
Verifying Distributed Algorithms with Executable
Creol Models

Wolfgang Leister
Norsk Regnesentral

Oslo, Norway
wolfgang.leister@nr.no

Joakim Bjørk and Rudolf Schlatte
Institute of Informatics, University of Oslo

Oslo, Norway
{joakimbj,rschlatte}@ifi.uio.no

Andreas Griesmayer
VERIMAG/UJF

Grenoble, France
andreas.griesmayer@imag.fr

Abstract—We show a way to evaluate functional properties of
distributed algorithms by the example of the AODV algorithm
in sensor networks, Creol models and component testing. We
present a new method to structure the evaluation work into
the categories of techniques, perspectives, arrangements, and
properties using executable models. We demonstrate how to use
this structure for network simulations and component testing in
order to evaluate a large list of properties. We also show which
properties are most suited to be evaluated by which technique,
perspective, and arrangement.

Keywords—formal analysis; modelling; model checking; test-
ing; routing algorithms

I. INTRODUCTION

With increasing miniaturisation, computational devices are
becoming virtually omnipresent and pose new challenges in
software development. We study arising questions on the
example of wireless sensor networks (WSN) [1] consisting
of spatially distributed autonomous sensor nodes that commu-
nicate using radio connections. Each node can sense, process,
send and receive data. We concentrate on the verification of a
Distributed Algorithm for ad-hoc networks between the sensor
nodes to route data packets of the participating nodes. There
are many requirements for WSN: routing must fulfil properties
for quality of service (QoS), timing, delay, and network
throughput; furthermore, we are interested in properties like
mobility and resource consumption. Autonomous behaviour
of the nodes leads to state space explosion during model
checking, making evaluation a complex task that requires
a combination of techniques from different verification ap-
proaches.

In this paper, which is based on a previously published
report [2], we present a structured methodology to verification
that introduces the categories of techniques, perspectives,
arrangements, and properties. We combine this novel structure
with techniques from simulation, testing, and model checking
to create a new, unified method for verification of distributed
systems. To this end, we use models in Creol , an object
oriented modelling language that allows executable models.
The novel idea behind our work is to employ one single
executable model that is suitable for simulation, testing, and
model checking, without the need to develop separate models
for each task. We demonstrate the approach by evaluating a
large set of properties on a network using the Ad hoc On
Demand Distance Vector (AODV) routing algorithm [3].

The remainder of this paper is organised as follows: After
briefly presenting the Creol language and related work, we
discuss the AODV model developed previously (Section II),
our categories for the validation process (Section III), present
results from network simulation and component testing (Sec-
tion IV), and conclude in Section V.

A. Executable Creol Models

Creol [4], [5] is an object-oriented modelling language,
which provides an abstract, executable model of the imple-
mentation of components. The Creol tools are part of the
Credo tool suite [6] that unifies several simulation and model
checking tools. The Credo tools support integrated modelling
of different aspects of highly re-configurable distributed sys-
tems, both structural changes of a network and changes in the
components. The Credo tools offer formalisms, languages, and
tools to describe properties of the model in different levels of
detail; these formalisms include various types of automata,
procedural, and object-oriented approaches.

To model components, Creol provides behavioural inter-
faces to specify inter-component communication. We use intra-
component interfaces together with the behavioural interfaces
to derive test specifications to check for conformance between
the behavioural model and the Creol implementation. Types
are separated from classes, and (behavioural) interfaces are
used to type objects. Creol objects can have active behaviour
and are concurrent, i.e., conceptually, each object encapsu-
lates its own processor. During object creation a designated
run method is automatically invoked. Asynchronous method
calls, explicit synchronisation points, processor release, and
under-specified, i.e., nondeterministic, local scheduling of the
processes within an object provide flexible object interaction.

Creol includes a compiler, a type-checker, and a simulation
platform based on Maude [7], which allow simulation, guided
simulation, model testing, and model checking.

