
Accelerating Real-time Processing of Articles by Using an OpenCL-based FPGA for

the OSS Syntactic Parser SyntaxNet

Yoshiki Kurokawa, Yuichiro Aoki, Yuki Kondo, Yaoko Nakagawa

Research and Development Group, Center for Technology Innovation - Digital Technology

Hitachi, Ltd.

1-280, Higashi-Koigakubo, Kokubunji, 185-8601, Tokyo, Japan

Email: yoshiki.kurokawa.ee@hitachi.com, yuichiro.aoki.jk@hitachi.com, yuki.kondo.fe@hitachi.com,

yaoko.nakagawa.gn@hitachi.com

Abstract— To improve customer satisfaction is necessary to

provide services that enable real-time responses to complaints

for call-center operations. The real-time parsing of complaint

documents is more important for the real-time responses.

Using the Open Source Software (OSS) syntactic parser

SyntaxNet as a vehicle, a high-speed method using FPGA and

OpenCL to achieve throughput of 700 words/s (required for

real-time processing) is proposed. According to the results of

the SyntaxNet analysis, matrix size (which changes

dynamically according to the progress of the analysis) was

found to be a performance determining factor. The proposed

method was evaluated using public data, and the evaluation

results confirmed throughput of 661 words/s, which almost met

the requirement. As a result, the prospect of realization of a

real-time complaint document analysis service for call centers

was obtained.

Keywords-FPGA; OpenCL; Syntactic parser.

I. INTRODUCTION

For all companies, customer complaints point out
problems with products and services of companies, and they
provide important information for developing products and
services with higher quality. In general, a complaint from a
customer is first classified and extracted from a large amount
of inquiry information. The content of the complaint is then
analyzed, and countermeasures are investigated by customer-
complaint analysis. Parsing is the most-important process for
classification and analysis of complaints. The result of
parsing is the input for a series of analysis processes such as
grasping meaning, classifying sentences, and summarizing
contents [1]. Referring to the “three-second rule”, [2] that is
the rule of the response time of a web site, the parsing
complaint sentences part takes at least one second of the
entire complaint-classification process (taking three seconds).
Since the size of the complaint text is unknown, the text size
is assumed as a general text size. The general text size of
English-language news articles and magazine articles is an
average of 500 words and 900 words, respectively [3]. If a
general article is assumed as a news article or a magazine
article, so general text size is assumed 700 words length, that
is taken between 500 words of a news article and 900 words
of a magazine article. The required processing throughput
would be 700 words/s to process one document per second.
Therefore, the goal of this study is to increase the processing
throughput of the syntactic parser to 700 words/s.

Most of the appreciation of syntactic parser, immediate

TABLE I. SYNTACTIC PARSER
COMPLISON

processing is required at an edge computer. Processing at the
edge computer requires a hardware accelerator with low
power consumption and excellent processing capability.
Among hardware accelerators, a Field-Programmable Gate
Array (FPGA) is known to have low power consumption and
high power efficiency. As a logic circuit, an FPGA enables
offload processing, so it is structurally power efficient. This
study’s purpose is to speed up OSS application SyntaxNet by
FPGA, and to check offload feasibility.

The contributions of this study are that after probing
SyntaxNet, we found that most of the SyntaxNet execution
time is spent on matrix multiplication in Section II, to
address that issue, a method for matrix multiplication with a
high-speed external device FPGA, is proposed in Section III,
and by evaluating the SyntaxNet execution performance, it is
shown that SyntaxNet with FPGA can process a general
sentence in about 1 second in Section IV, then the execution
time was shortened and SyntaxNet was accelerated.

