions
Within the sequence method of the

<Flow>Sequencer class, as represented in Figure 5,
the data element instance is processed by the different
consecutive tasks of the state task chain. For every task
of the state task chain, three transactional steps ensure the
transactional integrity of the statuses. First, the status of the
data instance is set to an interim state, and an entry in the
<Data>TaskStatus data element is created. Second, the
target data instance is processed through an invocation of the
actual task element, the status of the data instance is set to an
end state, and the entry in the <Data>TaskStatus data
element is updated (all within a single transaction). Finally, in
case of failure, the setting of the end state and the updating
of the entry in the history table, is combined with the creation
of an additional entry in a failure history data element.

Also here it is crucial that the previously existing behavior
of the flow element can be emulated by default. This is done
by adding a transaction attribute to the specification of the data
element. If not specified, a default value of no transaction is
selected, which omits the whole transactional behavior.

V. EMPIRICAL TEST RESULTS

The initial flow element has been generated by the NS
expanders hundreds of times and was included in tens of

software applications. Nearly all these applications —and
therefore nearly all the corresponding flow elements— have
been regenerated or rejuvenated multiple times during the last
few years, with limited changes to the flow element pattern.

The new enhanced architecture of the flow element as des-
cribed in this paper, and its implementation in the expanders,
has been developed using a specific reference (test) application.
Here, it was verified that the proposed solutions for transacti-
onal integrity performed as desired during system crashes.
Moreover, it was validated via the reference application that
a default set of parameters actually resulted in a behavior
identical to the previous implementation of the flow element.

After this testing and validation 8 additional applications
(containing a total of 31 flow elements) were regenerated using
the new version of the NS expanders (containing the improved
flow element pattern). Therefore, from that point in time, all
8 applications could make use of the additional requirements
incorporated in the flow element, if preferred. These applica-
tions range from administrative applications (e.g., supporting
the master thesis assessment of students or processing VAT tax
declarations), to more industrial applications (e.g., supporting
data hubs for energy providers or monitoring photovoltaic
solar panels). The existing default behavior was tested in
all 8 applications, whereas the new enhanced functionality
was applied within two applications. Already one of these
applications has been put into production (i.e., is being used)
while running the improved flow element pattern.

VI. CONCLUSION

By discussing a specific NS element pattern and its evo-
lution (resulting in the evolutionary enhancement of sets of
software applications), this paper is believed to make several
contributions. With regard to theory, we showed how the NST
approach can be used for the simultaneous introduction of
enhanced capabilities in (large) sets of information systems.

55Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

Figure 5. A sequence diagram containing the sequencing and transactional task processing in the improved flow element pattern.

This proves the feasibility of regenerating or rejuvenating
(large) sets of information systems, and therefore enhancing
their capabilities and/or modernizing the technologies used,
while at the same time preserving existing functionality. For
practitioners, this paper contributes to the design and documen-
tation of actual workflow engines, processing state machines
in a demanding high throughput environment.

Our paper has some limitations as well. First, the described
set of information systems that has been regenerated and tested,
is still somewhat limited, and only one regenerated application
has been put into production using the enhanced pattern. Se-
cond, the proposed pattern for high throughput processing by
state machine workflow engines has been designed and tested
by several (but a limited amount of) experienced software
developers, but has not yet been validated by a large amount of
experts. A more advanced validation is however the ultimate
goal of the NST approach: to validate and improve various
software patterns through the collaborative efforts of many
experts, and regenerate thousands of applications using these
improved patterns. Third, our current discussion was mainly
performed by means of a high-level overview (e.g. by using
and describing sequence diagrams). A formal representation of
the precise impact of using the (updated) workflow element,
and the degree to which it is able to avoid the occurrence
of combinatorial effects, is not provided in this work. Such
further validations, improvements and formal representations
are therefore considered as part of future research.

REFERENCES
[1] R. Agarwal and A. Tiwana, “Editorialevolvable systems: Through the

looking glass of is,” Information Systems Research, vol. 26, no. 3, 2015,
pp. 473–479.

[2] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210–1222, special Issue on Software Evolution, Adaptability
and Variability.

[3] ——, “Towards evolvable software architectures based on systems
theoretic stability,” Software: Practice and Experience, vol. 42, no. 1,
2012, pp. 89–116.

[4] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Koppa, 2016.

[5] M. Op’t Land, M. Krouwel, E. Van Dipten, and J. Verelst, “Exploring
normalized systems potential for dutch mods agility: A proof of concept
on flexibility, time-to-market, productivity and quality,” in Proceedings
of the 3rd Practice-driven Research on Enterprise Transformation
(PRET) working conference, Luxemburg, Luxemburg, September 2011,
pp. 110–121.

[6] G. Oorts, P. Huysmans, P. De Bruyn, H. Mannaert, J. Verelst, and
A. Oost, “Building evolvable software using normalized systems theory
: a case study,” in Proceedings of the 47th annual Hawaii international
conference on system sciences (HICSS), Waikoloa, Hawaii, USA, 2014,
pp. 4760–4769.

[7] P. Huysmans, P. De Bruyn, G. Oorts, J. Verelst, D. van der Linden,
and H. Mannaert, “Analyzing the evolvability of modular structures
: a longitudinal normalized systems case study,” in Proceedings of
the Tenth International Conference on Software Engineering Advances
(ICSEA), Barcelona, Spain, November 2015, pp. 319–325.

[8] P. Huysmans, J. Verelst, H. Mannaert, and A. Oost, “Integrating infor-
mation systems using normalized systems theory : four case studies,”
in Proceedings of the 17th IEEE Conference on Business Informatics
(CBI), Lisbon, Portugal, July 2015, pp. 173–180.

[9] P. De Bruyn, P. Huysmans, and J. Verelst, “Tailoring an analysis
approach for developing evolvable software systems : experiences from
three case studies,” in Proceedings of the 18th IEEE Conference on
Business Informatics (CBI), Paris, France, August-September 2016, pp.
208–217.

[10] M. Lehman, “Programs, life cycles, and laws of software evolution,” in
Proceedings of the IEEE, vol. 68, 1980, pp. 1060–1076.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley
Professional, 1994.

[12] T. Stahl, M. Völter, J. Bettin, A. Haase, and S. Helsen, Model-Driven
Software Development. Wiley, 2006.

56Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