B. Related Work

Showing functional correctness and non-functional proper-
ties for algorithms employed for WSN helps the developers
in their technical choices. Developers use a variety of tools,
including measurements on real implementations, simulation,
and model-checking. When developing algorithms for packet
forwarding in a WSN, simulation results must be compared

1

PESARO 2011 : The First International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-132-8

with the behaviour of known algorithms to get a result
approved [8]. Approaches using simulation, testing, and model
checking during the development process use one or more
of the following: modelling, traces, runtime monitoring by
integrating checking software into the code (instrumentation)
[9], or generating software from models automatically [10].
Simulation systems are used to analyse performance parame-
ters of communication networks, such as latency, packet loss
rate, network throughput, and other metrics. Most of these
systems use discrete event simulation. Examples for such
simulation systems include Opnet, OMNeT++, and ns-2 [11],
or mathematical frameworks like MathWorks. Many of these
tools have specialised libraries for certain properties, hardware,
and network types.

The CMC model checker [9] has been applied on existing
implementations of AODV by checking an invariant express-
ing the loop-freeness property. In that work, both specification
and implementation errors were found and later corrected in
more recent versions of both specification and implementa-
tions. CMC interfaces C-programs directly by replacing proce-
dure calls with model-checker code, thus avoiding the need to
model AODV. The model checking tools SPIN and UPPAAL
have been used to verify properties for the correct operation of
ad hoc routing protocols [12], such as the LUNAR and DSR
algorithms [13]. Both LUNAR and DSR are related to AODV,
but use different mechanisms. A timing analysis in UPPAAL
uncovered that many AODV connections unnecessarily timed
out before a route could be established in large networks [14].
Timed automata implemented in UPPAAL have been used for
validating and tuning of temporal configuration parameters and
QoS requirements [15] in network models that allow dynamic
re-configurations of the network topology. The model checker
Vereofy [16], part of the Credo tools, has recently been used
to analyse aspects of sensor networks and AODV. We also
used Vereofy as a reference for evaluating the properties and
as source for the traces employed for the component testing.

The OGDC-algorithm used in certain sensor networks has
been simulated and model-checked in Real-Time Maude [17].
The comparison of these simulation results in Real-Time
Maude with simulation results in ns-2 have uncovered weak-
nesses in a concrete ns-2 simulation.

II. MODELLING THE COMPONENTS AND THE ROUTING
ALGORITHM

Distributed applications can be described in terms of com-
ponents interacting in an open environment, based on the
mechanisms of Creol [18]. This framework models compo-
nents and the communication between these components, and
executes the models in rewriting logic. Different communi-
cation patterns, communication properties, and a notion of
time are supported. The lower communication layers use tight,
loose, and wireless links.

Based on this work, we defined a model of AODV in
a WSN using Creol [19] that expresses each node and the
network as objects with an inner behaviour. The interfaces of
the objects describe the communication between the nodes and

Figure 1. Objects of a WSN model and their communication interfaces.

the network object. In Figure 1, we show the object structure
of the model, including the most important interfaces of a
node. Within the nodes, its behaviour is implemented in Creol
as routines that are not unlike real-world implementations.

The purpose of a routing algorithm is to establish a path
between a source node and a sink node, so that data can flow
from the source node to the sink node. AODV is a reactive
routing protocol that builds up the entries in the dynamic
routing tables of nodes only if needed. AODV can handle
network dynamics, e.g., varying wireless link qualities, packet
losses, and changing network topologies.

When a node wants to send a message to a sink node and
the next hop cannot be retrieved from the local routing table,
it initiates a route discovery procedure by broadcasting RREQ
(route request) messages. Nodes that receive a RREQ message
will either send a RREP (route reply) message to the node
which originated the RREQ message if the route is known;
otherwise the node will re-broadcast the RREQ message.
This procedure continues until the RREQ message reaches
a node that has a valid route to the destination node. The
RREP message is unicast to the source node through multi-
hop communications; as the RREP message propagates, all
the intermediate nodes also establish routes to the destination.
After the source node has received the RREP message, a route
to the destination has been established, and data packages can
be sent along this route.

The essential entries of the routing table include the next
hop, a sequence number, and the hop count to the sink node.
The latter is the most common metric for routing to choose
between routes when multiple routes exist. The sequence
number is a measure of the freshness of a route.

When communication failures imply a broken route, the
node that is unable to forward a message will inform other
nodes, so that the routing tables can be updated. To do this it
sends a RERR (route error) message along the reverse route
that is also stored in the nodes. Thus the source node will
become aware of the broken route, and initiate a new route
discovery procedure.

