
Challenges in Mitigating Soft Errors in Safety-critical Systems with COTS
Microprocessors

Amer Kajmakovic∗, Konrad Diwold∗, Nermin Kajtazovic¶, Robert Zupanc¶

∗Pro2Future GmbH & Institute of Technical Informatics, TU-Graz, Graz, AT
E-mail: (amer.kajmakovic, konrad.diwold)@pro2future.com

¶ Siemens AG, Graz, AT, E-mail:(nermin.kajtazovic, robert.zupanc)@siemens.com

Abstract—The number of Commercial-Off-The-Shelf (COTS) mi-
croprocessors and microcontrollers used in safety applications
increased significantly over the last decade. In contrast to safety-
certified microcontrollers, these microcontrollers are produced
without integrated protection against memory soft errors, and
limited in terms of available memory and computation power.
However, due to the constant optimizations of the memory’s
physical size and the voltage margins, the probability that
external factors, such as magnetic fields or cosmic rays, tem-
porally alter a memory state (and thus cause a soft error) rises.
Especially within safety-critical automation systems, it is crucial
to address such errors and a wide range of error mitigation
strategies have been proposed. In the context of established
brownfield automation systems, the redesign and deployment
of new hardware is usually not feasible. Therefore software-
based strategies are required, which can be deployed on existing
fail-safe architectures to further improve their performances,
without requiring their rework or conceptual changes. This article
identifies challenges associated with software-based soft error
detection and correction strategies. Along with the challenges, a
short overview of currently applicable software-based mitigation
strategies is given and the strategies are evaluated.

Keywords–soft errors; mixed-criticality; fail-safe; 1oo2D; em-
bedded memory; hamming; parity bit; redundant parity.

I. INTRODUCTION

Given their ever-decreasing packaging size, semiconductors
are becoming more susceptible to external influences such as
alpha particles, cosmic rays or magnetic fields [1]. Figure 1
shows the correlation of error rates in semiconductors and
technology/fabrication nodes (nm) size. It is noticeable, that
the Soft Error Rate (SER) is increasing with decreasing node
size, while the Hard Error Rate remains constant [2]. Given
their low costs and good performances, Commercial-Off-The-
Shelf (COTS) microcontrollers are increasingly deployed in
safety applications [3]. In contrast to safety-certified micro-
controllers, COTS microcontrollers are not produced with an
integrated protection against soft errors. As a consequence,
recent research proactively engages environmentally induced
soft errors by developing new methods for error detection,
mitigation, and data recovery [4]. This research direction has
also yielded new challenges and requirements.

The importance of detecting and resolving soft errors is
reflected by the numerous reports on soft error problems within
safety-critical applications. Reports are coming from a wide
range of industries, such as the automotive industry, space
industry, or the medical industry. Duncan and Roche’s analysis
of semiconductor reliability in the context of autonomous
driving [5] is devastating, as they conclude a (soft error
induced) failure rate of 1 part per million per year. Given that
a single-car implements approximately 8,000 semiconductors,

Aggressive 

voltage scaling

(near-threshold 

computing)

Figure 1. Software and hardware error rates in semiconductors [2].

the likelihood of a car exhibiting semiconductor induced errors
within its lifespan (of 15 years) is around 12%. While the
results of such failures are unclear while a car is operated,
semiconductor-based soft errors can be resolved (fairly easy)
by restarting the affected component. Not all safety-critical
systems provide the luxury, of resolving an error by ”turning
it off and on again”. Consider, for example, safety-critical
nuclear power plant equipment, where restarting a device in
the event of a soft error is not an option and could lead to
fatalities.

Safety-critical applications usually exhibit different levels
of criticality in terms of their underlying data. While a fraction
of data is system critical (i.e., if affected by an error the conse-
quences can be catastrophic), errors affecting non-critical data
will not impact the safety of operation. This phenomenon is
known as mixed-criticality. Incorporating mixed-criticality into
the design of mitigation strategies, by devising and applying
different detection and correction strategies on memory areas
holding data of different levels of criticality, allows to further
improve a system’s availability while guaranteeing a correct
treatment of system critical events.