II. STATE OF THE ART

SyntaxNet [4] is an open-source syntax analyzer
announced by Google in 2016. To clarify the position of
SyntaxNet used in this study as a parser, it was compared
with other parsers, namely, Cabocha [10] and KNP [11] [12]
as parsers dedicated to Japanese and Stanford CoreNLP [13]

1Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

and SyntaxNet as parsers widely used for other languages.
The features and performances of those parsers are compared
with SyntaxNet in TABLE I. Processing speed was
calculated by measuring execution time ourselves. The other
parameters are based on previously reported research. In
terms of processing speed, Cabocha surpassed the other
parsers with throughput of 105K words/s, KNP achieved 105
words/s, Stanford CoreNLP achieved 145 words/s, and
SyntaxNet before speedup achieved 307 words/s. However,
Stanford CoreNLP uses 8 threads, while the others use one
thread. Accuracy of Cabocha is about 4% lower than the
other parsers. KNP Stanford CoreNLP, and SyntaxNet all
achieve accuracy of over 93% and show similar values for
processing speed and accuracy. For Japanese, Cabocha and
KNP are often used, but it looks like they are properly used
according to accuracy and function. Stanford CoreNLP is
popular for English and other languages, but SyntaxNet uses
the same syntax rules as Stanford CoreNLP, and it surpasses
the others in terms of number of supported languages and
performance, so it may be used in the future. Therefore, we
think that our study’s speeding up SyntaxNet is relatively
fast and the study is effective.

III. SYNTAXNET

The SyntaxNet uses a transition-based algorithm [5] for
syntactic parsing and a neural network for the decision
process. SyntaxNet is overviewed in Figure 1. Parsey
McParseface, a model running on SyntaxNet has
demonstrated an analysis accuracy of 97.52% [4]. The
interior of SyntaxNet is largely divided into a part that
executes a transition-based algorithm (written in C ++) and a
part that uses python and tensorflow (written in C ++) to
execute judgments the next processing by using a neural
network.
The transition-based algorithm is a kind of parsing

algorithm that uses a state machine, stack, and buffer to parse
sentences. First, a sentence is input to the sentence buffer,
stack one word to stack at a time from the first word of the
sentence, make a judgement on the top two words of stack,
and one of the three actions is selected as a result of the

Figure 1. SyntaxNet algorithm

judgment. This judgement and action are repeated after all
the words disappear from the stack. After disappearing all
words, an action sequence and dependency relationship of
words is appeared. The process is completed with the result
of the relationship of their words. In the Figure, the
transition-based part performs other jobs except judgment.

Information concerning the top-two words on the stack is
sent to the neural network that performs only the judgment
job, and the result of judgment is sent to the transition-based
part. According to the result of execution-time analysis of
SyntaxNet by Intel Vtune™ Amplifier, the tensorflow
matrix-multiplication library Eigen [6] GEneral Block Panel
(GEBP) uses 73% of the processing time, as shown by the
pie chart in Figure 2. Since the GEBP is used for matrix
multiplication, then matrix multiplication uses for 73% of the
total processing time. In consideration of those results, the
aim of the present study was to speed up matrix
multiplication by the FPGA and improve the execution
performance of SyntaxNet to 700 words/s.

IV. PROPOSAL

OpenCL [7] is chosen for implementing logics on the
FPGA and for activating FPGA from the host computer.
OpenCL is a framework for implementing multithreading,
and its specification is managed by Khronos Group Inc. Intel
uses OpenCL as a framework for implementing FPGAs [8].
OpenCL was chosen for the reason explained below.

The development costs for offloading to the FPGA are
shared between design cost for the logic circuit and system
for starting up the FPGA, and these two costs must be
minimized. When OpenCL is used, the logic-circuit design
can be created in a shorter period of time than the Hardware
Description Language (HDL) design by compiling a C
program to be run on the FPGA. The system design has been
implemented so it does not have any costs. From the above
consideration, it is considered that the development costs can
be reduced by using OpenCL on FPGA.

Then we consider how to call the FPGA from host
computer. It would be efficient to call the FPGA from Eigen.
But Eigen is programmed as allowing multi-threaded
operation. If the FPGA is called form Eigen, multiple calling
would happen to one FPGA. Therefore, it is good place to
call where the point calling Eigen routine currently.

Figure 2. SyntaxNet Execution time analysis

2Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Figure 3. Matrix multiplication algorithm

Another consideration, since data cannot be aligned in

the program, Direct Memory Access (DMA) transfer to the
FPGA is impossible with non-aligned data. A separate DMA
buffer is added for DMA, and a memory-copy routine is
added to copy data to the DMA buffer.