III. METHODOLOGY FOR SIMULATION, COMPONENT
TESTING, MODEL CHECKING

In the following section we show how to evaluate and
validate the functional behaviour of the AODV model using
Creol and the Credo methodology [6]. We present the tech-
niques, perspectives, arrangements, and properties necessary

2

PESARO 2011 : The First International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-132-8

for the validation. We also show how to evaluate selected non-
functional properties.

A. Techniques for Simulation, Testing, and Model Checking

In order to evaluate the properties of a model, several tech-
niques are used to provide the necessary technical measures
and procedures to make a model amenable to verification.
In general, the following modifications can be applied to
the model in preparation for simulation, testing, and model-
checking:
Auxiliary variables are added to the model to improve the
visibility of a model’s behaviour. They must not alter the be-
haviour and are updated when certain relevant events happen,
e.g., a counter is incremented when a new instance is created.
When running a simulation these values can be extracted
from the state information and visualised in an step-by-step
execution, or after the Creol model terminates.
Assertions might be necessary depending on the functional
requirements to check. While a number of properties can be
checked at the final state using auxiliary variables, properties
on the transient behaviour of the model require a check during
runtime. For such cases, Creol provides assertions that stop
the execution of a model when the condition is violated. The
state that caused the violation of the property is then shown
for further analysis.
Monitors are pieces of software that run in parallel to the
actual model and are used for properties that go beyond simple
assertions. A monitor constitutes an automaton that follows the
behaviour of the model to decide the validity of a path.
Guarded execution replaces nondeterministic decisions by
calls to a guarding object, the DeuxExMachina. This allows
to check the behaviour of the model under different condi-
tions, while still maintaining reproducibility of the runs. This
technique also specifies certain parameters of the environment,
like failure rates of the network.
Fault injection adds a misbehaving node (possibly after a
certain time) to check error recovery properties. E.g., switch
off a node when energy is used up, or inject other errors. This
can be implemented by sub-classing nodes and implementing
certain misbehaving routines in the subclass.
Property search employs model checking techniques to check
whether certain conditions hold for all or a given subset of
states. Currently, property search must be specified in Maude
for a Creol model.

B. Perspectives

A perspective describes the scope of an evaluation. For the
AODV model we developed two perspectives: (a) observing
the behaviour of the entire network configuration including
all nodes and the network; (b) observing the behaviour of
one node. Testing, simulation, and model checking can be
performed from different perspectives and levels of detail for a
given model. For AODV, a holistic perspective focuses on the
networking aspect of the nodes, implementing all the involved
nodes and the network in one model. However, for model
checking, such a model leads to a high number of states,

and long execution time. Therefore, for realistic models the
networking perspective is not feasible.

For the perspective of testing a single node we use the
same model code for the nodes in the holistic perspective, but
instantiate only one node explicitly. The network is replaced by
a test harness that impersonates the network and the remaining
nodes. The behaviour and responses of the test harness are
determined by a rule set that is derived from traced messages
between the nodes, as outlined in Section IV-B.

C. Arrangements

An arrangement denotes a set of configuration settings that
influences how the model operates. Examples for arrangement
entities that can be selected in the Creol models, together with
implementation details for the AODV model are given in the
following:
The communication behaviour in our model can be set to be
either reliable, non-deterministic, or one of several packet loss
patterns. Note that non-deterministic behaviour in a simulation
currently is not useful due to restrictions in the implementation
of the underlying run-time system. Using the differences in
communication behaviour, we can study how the algorithm
behaves when communication packets can get lost.
Topology changes are used to check the robustness of the
protocol. They can be triggered by certain events, e.g., after a
certain amount of messages, or after a certain amount of time
for timed models. A topology change affects the connection
matrix in the network and triggers the AODV algorithm to
find new routes in the model.
The timed model is realized using discrete time steps and
introducing a global clock in the network object and internal
clocks in the nodes, which are synchronised when a task is
performed in one or more nodes. This allows, e.g., to reason
about messages being sent simultaneously, which eventually
will lead to packet loss. Also the effect of collisions can be
shown without using non-deterministic packet loss. The use of
a timed model is most viable together with topology changes
since the topology needs to be re-installed for a state when
another branch is searched in model checking.
Energy consumption is modelled using an auxiliary variable
in each sensor node with an initial amount of energy. For
each operation a certain amount of energy is subtracted until
the capacity is too low too perform operations on the radio,
indicating a malfunction of the sensor node. Such a node does
not perform any actions and represents a topology change of
the network, since given path are no longer valid. This allows
us to identify in which cases an energy-restricted network can
perform communication and whether AODV can find routes
around an energy-empty node.