The remainder of the paper is organized as follows: Section
II presents an overview of the mitigation strategies. Section III
defines the challenges and requirements for soft error software-
based mitigation strategies in safety-critical applications. Sec-
tion IV shows the evaluation of the two most suitable software-
based mitigation strategies. Section V introduces how existing
safety architectures can be improved with the software-based
approach. In the last section, summary and future work of the
paper are presented.

II. MITIGATING SOFT ERRORS

While soft errors represent the majority of memory errors,
they can be prevented and/or corrected. To prevent soft er-

13Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications



rors, memories require fault-tolerance. Fault-tolerance denotes
a systems’ ability to handle faults in individual hardware
or software components, power failures, or other forms of
unexpected problems, while still meeting its specification [6].
There are different approaches to achieving fault tolerance.

Shielding constitutes one of the first approaches, that made
components fault-tolerant. Shielding is applied during the
production phase, where a specific particle-resistant layer was
deployed over the component’s package. The layer reduces
exposure of the bare component/device and prevents environ-
mental particles from influencing under-layers of the package.
Resistance to the electrical charges can also be achieved by
using specific designs and materials for critical points in the
component (e.g., strengthening the gate of the transistors).
Although techniques used during the production phase have
shown very effective against soft-errors, they always require
additional materials and significantly increase the cost of the
design and production.

If early stage design protections are not available, which
is often true for the COTS microcontrollers, then the system
redundancy is a very common solution to establish a fault-
tolerant system. Four main types of redundancy exist: hard-
ware, software, information, and time redundancy. The first
three types of redundancy are achieved by providing additional
components, functions, or data items that are not required for
fault-free operation, but function as a backup for the event of a
fault. Timing redundancy denotes repeating computations and
a comparison of computational results from different timings.

1) Hardware redundancy: Hardware system architectures
can provide fault tolerance via hardware redundancy. Safety-
critical systems often adopt an N-modular (where N > 2)
architecture, where the components exist in certain redundancy
n and perform the same computations in parallel. The correct
result is established based on majority voting. If one of the
modules fails, the majority voter masks the fault by identi-
fying the result of the remaining fault-free modules [6]. N-
modular systems can yield towards a higher Safety Integrity
Level (SIL), as they provide inherent fault tolerance and
consequently a low failure rate. SIL is a quality indicator
for systems that fulfill safety requirements in accordance
with the IEC61508 standard. Many safety systems use simple
architectures such as 1oo1D (1-out-of-1 with diagnostics) and
1oo2D (1-out-of-2 with diagnostics) [7]. In some cases, a
diagnostic system is realized with an additional CPU (i.e.,
lock-step architecture) or with an additional watchdog (i.e.,
challenge-response architecture) [8]. These architectures are
also known as fail-safe where in the event of a specific type of
failure, the system inherently responds in a way that will cause
no or minimal harm to equipment, environment or people. The
main advantage is that these architectures have a good balance
between functional safety (i.e., achieving high safety integrity)
and development process costs. A shortcoming of hardware
redundancy is its requirement for additional hardware. In the
context of memory, it will increase its cost, weight, size,
power consumption, and thus, impacts its designs and tests.
Moreover, additional hardware needs to be in-calculated from
the first stage of chip design. It is therefore almost impossible
to upgrade already existing systems with additional hardware
without degrading its performances, making it unsuitable for
brownfield automation.

2) Software redundancy: Software fault-tolerant techniques
are also based on the redundancy, which is applied to proce-
dures, processes, data or the whole execution code. The most
common type of software redundancy in embedded systems is
the multiplication of data. A simple way of doing this is to
store a variable copy simply transformed (e.g. with hamming
distance 4 or simple inverse function) in a different memory
area. This helps detect (via comparison), mitigate or recover
corrupted data. The main disadvantage of software redundancy
is memory consumption because multiplication of data, code
or processes requires additional memory space that is usually
limited in embedded systems. Also, in some cases, the code
execution time could be significantly increased [1], [4].

