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Abstract—Autonomous aerospace launchers must carry out 

their missions safely because any accident can lead to 

important or dramatic consequences. It is essential to develop 

robust control solutions that guarantee optimal performances 

even when failures occur during these missions. The main 

objective of this paper is to present the development of a fault-

tolerant control design in the case of an aerospace launcher. 

The method consists of defining and carrying out effective 

procedures for early detection of some critical situations and 

providing an adequate control that maintains the safe 

behaviour of the launcher. The improved control performance 

is obtained by using a sliding mode observer for a robust 

reconstruction of an actuator fault. This reconstruction is used 

then to generate an added signal in the initial control law that 

compensates for the effect of the faults. Simulation results will 

show the efficiency of the proposed method.   

Keywords-aerospace launcher; observer; stability; fault 

detection;  control.  

I.  INTRODUCTION  

The conquest of space is a technological battle that began 
decades ago, spurring great interest in researchers. 
Automatic applications in this field play an important role, 
particularly in modeling, control, and diagnosis aspects.   

For the future needs of the CNES (The French Space 
Agency), it is useful to develop appropriate methodologies 
for piloting space vehicle launchers. 

This work is within the framework of the PERSEUS 
Project which is a technology development program, 
undertaken as part of the research and innovation policy of 
the CNES Launcher Directorate [1]. The PERSEUS project 
has three objectives: the search for innovation and the 
development of promising technology applicable to Space 
transport systems; the undertaking of this work by young 
people within a university or association context, in order to 
encourage them to choose a career in space; and finally, the 
development of a set of ground-based and flight 
demonstrators in order to draw up a detailed pre-project file 
of a system for launching nano satellites. 

Recently, some research in the Fault Detection and 
Isolation (FDI) area has led to systems based on the sliding 
mode idea [2], [3].  

Although uncertainties could reduce the effects of faults 
in the control system and may cause false alarms, undetected 
faults could cause catastrophic consequences. In this context, 
Tan and Edwards [4], in 2003, extended their results 
obtained in 2000 [5] to design a sliding mode observer 
(SMO) that minimizes the L2 gain between the uncertainty 
and the fault reconstruction signal to implement a robust 
faults reconstruction system.  

The objective of the tolerant control system is to keep a 
safe behaviour for the system even in the presence of faults. 
Almost all the existing methods in the literature are divided 
into two classes: passive and active [6]. Passive techniques 
deal with an expected set of failures on the actuator and lead 
to a controller design that makes the closed-loop system 
insensitive to certain faults. Theses methods may lead to a 
very complex controller especially when the number of 
possible failures increases. Moreover, when unexpected 
failures occur, the controller is not capable of stabilizing the 
system. Active techniques use an FDI system and a control 
reconfiguration procedure that takes into account the effect 
of the fault. Different approaches, as model matching and 
track trajectory have been developed to improve system 
performances when a fault occurs. 

This work improves the results described in an earlier 
article [7], where only a control scheme was developed on 
the launcher but where faults were not taken into account. 
The tolerant control developed here is based on the active 
technique. The FDI is built on results from [4] and [5] for a 
robust fault reconstruction. Unlike many previous active 
schemes found in the literature, the proposed method can be 
handled directly without completely reconfiguring the 
controller. A robust actuator fault reconstruction technique is 
applied to the process, allowing the compensation of the 
effect of the faults. The synthesis procedure is expressed in 
Linear Matrix Inequality terms.  

Simulation results demonstrate the ability of the proposed 
fault tolerant scheme to detect actuator failures in real time, 
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identify them accurately with low computational overhead, 
and compensate for those actuator failures to achieve 
stability of the launcher around zero incidence. 

This paper is organised as follows: Section 2 introduces 
the launcher model and its linear state representation. Section 
3 explains the strategy of the detection and control system. 
Section 4 gives the proposed sliding mode observer, and a 
robust reconstruction technique for actuator faults is 
developed in Section 6. Finally, the conclusion is given in 
Section 7. 