Note that arrangements for memory and buffer sizes can
be implemented similarly. When maximum memory size is
reached, a node will stop to perform certain actions.
Timeouts are modelled nondeterministically by use of a global
guarding object and can occur between a message is sent and
the corresponding answer is received. AODV employs time-
outs in order to work in environments where communication

3

PESARO 2011 : The First International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-132-8

errors can occur and sends messages repeatedly in case an
expected reply has not been received from the network.

D. Properties

A functional property is a concrete condition that can be
checked for given arrangements, while non-functional prop-
erties are values given by metrics. For AODV, we chose
the following functional properties: correct-operation, loop-
freeness, single-sensor challenge-response properties, shortest-
path, deadlock-freeness (both, for node, and for protocol), mis-
cellaneous composed system properties, and non-functional
properties.
Correct-operation: For a routing algorithm to be correct, it
must find a path if a path exists, i.e., it is valid for some
duration longer than what is required to set up a route
from sender to receiver [12], [13]. Checking this property
requires the algorithm-independent predicate whether a route
exists. In the absence of topology changes, this predicate
can be calculated beforehand. When topology changes are
possible, however, we need to check the existence of a path
between sender and receiver at any step in the algorithm. Since
checking this property in Creol involves explicitly visiting all
nodes, this increases the reachable state-space of the model. To
evaluate this predicate effectively, a suitable implementation
would be to interface a Maude function. Unfortunately, this is
currently not supported by Creol .

A related property to evaluate is whether a route is re-
established after a transmission error, given a path still exists.
We also evaluate how long the path is interrupted after a
transmission error occurs.
Loop-freeness: A routing loop is a situation where the entries
in the routing tables form a circular path, thus preventing
packets from reaching the destination. The invariant for loop-
freeness [9] of AODV must be valid for all nodes. It uses
sequence numbers of adjacent nodes, and the number of hops
in the routing tables as input. The loop-freeness property is
checked every time a message is transmitted between nodes.
To do this, the network-object calls a routine that checks the
loop-freeness invariant in an assertion. Since this assertion is
complex, and contains nested loops, it should be implemented
as a call to a Maude function instead of Creol code.
Single-sensor challenge-response: The reaction of one node
under test is checked using component testing (Section IV-B).
Messages are sent to the node under test, and the responses
from this node are matched against all correct responses.
The correct responses are extracted from specifications or
from running simulations using different implementations.
The single-sensor properties that can be checked express a
certain behaviour of the absence of a certain behaviour after
a challenge, e.g., whether an incoming message leads to a
specified state change in the node, or whether the node sends
an expected response messages.
Shortest-path: Here, we investigate whether the AODV algo-
rithm finds the shortest path for the paths between source
and sink node; also other metrics for paths could be checked.
While AODV finds the shortest path in the case of no packet

loss, it does not always fulfil the shortest-path property in
the case of packet loss. To check this property we count the
number of hops that each payload-message takes from the
source to the sink and compare it with the shortest existing
path between source and sink.
Deadlock freedom: Deadlocks in a node, in the protocol or
in the model are a threat to robustness, and can reveal errors
in the specification, implementation, or model. Deadlocks will
make the model execution stop in an error state.
Miscellaneous composed-system properties: Examples are
properties that state whether valid routes stay valid, avoidance
of useless RREQ messages, number of messages received,
timing properties and network connectivity. Most of these are
implemented by adding counter variables, and predicates.
Non-Functional Properties: Non-functional properties from
the application domain, such as timing, throughput, delivery
ratio, network connectivity, energy consumption, memory and
buffer sizes, properties of the wireless channel, interferences,
mobility, or other QoS properties, can be evaluated by using
counter variables and additional Creol code.