3) Informational redundancy: The most prevalent type
of redundancy in the context of memories is Informational
redundancy. It assumes the addition of extra information to the
data, which allows verifying the soundness of the information.
Usually, this additional information are codes, which are
computed based on the data itself. Those codes (so-called Error
Detection And Correction codes (EDAC)) were firstly used in
communication [6] for data recovery, but nowadays they are
widely used in the memories [9]. The family of EDAC codes is
expanding constantly, so far the most popular EDAC codes are:
Parity Codes (error detection without recovery) [10], Hamming
Codes (2-bit detection and 1-bit recovery) [10], Reed-Solomon
and Bose-Chaudhuri-Hocquengham Codes (for multiple bits
error masking) [9]. Also, some works considered the imple-
mentation of other EDAC codes used in communication such
as: LDPC codes [11], RS codes, Turbo codes [12].

Most of nowadays EDAC codes for memories are im-
plemented with an additional chip which is used to encode
and decode EDAC codes [13]. These additional chips increase
the cost of memory by 10-20%. Also, the memory’s die-area
increases by around 20% and processing speed decreases by
3-4% [9]. To avoid an increase in chip size and hardware re-
designs, software-based EDAC codes have been proposed [14],
[15]. However, such an approach leads to a decrease of
available memory as well as an increase of computation time,
access time, and the complexity of the overall system and usual
trade-offs between listed parameters need to be made. It is
worth mentioning that some conventional micro-controllers are
already offering embedded memories with EDAC codes (i.e.,
hamming code or parity bit chips that can protect data from
faults [16], [17]).

EDAC codes have two main properties that need to be
considered: speed and quality. Speed is defined as the time
needed for encoding/decoding EDAC codes and this time
extends the overall memory access time, while quality can
be determined as a number of the faulty bits that the code
can detect and correct. Naturally, there is a trade-off between
quality and speed. For higher quality, more complex EDAC
codes are required, which allow correcting multiple bit-flips.
In this case, both, code magnitude as well as computing
demand are increased due to these adaptations. Faster and less
memory expensive correction schemes are limited in terms of
the number of bits that can be corrected.

Based on EDAC codes, a new method called scrubbing was
also developed. The idea behind scrubbing is to periodically
re-write data in its original location and eliminating soft errors,
if they are correctable through EDAC [18], or copy of original
data [19]. With this approach, an accumulation of soft errors

14Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications



inside one region of memory can be avoided.
4) Timing redundancy: Another method that has been

recently investigated is the so-called timing redundancy. It
involves repeating a computation or data transmission two
or more times and comparing results with previously-stored
copies [6]. This type of redundancy is good when we need
to distinguish between transient and permanent errors. If the
fault is still there after repeating the test several times, then
it’s likely that error is a permanent one.

III. CHALLENGES IN MITIGATING SOFT ERRORS

To overcome soft errors, and consequently lower their
impact on the non-functional properties of the system, var-
ious methods for error detection, correction, and mitigation
were introduced. Available methods can be distinguished
into hardware- and software-based correction mechanisms.
Hardware-based mechanisms provide error detection and cor-
rection on an architectural level and use specific hardware.
As already stated, hardware approaches are not applicable in
the brownfield i.e., existing devices or systems and they are
usually demanding redesign and redeployment. For the already
deployed systems or devices, software solution fits better
because they can be deployed with a simple update or software
patch and consequently costs are minimized. Software-based
correction mechanisms operate on the memory itself without
altering the underlying hardware or architecture. Depending
on the application, an adequate correction quality is required,
which denotes the fault magnitude a strategy is capable to
detect, mitigate, and/or recover. Given that there is no such
thing as a free lunch, soft error strategies require additional
execution time and/or memory space, and therefore affect
processor run-time and can cause memory overhead. In the
next section, challenges for software-based solutions for soft-
error mitigation will be discussed.