II. SPACE LAUNCHER DESCRIPTION 

The launcher is assumed to be a rigid structure. 
Consequently, flexible modes are not considered in the 
launcher modeling but they may be taken into account as 
disturbances added to measures.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                    
         

Figure 1.  Exterior forces applied on the launcher 
 
 

V, Vr  : Absolute and relative velocity 

VW : Wind velocity 

z  : Drift velocity along the pitch axis 

i 

 

: Incidence of the vehicle 

: Thrust deflection angle 

 : Pitch angle (attitude) 

w  : Angle between V and  Vr 

Cx : Aerodynamic drag coefficient 

Cz : Aerodynamic lift coefficient 

Rx : Drag force 

Rz : Lift force 

Fo : Engine thrust 

M : Instantaneous mass of the launcher  

 : Air density 

Pdyn : Dynamic pressure  

Sref : Reference surface of the launcher  

XF, XA : Distance of the aerodynamic force and the propulsion 

  control to the gravity center 

Figure 1 illustrates the exterior forces acting on the 
launcher system. These forces are as follows:   

 

- The gravity is given by    
 gravF M g .                           (1) 

 

- The dynamic pressure is expressed as 2(1/ 2)dyn rP V .  (2)  

  

- The aerodynamic force is given by 2(1/ 2) r refF V S . (3) 

 
The aerodynamic force can be decomposed into two 

perpendicular forces:   
- RZ, the lift, is the component perpendicular to the 

trajectory; it is the most important force that carries the 
launcher:  

 2(1/ 2)z r ref zR V S C    (4)   

 
- Rx , the trail, is the weakest component and follows an 

axis parallel to the trajectory; it pulls up the launcher: 
  

 2(1/ 2)x r ref xR V S C .   (5)   

 
RZ , the lift component, and RX , the trail component are 

given  by: 

   z a zR F C i    (6)  

and     

 x a xR F C .   (7)  

 
Considering small angles and applying the dynamic laws 

leads to the two principal equations modeling the launcher: 
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Finally, the launcher model can be represented by the 

vector equation [7]: 
 

6 6
6 1

1

1
1 2

0 1 0 0
0

0

1
( ) 0

w
r r

z
rr

A A
A K V

V V
z z a

a
Ca a

VV



 

 

  (10) 

                            

                     w

r r

Vz
i

V V


                                   (11)

                                                                                                                                                                                                                        

i 

Fo 

rV

z
 

V Rz Vr 

XL 

Znom 

Mg 

ZL 

Vw 

 

Rx 

 

i

W

W
 

Xnom 

36

PESARO 2011 : The First International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-132-8



where the state vector is
 

( )
T

x t z  . The input 

vector is β(t), the bounded external disturbance is Vw , and 

the output vector is y(t)= (t). 
 

The coefficients A6, K1, a1 and a2 are the system variables 
that make the launcher’s model non stationary and, therefore, 
difficult to control.  Typical curves describing the variation 
of these parameters are shown in Figure 2 [8]. Operating 
points are chosen. 

 
 

Figure 2.   Evolution of the coefficients A6, K1, a1 and a2 

 

III. STRATEGY OF CONTROL AND FAULT DETECTION 

The uncertain system (10) affected by actuator fault fa(t), 
can have the following form 

 

        
( ) ( ) ( ) ( ) ( , , )

( ) ( )

x t Ax t Bu t Ff t M t u y

y t Cx t


 (12) 

        

 

where x(t) n  is the state vector, u(t)  m  is the input  

vector, y(t) p  is the output vector, t,u,y  k  includes 

uncertainties or perturbations affecting the system like the 

wind effect and  fa(t)  q is the actuator faults vector. The 

system matrices A, B and M are defined in the previous 

Section .  F is the repartition matrix of faults. We assume 

that ( ) ( )af t t  and ( , , )t u y , where 

: x m
a known function is and is a known 

positive scalar. 
 

In order to eliminate the effect of the actuator fault, a new 
control law is added to the nominal one. Therefore, the 
control applied to the system is given by  

 

0( ) ( ) ( )u t u t u t .  

 
Then (12) can be rewritten as 
 

  0( ) ( ) ( ) ( , , ) ( ) ( )x t Ax t Bu t M t y u Ff t Bu t        (13) 

where ( ) ( ) ( ) ( )x zu t KX t K x t K z t  is the control 

component that minimizes a quadratic functional: 
 

 
0

T TJ x Qx u Ru dt  (14) 

 
where Q and R are diagonal matrices, weighting each state 
and control variables respectively in the common 
performance index (14),  and the gain matrix K  is 
determined from the expression: 
 

 1 TK R B P  (15) 

 
where P is a positive matrix, solution of the well known 
Riccatti equation.  
 