IV. HOLISTIC AND COMPONENT TESTING

An instrumented Creol model can be used for the different
verification and testing techniques in the Credo methodology:
symbolic simulation, guarded test case execution, and model
checking. Currently, the auxiliary variables for assertions and
the state of the monitors need to be added as Creol code that
is executed together with the model code. This increases the
size of the states and therefore poses a handicap for model
checking.

A. Holistic Testing

For our evaluation of the network properties we used
simulation using mainly techniques such as auxiliary variables,
and assertions. Most of our experiments used a network with
symmetrical communication via four sensor nodes and one
sink node. We simulated the AODV model using various ar-
rangements using reliable networks, lossy networks, timeouts,
energy consumption, and timed modelling. We also checked
selected properties from Section III-D.
Reliable communication: As long as the network is connected,
the evaluations showed that the modelled AODV algorithm
fulfils the properties from Section III-D. We emphasised on
the evaluation of packet loss, and loop-freeness assertion.
Other predicates for loop-freeness were also used (which
failed as expected), and small, faulty changes in the model
were introduced (which led to expected failures of the loop-
freeness property). The shortest path property was fulfilled in
all simulated occasions.
Lossy communication: When simulating lossy communica-
tion, both for singlecast, and for broadcast messages the packet
loss rate increases as expected. We also observed an increased
number of RREQ and RREP messages in the system, using
auxiliary variables.
Timeouts: The model allows re-sending of lost RREQ mes-
sages up to a certain number of times, using a timeout

4

PESARO 2011 : The First International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-132-8

TABLE I
NUMBER OF REWRITES AND RUN-TIME FOR SAMPLE ARRANGEMENTS

AND PROPERTIES.

t steps energy loss timeout #rewrites time

5

500 – none never 9.4 · 106 17.1s
5000 – none never 62.8 · 106 114.8s

500 – 10% never 10.7 · 106 19.5s
500 – 10% 1/10 12.1 · 106 22.3s
500 50 10% 1/10 8.3 · 106 15.5s

untimed 50 10% 1/10 11.6 · 106 17.9s
untimed – 10% never 32.5 · 106 14.8s

6 untimed – 10% never 90.5 · 106 40.9s

15 5000 – none never 2.7 · 109 31m
30 5000 – none never 24.8 · 109 8h

mechanism. We could observe that this mechanism decreased
the packet loss rate, but at the same time does not prevent all
packet loss for payload packets.
Energy consumption: Using the energy consumption arrange-
ment we can force a communication failure of certain nodes
after some actions. Using this arrangement we can study the
re-routing behaviour in detail, including the packet loss rate.
Timed model: Using the timed model we can study the number
of time steps needed for sending messages, as well as control-
ling the number of actions being performed simultaneously.
We observed that the packet loss rate is different to the untimed
case, which is expected.

Using the timed model, we could observe a model deadlock,
which is caused by the way the model is implemented, and
certain properties of the current implementation of the Creol
runtime system. This observation made changes in the model
implementation necessary using asynchronous method calls.

The developed Creol model was evaluated by using simula-
tion for sample arrangements and properties. The entire model
contains about 1600 lines of Creol code, excluding comments.
After compilation, the resulting code size was about 1050 lines
of Maude code, depending on the arrangement. We varied
the timing behaviour, the energy consumption, the message
loss behaviour, and the timeout behaviour of the model, as
well as the number of nodes. The results for the tested cases
considering the number of rewrites, and execution time on an
AMD Athlon 64 Dual core processor with 1.8 GHz is shown
in TABLE I. The timing behaviour, and the number of nodes
are the most significant parameters.

While these values may sound high for a simulation system,
we emphasise that the purpose of the Creol model is to offer
one model that is suitable for several perspectives. While
the transition from simulation to model checking consists in
changing some few Maude statements, the search space during
model checking gets combinatorially too high to be viable,
already for a low number of nodes.

B. Component Testing of One Node

For component testing, we use one node under test with
the same code as for holistic testing. However, we replace the

Figure 2. Testing of one node using the network object as a harness.

network and all the other nodes using a test harness, as shown
in Figure 2. The test is then performed by studying the output
messages of a node when given input messages are applied.

1) Test harness: The task of the test harness is to send mes-
sages to the interfaces of the node under test, and to observe
its answers. Both input messages and expected answers can be
generated from the specification or from traces of real systems
or other simulations.