To minimize FPGA development cost, matrix-
multiplication open-source sample code written in OpenCL
was chosen for FPGA logic program, and the code was
modified for turning the code performance. The routine for
matrix multiplication is overviewed in Figure 3. Matrix
multiplication is described by a triple loop [9]. The outer
double loop specifies the position where the result, and the
innermost loop calculates the inner-product of each data. In
the OpenCL sample code, parallel processing of the
innermost loop and the other row are performed. The high-
speed internal memory size on FPGA is limited by FPGA
chip size, then all matrix-data are placed on low-speed
external DRAM, and partial data are copied to internal
memory before performing partial matrix multiplication.
Performances of the matrix multiplication on FPGA has
different values depend on row and column size. Figures 4
and 5 show the performance of maximum and minimum data
sizes used by SyntaxNet. According to Figure 4,
performance of the FPGA did not change for any submatrix
shape at minimum data size. Increasing the degree of
parallelism increases the number of invalid area of matrix
multiplication, but it does not improve matrix multiplication
performance. On the other hand, according to Figure 5, the
performance of the FPGA is almost constant at maximum
data size even if the size of the column changes,

Figure 4. FPGA matrix multiplication performance

(minimum)

TABLE II MEASUREMENT CONDITIONS

but the performance increases in proportion to the size of
row. Since the column side size is parallelized as much as
possible when OpenCL is executed, the circuit configuration
can only be slightly changed, and these circuits have the
same performance. Even so, since row size is a parameter
expressing how many elements are calculated in parallel, it is
thought that doubling the number of submatrix rows doubles
computation performance. Submatrix size above 64×64
could not be configured due to lack of FPGA resources, so
64×64 was considered to be the maximum. If execution time
for each matrix size is focused on, it is clear that minimum
matrix size takes about 6 ms, and maximum size takes about
150 ms. For that reason, maximum matrix size of 64×64 was
taken as the parameter of the matrix-multiplication kernel.

V. EVALUATION

Using the study up to the previous section, On the basis
of the results presented in Figures 4 and 5, a matrix
multiplication implemented on OpenCL on FPGA, and the
performance of SyntaxNet of the implementation was
evaluated and verified. The measurement conditions are
listed in TABLE II.
A Nallatech 385A board uses the FPGA to improve

performance. First, total execution time of SyntaxNet using
FPGA matrix multiplication was measured three times and
the average was taken.
The word throughput (which is taken as the performance

Figure 5. FPGA matrix multiplication performance

(minimum)

3Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Figure 6. SyntaxNet performance (execution time)

measure of SyntaxNet) is shown in Figure 6. For comparison,
the performance achieved with one Central Processing Unit
(CPU) thread is also shown. In terms of word throughput,
processing time is decreased. The CPU processed 307
words/s, FPGA offload processed 661 words/s, and the
performance ratio of above two was 2.15 times. As a result,
661 words/s was achieved which was almost the target
performance 700 words/s, and then 700 words were
processed in 1.05 seconds. As a result, the FPGA achieved
661 words/s, compared to the target of 700 words/s, and it
could process 700-word article in 1.05 seconds.

A breakdown of the execution time of SyntaxNet based
on the above-described measurements and analysis, and the
performance ratio of CPU and FPGA offloading is given in
Figure 7. In Figures 7(a) to (d), processing performances of
CPU 1 thread and FPGA offloading are compared, and the
performance ratio is shown. Peak performance of matrix
multiplication measured by FPGA alone and performance of
matrix multiplication by Eigen processing routine of 1 CPU
is shown in Figure 7(a). The performance ratio is 8.53 times.
SyntaxNet uses various matrix sizes for actual matrix
multiplication. So SyntaxNet effective performance would
be lower performance than the peak performance.
The ratio of effective performance due to the matrix size

decreases by 6.56 times compared to that of Figure 7(b). It is
necessary to process various sizes of large and small size,
and processing of small matrix size degrades performance in

Figure 7. SyntaxNet execution time breakdown

FPGA processing. It is necessary to process large and small
matrix size, and processing of a small-size matrix degrades
processing performance of the FPGA. As a result, effective
performance is considered to decrease as a whole.
Furthermore, memory processing is generated for FPGA
processing. Therefore, when memory processing overhead
is added, the performance ratio drops by 4.15 times
compared to that shown in Figure 7(c). Then, in
consideration of this result, the performance ratio becomes
2.15 times as shown in Figure 7(d) by adding other
processing time of SntaxNet. Then offloading by FPGA
cannot be achieved due to such overheads. It is difficult to
measure these overhead previously. In consideration of the
host-side software conditions and offload device
characteristics, it will be necessary to make predictions.