The additional control law 
0u , compensating the effect 

of faults, can be implemented such that the faulty system 
(13) is as close as possible to the nominal system, therefore: 

 

 0 0aFf Bu       (16) 

 
and, if the matrix B is of full row rank, then:    
 

 0 au B Ff  (17) 

  

where 1( )T TB B B B is the pseudo inverse of matrix B. 

In cases where the matrix B is not of full rank, the SVD       
theorem can be applied [9]. 
 

The control scheme is described in Figure 3. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.  Tolerant control scheme 

 

Using the reconstruction of the actuator fault ( )af t  from 

the block “Reconstruction” determined in the next section, 
the component uo is computed in the block “Compensation” 
as follows:  
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and  we  obtain  the control  law     
 

ˆ( ) ( ) ( )au t KX t B F f t . (18)                                        

IV. SLIDING MODE OBSERVER 

In the following work, a design method for a sliding mode 
observer for uncertain linear systems based methodology 
inspired from the work of Edwards and Spurgeon [10] is 
presented. The problem of a robust reconstruction of 
actuators faults can be implemented as shown on Figure 4. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.  Reconstruction of actuator faults by a Sliding Mode Observer. 
 
 

For the uncertain system (12), the structure of the SMO is 
defined by: 

  

             ˆ ˆ( ) ( ) ( ) ( )l y nx t Ax t Bu t G e t G
 

(19) 

 

where n p

lG is the linear gain and n p

nG  is the non-

linear gain. The discontinuous vector  is defined  by  

 

             

0

0

( )
( , , ) if ( ) 0

( )

0 otherwise

y

y

y

P e t
t y u e t

P e t  (20) 

 

where ye y y


 
is the output estimation error, 0

pxpP  is 

a symmetric positive definite (spd) matrix that will be 
determined later and the value of the function   

ρ: x xp m
  is a known positive scalar that  acts 

as  an  upper bound on the uncertainties and the faults.  
 
Edwards, Spurgeon, and Patton [11] have shown that a 

sliding motion exists if: 
 
- rank(CF) = q  (21) 
- invariant zeros of the system (A, F, C) are stable. 

 

If these conditions are satisfied, then there exists a 
change of coordinates such that the triplet (A, F, C) will be as 
follows: 

 

    T0C
F

0
F

AA

AA
A

12221

1211

  

(22) 

 

 with ( ) ( ) ( ) ( )

11 12 21, , ,n p n p n p p p n pA A A                

22

p pA , q q
1F

 
is non singular and p pT  is 

orthogonal. Define 211A
 
as the matrix obtained from the 

upper
 
( p q ) rows of

 21A . Tan and Edwards [5] proved that 

the pair 11 211,A A is detectable since the unobservable 

modes of this pair are the invariant zeros of the system and 

they are stable.  Define also p q
2F to be the lower p rows 

of F  such that 1 2.F F
 
Then equations (12) are given by: 

 

 
( ) ( ) ( ) ( ) ( , , )

( ) ( )

x t A x t B u t F f t M t u y

y t C x t


       (23) 

 

Firstly, assume that nG , in the new coordinates, is given 

by: 

 

T

n
T

LT
G

T

                                       (24)  

 

where ( n p ) p
oL L 0

 
with ( ) ( )n p p q

oL  

and T is defined in (22). For the case, when  

  

( , , ) 0t y u  and oCF ( t )  with o is a positive 

scalar, the following results are proven in [5]: 
 

Proposition 1.  There exists a Lyapunov symmetric positive 

definite matrix P  satisfying: 
 

 T
l lP( A G C ) ( A G C ) P 0  (25) 

with 
   

 
1 1 11 12

1 2 1 11 22

0
T T T

P P L P P
P

L P P L P L P P
              (26)             

      
  

where 
ll

TGG , ( n p ) ( n p ) p p
1 2P , P   and the 

matrix 
0P  in (20) is given by 0 2

TP TP T .  

 

The state estimation error ))(ˆ)(()( txtxTte  is then 

quadratically stable. Furthermore, a sliding motion occurs in 

             (t)fa
 

Sensor 

Reconstruction 

of actuator 

fault 

u  y 

   Real System   

eqν  

Actuator 
Uncertain 

linear 

System 

(t)f̂a
 

 

 

                            

 

SMO 
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finite time on 0eC:eS g , governed by the stable 

matrix 11 o 211( A L A ) . Then t0(t)e as . 