These observations lead to a general trade-off problem
for the design and deployment of soft error detection and
correction, as it is always required to balance the quality
of detection (required by the underlying application) and the
resources required to implement appropriate correction and
detection strategies. Higher quality of the soft error correction
will require more computation time, space, and sometimes
additional hardware. Depending on the target system, this
might lead to a violation of the system’s requirements (in
terms of cost, available memory space and computation time
for the system’s applications). In the following, the system’s
requirements are outlined in more detail.

1) Run-time performance: The development of methods,
which provide sufficient error coverage, while keeping the im-
pact on the system’s run-time or memory overhead minimal is
particularly important in the context of safety-critical systems.
This is due to the fact that such systems have very strict timing
requirements (i.e., norms in the field define specific timing
limits here, such as Fault Tolerant Time Interval (FTTI) in
ISO26262 or Process Safety Time (PST) in the IEC61508
standard). The FTTI constitutes the timespan between fault
and hazard [20]. Faults must be detected and corrected within
this interval. If a correction is not possible, the system must
guarantee to reach a safe state within the FTTI. Therefore, the
run-time performance of correction strategies plays a crucial
role in the context of safety-critical systems as its application
must not lead to a violation of the FTTI requirements.

2) Memory consumption: Many strategies require addi-
tional memory space for their implementation, which is used
to store copies of data or code, or additional information
(required by the method), such as Parity bits or Error Detection
and Correction Codes (EDAC). From all software solutions,
EDACs codes exhibit the smallest overhead because the ratio
between additional bits required for protection and protected
bits is always less than one while this is not the case for full
redundancy. While in most cases EDAC codes can have a large
memory footprint, parity bits constitute their most lightweight
form. They allow monitoring the consistency of a memory
region (with a defined length) based on a single bit, which
denotes if the number of one-bits in the region is odd or
even. With decreasing the size of the protected region this
can lead to increased memory overhead. To give an example:
the protection of 32bit word via hamming code will result in a
3.15% memory overhead). One-bit recovery of a 32-bit word,
using Hamming code, would require additional 7 bits and thus
result in a memory overhead of 22%.

3) Mitigation quality: The quality of a strategy is defined
by its capability of detecting and correcting (recovering) faulty
bits. Furthermore, detecting and correcting capabilities are
expressed by the number of faulty bits that can be detected
and corrected. The simplest EDAC code (Parity) can detect all
odd bit flips but doesn’t have recovering capabilities. On the
other hand, a 2oo3 system can detect all bit flips and also can
correct, but the complexity and consequently costs are higher.

In fail-safe systems, detection of an error is usually re-
flected with the safety feature because detection is enough to
trigger activation of the safe state and prevents further safety
issues. Between error detection and activation of a safe state,
the system has a defined time for the recovery procedure. If
recovery is not possible for any reason, the system will go into
the safe state and availability will be affected.

4) Mixed criticality: When speaking about safety-critical
memory one must distinguish between different levels of
safety-criticality, which applies to the system data. Especially
in safety-critical applications, some data may have a higher
criticality level than the other. As already outlined, this phe-
nomenon is known as ”mixed-criticality”. While adequate
protection needs to be provided for the whole system, safety-
critical data requires stronger protection. Several recent studies
have investigated mixed-critically in memories, with a focus
on data delivery and prioritization by data criticality [21].

Taking mixed-criticality into account when designing mem-
ory detection and correction strategies, allows enhancing the
reliability and safety of the underlying system, as such strate-
gies aim for increasing the protection of safety-critical memory
parts. By treating different parts of the memory with a different
criticality, the overhead of the correction strategies can be
reduced (in contrast to the whole memory being subject to
rigid correction/detection strategies). In addition, incorporating
mixed-criticality can increase a system’s availability, as faults
in non-system critical memory areas will not necessarily lead
to the halt of the system.

5) Memory organization: Because of the environmental
changes, occurrences of soft errors in memory are not contin-
uous. The chance of a cell being hit by an error is randomly
distributed. Therefore, errors can appear at any time and in
any type of memory or memory part. This can aggravate

15Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications



memory protection and detection mechanisms as they are type-
dependent. One can distinguish between two types of memory
in embedded systems: non-volatile and volatile memory. Non-
volatile memory sustains stored information during a loss
of power (e.g., flash memory), while volatile memory needs
constant power to retain stored data (e.g., SRAM) [22].