VI. DISCUSSION

Performance improvements are considered in the future.
One of the methods for speeding up FPGA offloading is
simultaneously executing DMA transfer and matrix
multiplication by FPGA. However, as for SyntaxNet, the
second-layer neural-network matrix multiplication is based
on the result of matrix multiplication of the first-layer neural
network. Therefore, the second-layer DMA transfer cannot
be started until the first layer result is obtained. The second
and the third layers are the same. Furthermore, a transition-
based calculation is performed after the matrix multiplication
of the third layer, and the transition-based calculation result
is used to next neural network calculation. Therefore, in a
loop that handles sentences, all matrix multiplications
depending on the result need to be executed serially.
Therefore, two SyntaxNet calculations of sentences need to
be performed in parallel to hide the transfer time with the
matrix multiplication time in FPGA. These calculation
dependencies are eliminated by inserting irrelevant
processing. As a result, the DMA transfer time can be hidden.

The other method for improving the performance of
SyntaxNet is memory-copy reduction. In the current
implementation of FPGA offload, the host cannot be used for
DMA transfer from the array data area of the structure
prepared by tensorflow because of data alignment. It is
necessary to copy data to an area that aligned to 64 bytes. To
eliminate this copy for speedup SyntaxNet, the memory area
for the array data of the structure prepared by tensorflow
must be aligned to 64 bytes. It is due to the specification of
the PCIe bus of DMA transferring to the FPGA.

However, the FPGA matrix operation code divides
matrix to submatrix. Then the code can calculate only the
matrix size which is divisible by submatrix, but the code
requires that a matrix of a certain size can be processed.
When using the 64 × 64 submatrix, and matrix column size
is not divisible by 64, for example, the column is 8, the
remaining 56 parts should be 0 stuffed. It is necessary to
make the matrix multiplication an accurate answer by the 0
stuffing process to manage. Since the 0 stuffing process
perform memory copy, it can perform to change memory
alignment to 64 bytes. In this study, the percentage of 0
stuffing that did not require 0-bit stuffing was estimated to be

4Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

less than 5%. In the case of 95%, it needs memory copy
because of 0 stuffing, then only 5% of memory copy would
be eliminated by tensorflow modification. Then, it was found
that this method had little prospect of performance
improvement. It is thus concluded that the memory copy
elimination method cannot improve the performance of
SyntaxNet.

Another method to improve performance of SyntaxNet is
implementing kernel code as a systolic array, which is a
structure of logic circuit that repeats operations such as
multiplication and addition while moving data. A systolic
array is known as an efficient multiply-add operation method
when there are many combinations of operations. The
systolic array is improved calculation efficiency.

Especially in recent years, Google applied systolic array
to matrix-calculation circuits for deep learning such as TPU
[14]. Circuit logic diagrams of a matrix multiplier using a
self-designed systolic array are shown in Figures 8 and 9.

Each arithmetic unit in Figure 8 is a simple one
consisting of a multiplier and an adder. The arithmetic unit
multiplies a value (A) sending from the left, and another
value for multiplication (B) is held by the register. After that,
the arithmetic unit adds the sent value (S). Each value
coming from the left is sent to the right (An), and the value
after addition is sent to the bottom (Sn). This arithmetic unit
is arranged in two dimensions as shown in Figure 9. Its
operation consists of four steps as follows.

(1) Set all the values of matrix B.
(2) Send the values in the order from the left to the right.

The transmission one step down is started one cycle later,
and the pattern is transmitted diagonally in space.

(3) Send A for the operation and wait for the result to
appear in the lower buffer.

(4) Repeat (1) to (3) with the next data.
Data movement and calculation are performed at the

same time by such operation, and multiply-add operation is
efficient. We attempted to create this systolic array using
OpenCL. The proposed systolic array circuit was created on
the basis of OpenCL. In particular, a systolic-array code was
written with OpenCL as the hardware shown in Figure 9, and
the code looked like working. Then, the circuit ran on FPGA,
but its performance was three digits lower than we expect.