 
In the following, these results to the case where 

( , , ) 0t y u  are generalized.  In this context, the state 

estimation error dynamical system is given by:  
 

( ) ( ) ( ) ( ) ( , , )l n ae t A G C e t G Ff t M t y u .     (27)     

 
Suppose there exists a symmetric definite positive matrix 

P witch satisfies proposition 1. Define the positive scalars 
 

 max ( ( ) ( ) )T
o l lP A G C A G C P           (28) 

  

 
2

1 max ( )TM P M   

 

where max is the maximum eigenvalue. Suppose that 

 

 
( , , ) ( ) ot y u CF t    (29) 

 

where o  is a positive scalar. 

 
In terms of (27), (28) and (29) we have the following 

result in lemma 1 [4]: 
 

Lemma 1. The norm of the state estimation error )( te  

belongs to the set: 

 
1

2
:

o

e e

 

 (30)  

 

where is an arbitrary small positive scalar.  
 

Lemma 1 implies that the choice of ( , , )t y u  guarantees the 

sliding mode on gS  and provides an explication for the 

structures of the matrices defined by (22) after the 
coordinates change.  

 
The application of a second change of coordinates 

defined in [5] by 

 :T e e  :

      
0

n pI L
T

T

   (31) 

where L is given  by (24), transforms
 

( , , )A F C
 
into the 

following matrices: 

 

 
1 11 21

12 22

A A
A T AT

A A

 
  

 
                                 

 

1 21

22

M LMM
M TM

TMM


 

  (32)
 

 

1 0 pC CT I 
  

 2

0
F TF

F

 


     

 

 

 where 11 11 211oA A L A  and 2 2F TF . 

 
Thus, the nonlinear gain and the Lyapunov matrix 

become:

 
  

0

n n

p

G T G
I

   . (33)  

 
 

The new Lyapunov matrix is given by 
 

 
11 1

0
( ) ( )

0

T

o

P
P T P T

P

    .                 (34)  

  
The new estimation error system is: 
    

( ) ( ) ( ) ( ) ( , , )l n ae t A G C e t G Ff t TM t y u        .     (35) 

   
Partitioning this error according to the dimensions of 

(35), we get 
 

   11 11 1 12 1 2( ) ( ) ( ) ( ) ( , , )l ye t A e t A G e M LM t y u     
 
(36) 

 

         221 1 22

2 2

( ) ( ) ( )

( ) ( , , )

y l y

a

e t A e t A G e t

v F f t TM t y u

    


               (37) 

 

where 
1l

G
~

and 
2l

G
~

are appropriate partitions of the matrix 

ll GTG
~~

.  

 

Proposition2:  If the gain function ( , , )t y u  from (20) 

satisfies the inequality: 
 

21 1 2 2( , , ) 2 / ( )o ot y u A M F t 
  

(38) 
  

                      
 

where o  is a positive scalar, then a sliding mode occurs  on 

gS in finite time, with the presence of  faults and matched 

uncertainties. 

V. ROBUST RECONSTRUCTION OF ACTUATOR  FAULT 

In this part, assume that the SMO (19) is designed and 

can give a robust reconstruction of the faults ( )af t with 

minimization of the effect of ( , , )t y u .  
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During the sliding motion, 0y ye e , equations (36) 

and  (37)  become  
 

 1 11 1 1 2( ) ( ) ( ) ( , , )e t A e t M LM t y u     (39) 

 

 
21 1 2 20 ( ) ( ) ( , , )eq aA e t v F f t TM t y u   (40) 

 
  

where eq  is the equivalent output error injection. eq can 

be approximated to any degree of accuracy by replacing  

in (20) with: 
 

     

0

0

( )
( , , ) if ( ) 0

( )

0 otherwise

y

y

eq y

P e t
t y u e t

v P e t    (41) 

 
where

 

 is a small positive constant representing the 

smoothing term. Since eq  is required for maintaining the 

sliding motion in presence of faults and uncertainties, the 
analysis of this term allows us to find the estimated actuator 

faults ˆ ( )af t .  Now, define an estimate as 

  

 ( ) ( ) ( , , ) ( )T
a eq af t WT G s t y u f t


. (42)  

 
The transfer matrix G(s) is defined by 

 

      1
21 11 1 2 2( ) ( ) ( )G s WA sI A M LM WM  (43) 