Embedded memory exhibits different regions: program
memory, data memory, registers and I/O ports [23]. Also,
from the software point of view, the memory layout of C/C++
programs consist of the different sections, that are saved in
different memory regions. Typical memory representation of
C/C++ programs consists of a code segment, data segment,
uninitialized data segment (bss), stack and heap. All of this can
impact the design of the correction/mitigation mechanism.

IV. EVALUATION OF EDAC CODES

As shown in the last section, it is crucial to estimate the
performance and overheads of soft-error mitigation strategies
in order to identify those appropriate for one’s problem domain
and underlying system requirements. This section demonstrates
how such an assessment could be performed, by calculating
and comparing memory consumption and run-time perfor-
mances of the Parity Bit (PB) and Extended Hamming Code
(EHC).

The evaluation is performed for varying lengths of pro-
tected data (as strategies scale different with these). For the
representation of the codes a common annotation (n, k) was
used, where n denotes the number of total bits and k the
number of the protected data bits. The number of required
check bits can be easily calculated as n − k. Utilizing these
parameters, memory consumption (mc) is calculated in (1) and
exhibited on the Figure 2

mc[%] = (n− k)/k · 100% (1)

Figure 2. Memory overhead for different types of Parity Bit (PB) and
Extended Hamming Code (EHC), where the x axis denotes total length of

word and y denotes percentage of the memory overhead.

The run-time performance of a given strategy is closely
connected with the complexity of the underlying algorithm. A
good indicator of the algorithm’s complexity is the number of
logical XOR operators it requires for its implementation.

In the context of PB, a calculation stemming from [24] was
used. The algorithm is based on the consecutive application of
shift and XOR operators. Alternatively, a lookup table could
be used to calculate the parity bits of 8-bit words. While using
a look-up table will slightly increase the memory consumption
of the algorithm it will decrease its complexity by 3 XORs.

Figure 3. Number of XORs for encoding process for different types of
PB(n, k) and EHC(n, k), where y-axis denotes the number of total XORs

gates and x-axis the number of the protected data bits.

The number of the XORs for EHC was calculated accord-
ing to (2).

XORs(k) = 2k+1 − k − 3 (2)

where parameter k can be derived from the following form of
hamming code annotation H(2k, 2k−k−1). The equation (2)
stems from [24] where it was calculated for the EHC recursive
encoding computation. Figure 3 shows the number of the XOR
operator for varying lengths of protected bits.

In terms of mitigation quality, a big difference between PB
and EHC can be observed. While PB is only capable to detect
errors with an odd number of bit-flips (including single-bit
errors), EHC can detect 2 errors and correct only one flipped
bit. In the context of safety-critical systems, this low mitigation
quality has a big impact on availability and safety.

In [25] a detailed report on the number of soft errors
in SRAM memory (512K x 8-bit) is given, which were
observed in space. Errors were recorded in a nanosatellite
that was circulating the Earth’s orbit. During the 2510 days of
recording, four different types of 247593 soft errors occurred.
The majority of these errors were single-bit errors (i.e. a total
of 244150 errors constituting 98.6% of the recorded errors),
while only 2996 errors (i.e., 1.21% of the recorded errors) were
double-bit errors. Multiple bit (> 2) errors occurred at an even
lower rate (corresponding to a total of 217 errors (0.08%)),
while the remaining errors (230 (0.09%)) were classified as
severe errors.