It would happen because the arithmetic unit has a lot of

Figure 8. Systolic array arithmetic unit

Figure 9. Systolic array layout

latency because of its floating-point multiplication, then
OencCL compiler create a lot of processing latency in the
array. The latency cannot be changed by changing the
OpenCL code only. The OpenCL is designed to make
hardware from an algorithm written in C. However, it is
difficult to describe hardware itself like the systolic array.

VII. CONCLUSION

To automatically classify and analyze customer
complaints, we investigated whether it is possible to speed
up the OSS syntax analyzer SyntaxNet with an FPGA,
implemented FPGA offload, evaluated an actual machine,
and obtained the following conclusions. We evaluated
SyntaxNet with FPGA offload, and confirmed that
SyntaxNet's execution performance was 661 words/s, almost
achieved the target of 700 words/s, and processed sentences
of 700 words in general size in about 1 second. The
execution time of an FPGA offload machine was measured,
and the measurement results confirmed that (i) the execution
performance of SyntaxNet was 661 words/s (which almost
achieved the target of 700 words/s) and (ii) sentences with
size of 700 words (in general) could be processed in about 1
second. These results demonstrate that automatic text
categorization and analysis can be immediately executed on
a system with a reduced number of servers by speeding it up
with power-saving FPGA acceleration. This FPGA
offloading can be applied to all neural networks using matrix
multiplication.

ACKNOWLEDGMENT

 The author thanks Dr. Tsuyoshi Tanaka for his
assistance in writing this paper.

REFERENCES

[1] D. Lin, Introduction to Natural Language Processing (NLP)

[0nline]. Available form:
https://www.slideserve.com/jory/introduction-to-natural-
language-processing-nlp 2014.3.12

[2] Akamai Technologies, Inc. New Study Reveals Impact of
Travel Site Performance. [Online]. Available from:

5Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

https://www.akamai.com/us/en/about/news/press/2010-
press/new-study-reveals-the-impact-of-travel-site-
performance-on-consumers.jsp 2010.06.14

[3] Forbes. Do You Read Fast Enough To Be Successful?.
[Online]. Available from:
https://www.forbes.com/sites/brettnelson/2012/06/04/do-you-
read-fast-enough-to-be-successful/#3b3dd025462e
2012.06.04

[4] D. Andor, C. Alberti, D. Weiss, and A. Severyn, “Globally
Normalized Transition-Based Neural Networks,” arXiv
1603.06042v2, March 2016.

[5] J. Chang, J. Seefried, S. Taylor, and A. Brandner,
“SyntaxNet: Google’s Open-sourced Syntactic Parser,”
Department of Computational Linguistics University of
Tubingen, January 2018.

[6] Eigen is a C++ template library for linear algebra. [Online].
Available from:
http://eigen.tuxfamily.org/index.php?title=Main_Page
2019.08

[7] Khronos Group. OpenCL Overview. [Online]. Available
form: https://www.khronos.org/opencl/ 2019

[8] Intel, Inc. Intel FPGA SDK for OpenCL Software Technology.
[Online]. Available from:
https://www.intel.com/content/www/us/en/software/program
mable/sdk-for-opencl/overview.html 2019

[9] Z. Wang, B. He, W. Zhang, and S. Jiang, “A Performance
Analysis Framework for Optimizing OpenCL Applications on
FPGAs” IEEE, 2016.

[10] T. Kudo and Y. Matsumoto, “Japanese Dependency Analysis
Using Cascaded Chunking,” , in Japanese, June 2002.

[11] S. Kurohashi and M. Nagao, “KN Parser : Japanese
Dependency / Case Structure Analyzer,” unknown, 1994

[12] S. Kurohashi and M. Nagao, “Building a Japanese Parsed
Corpus while Improving the Parsing System,” unknown, 1998

[13] Stanford University. Stanford CoreNLP – Natural language
software. [Online]. Available from:
https://stanfordnlp.github.io/CoreNLP/ 2019

[14] N. P. Jouppi, C. Young, N. Patil, D. Patterson, et.al “In-
Datacenter Performance Analysis of a Tensor Processing
Unit”, ACM/IEEE 44th, 2017

6Copyright (c) IARIA, 2020. ISBN: 978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