Although incoming broadcast, singlecast and outgoing pack-
ets involve invoking different methods, the Creol language,
with its object-level parallelism, makes it easy to encode a
test case as a single sequential list of statements. Incoming
messages are stored in a one-element buffer; the test case
simply performs a blocking read on that buffer when waiting
for a message from the object under test, before sending out
the next message to the object. In that way, both creating a test
case by hand and generating test cases from recorded traces
become feasible.

A test verdict is reached by running the test harness in
parallel with the object under test. If the test harness deadlocks,
it expects a message from the object under test that is not
arriving – in that case, a test verdict of Fail is reached. The
other reason for test failure is an incoming message that does
not conform to the expectations of the test harness; e.g. by
being of the wrong type or having the wrong content.

A test verdict of Success is reached if the test harness
completes the test case and the object under test conforms
to the tester’s expectations in all cases.

2) Traces: In addition to domain-specific single-object
properties test cases can be generated from model imple-
mented with Vereofy [16]. To receive the traces from Vereofy
the content of all variables within the nodes and buffers in the
network, before and after each step, and the exchanged data are
collected. When the state information is removed we receive
a sequence of messages that are exchanged simultaneously.

Traces received from the node under test are tested against
message patterns, i.e., we remove details that could lead to
spurious test failures not expressing a malfunctioning system.
For example, the message sequence number can be chosen
by the node, the only requirement is that it be monotonically
increasing. This property is checked using an invariant in the
tester, but a different concrete message number than that used
by the Vereofy model cannot lead to test failure.

5

PESARO 2011 : The First International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-132-8

V. CONCLUSION

We presented the evaluation of a Creol model of AODV.
We introduced the dimensions of techniques, perspectives,
arrangements, and properties for this evaluation. We divided
the properties used for this evaluation into six property classes,
and performed network simulations of the composed system,
and component testing of a single node.

Using the network simulation, we evaluated several arrange-
ments. While most most of the properties were fulfilled as
expected, some properties did not validate in the simulation,
either due to bugs in the model, properties of the modelled
AODV algorithm, artificially introduced bugs in the model, or
property variants that are not supposed to validate successfully.
In one occasion, we could detect deadlocks in the model
in a timed-model arrangement, which could be recognised
and fixed afterwards. Evaluating other protocols, such as the
proactive dynamic routing protocol, is possible, but requires a
new model.

Using component testing, we validated the correct be-
haviour of a single node against properties extracted from
the specification of the AODV algorithm. No deviations from
specified component behaviour were identified in this process,
which is unsurprising since components had already been
extensively used for simulation and animation during initial
model development at that point in time. However, the test
suite served as an excellent help in regression testing during
subsequent changes and extensions of the model.

Evaluating the properties of the AODV algorithm, we en-
countered several challenges, such as modelling suitable ab-
stractions, using language constructs of Creol , and observing
the properties from a suitable perspective. The major challenge
when evaluating the AODV algorithm from a network per-
spective is to avoid a high number of states in the underlying
interpreter. The use of Creol functions that can be excluded
from the state in model checking would be desirable. This
feature is, however, not yet available in the current Creol tools.

We found the Creol language and the tools useful in the
evaluation of the AODV algorithm, and to gain insight in
how complex algorithms like AODV work. We observed how
small changes in the algorithm, and in the chosen arrangement,
imply changes in its behaviour. We also detected the breach
of certain properties, which will lead to further investigation
of the reasons, removal of this misbehaviour, and, eventually,
to a better understanding of AODV, and the algorithms used
for sensor networks.

ACKNOWLEDGEMENTS

This research is part of the EU project IST-33826 CREDO:
Modeling and analysis of evolutionary structures for distributed
services. The authors want to express their thanks to their
colleagues involved in the Credo project for their support
during this work, especially Sascha Klüppelholz, Joachim
Klein, Immo Grabe, Bjarte M. Østvold, Xuedong Liang,
Marcel Kyas, Martin Steffen, and Trenton Schulz.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–
422, 2002.

[2] W. Leister, J. Bjørk, R. Schlatte, and A. Griesmayer, “Validation of
creol models for routing algorithms in wireless sensor networks,” Norsk
Regnesentral, Oslo, Norway, Report 1024, 2010.