 

where 21 21
TA T A  and 2 2.TWT TM WM  However, in this 

case, the transfer matrix G(s) links the exogenous input 

signal ( , , )t y u  and the reconstructed faults signal
 

ˆ ( )af t ; 

thus, obtaining ˆ ( )af t ( )af t  (i.e., zero uncertainty case) is 

equivalent to minimizing the H∞ norm of G(s), with an 
appropriately chosen

 
W . To formulate and solve this 

problem with LMI techniques, the Bounded Real Lemma 
[12] and a numerical development in [4] are used. Then, an 

optimization problem is address, in which 
f

G  , where 

 is a positive scalar to be minimized with respect to the 

variable matrices P , L, and W subject to the following  
matrix inequalities:

 
 

  

11 11 11 11 11 1 21

1 11 2

21 2

( )

( ) 0

T T

T T

P A A P P M WA

M P I WM

WA WM I

  

  (44) 

 
 
 
 
 

and 
1

0

0

( )

0

T T T T
o d d d

T T
d

PA A P C D D C PB E

B P I H

E H I
  (45)

 
 

where           1 2 1 2[ 0], [0 ], [ ]dD D H H E E E , 

11 11 11 11 12 21P A P A P A    and   
11 11 11 1 12 2P M P M P M .   

 
Note that inequalities (44) and (45) are affine with 

respect of the variables 11 12, ,P P W  and . Thus, the resulting 

observer is robust enough for the reconstruction of the faults, 
which affect the linear uncertain system, assuming that the 

linear gain lG  satisfies 

 

 
1 1( )T T

l o d dG P C D D . (46) 

 
Inequality (44) is a necessary condition for the feasibility 

of inequality (45) and imposes the following equations  

1 21E WA  and
 2 2H WM .   

 
Consequently, this method consists of minimizing , 

with respect to the variables P and W
 
subject to (44) and 

(45) where o  and
 1

p pD  are arbitrary 

parameters which adjust the observer’s gain.  It’s clear that 

when o  increases, the value of decreases, which results 

in lG  having a larger gain. Decreasing the gain of 1D  has 

the same effect. Let min  be the minimum value of  

satisfying (44). Then, equation (44) is a sub-block of (45), 

so, it is logical to always have min o .  Moreover, to 

solve this convex optimization problem, a software like 
MATLAB’s LMI Control Toolbox [13] is available to 

find , P
 
and W.   

 
The gain matrices can be obtained from [3] as  
 

1
11 12L P P ,

 
1 1( )T T

l o d dG P C D D , 
T

T

n
T

LT
G , 

1
22 12 11 12( )T T

oP T P P P P T
 
.  

 
The SMO is then completely determined. 
 

VI. SIMULATION RESULTS 

The simulation is carried out with Matlab software. The 

system parameters of the unstable launcher are given as 

 

526a311a212K570A 2116 .,.,.,.  

183169M8193F53544V or .,.,.   

40

PESARO 2011 : The First International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-132-8



In Figure 5, the first two curves show the shape of the 
fault acting on the actuator at t = 7 seconds and its 
reconstruction. The third curve shows the fault 
reconstruction error. It can be seen that the fault fa(t) is 
faithfully   reconstructed.  
 
                          Actuator fault                                                  Fault reconstruction  

                    
                         Fault reconstruction error  

                       
 
Figure 5.  Actuator fault, fault reconstruction and fault reconstruction error 
 
 

The fault reconstruction is then used to determine the 
additional term uo(t) in the control law u(t) according to 
equation (18).  

 
Figure 6 shows the evolution of the launcher attitude in 

the normal case (blue curve) and the estimation of its attitude 
obtained by the SMO observer when a fault appears on the 
actuator (green curve). To avoid bending forces that can 
destabilize the launcher, it is important to keep its attitude 
around zero. It is clear that the control law rejects the fault 
effect and stabilizes the launcher attitude. 

 

                                                             Real and estimated output 

 
 
Figure 6.  Evolution of the launcher attitude and its estimate 

 
 
 

VII. CONCLUSIONS 

In this paper, an approach for a robust control system 
based on fault estimates obtained by reconstruction 
techniques is proposed for an aerospace launcher system. An 
SMO was used to reconstruct actuator faults. This approach 
is based on the minimization of the effect of uncertainty on 
the faults reconstructed signal by the minimization of 

the H norm of the transfer matrix between the unknown 

inputs and the estimated actuator faults. A signal, built from 
the fault reconstruction, is then added to the control law and 
permitted the compensation of the fault effect. A numerical 
simulation example was provided to verify and validate the 
developed theoretical results. 

Further work will extend the approach to non linear 

models and will specifically consider the launcher 

parameters’ variations. 
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