[3] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand
Distance Vector (AODV) Routing,” RFC 3561 (Experimental), Jul.
2003. [Online]. Available: http://www.ietf.org/rfc/rfc3561.txt

[4] E. B. Johnsen and O. Owe, “An asynchronous communication model for
distributed concurrent objects,” Software and Systems Modeling, vol. 6,
no. 1, pp. 35–58, 2007.

[5] M. Kyas, Creol Tools User Guide, 0.0n ed., Institutt for Informatikk,
Universitetet i Oslo, Postboks 1080 Blindern, 0316 Oslo, Norway, May
2009.

[6] I. Grabe, M. M. Jaghoori, B. Aichernig, T. Blechmann, F. de Boer,
A. Griesmayer, E. B. Johnsen, J. Klein, S. Klüppelholz, M. Kyas,
W. Leister, R. Schlatte, A. Stam, M. Steffen, S. Tschirner, X. Liang,
and W. Yi, “Credo methodology. Modeling and analyzing a peer-to-
peer system in Credo,” in 3rd International Workshop on Harnessing
Theories for Tool Support in Software, 2009.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and J. F. Quesada, “Maude: Specification and programming in rewriting
logic,” Theoretical Computer Science, 2001.

[8] I. Stojmenovic, “Simulations in wireless sensor and ad hoc networks:
matching and advancing models, metrics, and solutions,” IEEE Commu-
nications Magazine, vol. 46, no. 12, pp. 102–107, 2008.

[9] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill,
“CMC: a pragmatic approach to model checking real code,” in OSDI,
Usenix, 2002.

[10] M. M. R. Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago, and
S. Olivieri, “A framework for modeling, simulation and automatic code
generation of sensor network application,” in Proc. Fifth Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks, SECON 2008, June 16-20, 2008, San
Francisco, USA. IEEE, 2008, pp. 515–522.

[11] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation
environment,” in Proceedings of the 1st international conference on
Simulation tools and techniques for communications, networks and
systems & workshops. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2008, pp. 1–10.

[12] O. Wibling, J. Parrow, and A. N. Pears, “Automatized verification of
ad hoc routing protocols,” in FORTE, ser. Lecture Notes in Computer
Science, vol. 3235. Springer, 2004, pp. 343–358.

[13] ——, “Ad hoc routing protocol verification through broadcast abstrac-
tion,” in FORTE, ser. Lecture Notes in Computer Science, vol. 3731.
Springer, 2005, pp. 128–142.

[14] S. Chiyangwa and M. Z. Kwiatkowska, “A timing analysis of AODV,” in
FMOODS, ser. Lecture Notes in Computer Science, vol. 3535. Springer,
2005, pp. 306–321.

[15] S. Tschirner, X. Liang, and W. Yi, “Model-based validation of QoS
properties of biomedical sensor networks,” in EMSOFT ’08: Proceedings
of the 7th ACM international conference on Embedded software. New
York, NY, USA: ACM, 2008, pp. 69–78.

[16] C. Baier, T. Blechmann, J. Klein, S. Klüppelholz, and W. Leister,
“Design and verification of systems with exogeneous coordination using
Vereofy,” in Proc. 4th Intl. Symp. on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA 2010), Part II, ser. LNCS,
vol. 6416. Springer-Verlag, Oct. 2010, pp. 97–111.

[17] P. C. Ölveczky and S. Thorvaldsen, “Formal modeling and analysis of
the OGDC wireless sensor network algorithm in Real-Time Maude,” in
FMOODS, ser. Lecture Notes in Computer Science, vol. 4468. Springer,
2007, pp. 122–140.

[18] E. B. Johnsen, O. Owe, J. Bjørk, and M. Kyas, “An object-oriented
component model for heterogeneous nets,” in FMCO, ser. Lecture Notes
in Computer Science, vol. 5382. Springer, 2007, pp. 257–279.

[19] W. Leister, X. Liang, S. Klüppelholz, J. Klein, O. Owe, F. Kazemeyni,
J. Bjørk, and B. M. Østvold, “Modelling of biomedical sensor networks
using the Creol tools,” Norsk Regnesentral, Oslo, Norway, Report 1022,
2009.

6

PESARO 2011 : The First International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-132-8