If the capability of presented algorithms was considered
in this example in addition to considering the safety-critical
scenario, PB would detect all single-bit errors and some of
the multiple bit errors, leading to a detection rate of 98.75%.
PB detection alone is not enough and would not increase the
availability of the system, because without recovery the sole
identification of an error would lead to the system being put
into a safe-state as it is not safe to continue calculations.
Using EHC, 99.8% error would be detected and 98.6% would
be corrected. This means that the system’s availability could
be increased significantly as it would only be stopped (put
in a fail-safe state) for 1.4% of the errors. This leads to
the conclusion that (on its own) EHC is significantly better
when it comes to safety and availability, however, this is also
associated with the higher memory overhead and complexity
(as shown before). Also, one should keep in mind that the
SRAM used was relatively old (approximately 20 years old),
and thus exhibits a lower probability for multiple bit errors
because of the higher technology node. With newer memories
(utilizing smaller technologies) the distribution of the error is

16Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications



very likely to be different (i.e. more multiple-bit errors are to
be expected).

In the context of safety-critical systems, the application
of specific fail-safe architectures with hardware redundancy is
very common. The next section will introduce a widely used
fail-safe architecture and demonstrate how the application of
simple EDAC codes can further improve its availability.

V. ENHANCING AN 1OO2D SAFETY ARCHITECTURE

A typical representative of a fail-safe system is a 1oo2
architecture where the hardware, including sensor inputs, is
independently implemented twice. This leads to a multi-core
architecture similar to the one described in [26]. The output
of these parallel lines is checked and selected by a voter [27].
Therefore, when the two outputs differ, the result leading to
a safe and non-critical state is preferred and opted for by the
voter.

From a memories’ point of view, a 1oo2D architecture
provides independent memories for each parallel line of com-
putation. Two independent parallel memories ensure system
hardware and software redundancy. This means that (besides
memory specific data which is required for synchronization)
identical data can be found on both memories (Figure 4 depicts
the memory model in a 1oo2D architecture).

Figure 4. 1oo2D safety architecture.
All regions are equally exposed to the faults, however,

different kinds of protection can be applied to different regions.
Experts advise that protection should be implemented in the
form of periodical tests run over data. As an exemplary
guide, we can refer to the Safety manual [28] provided by
STMicroelectronics for their micro-controllers. For soft errors,
STMicroelectronics advises using redundancy for all safety-
relevant variables. Usual solutions provide a copy of original
data on the same memory chip or an additional (redundant)
chip. The data is periodically compared with the original to
detect the presence of errors [29]. When an error is detected,
it is not clear which memory (or part of the memory) was
affected, therefore such a solution leads to the detection but
not to the correction and will result in the system transitioning
into a safe-state.

A solution for overcoming this problem is to add mecha-
nisms (on top of the existing architecture), which allow recov-
ering faulty data and extend uptime of the system. Recovery
mechanisms in this context are usually EDAC codes based.
Adding additional hardware to the system is not feasible,
as this would require redesigning the system from scratch.
Another option is to apply software-based EDAC codes ap-
proaches.

Given that 1oo2D already provides the possibility to detect
memory errors, the question arises on how existing archi-
tectures (i.e., 1oo2D) can be combined with software-based
approaches.

A method, for enhancing existing 1oo2 hardware architec-
ture, was proposed in our work [30]. This method constitutes
an extension for mixed-critical real-time systems with an
underlying 1oo2 architecture. We refer to it as Redundant
Parity (RP). Figure 5 explains the basic concepts of the RP
method. The method relies on 1oo2’s ability to detect soft-
errors and uses parity bits to establish the location of the error.
Initially, the method generates parity bits for data that needs to
be protected (i.e., data in redundant memories). When bit flips
occur and 1oo2 comparator detects different bits in redundant
data, the usual way is to generate a signal that will trigger
the safe-state of the device. In contrast to that, the proposed
method calculates new parity bits for both protected parts of
the memories. In the next step, old parity bits are compared
with newly calculated parity bits to establish the fault source.
When the algorithm distinguishes between healthy and faulty
data, the recovery phase is activated. Recovery is performed by
simply copying healthy over the faulty data. To sum it up, the
method uses 1oo2 architecture’s inherent capability to detect
bit flip in combination with parity bit to detect which of the
redundant words is faulty and, in the end, it uses redundancy
for recovery.

Figure 5. Redundant parity method.

The method allows for correcting single-bit soft errors (the
majority of occurring soft-errors). In addition, odd multiple
bits soft errors can be corrected and even multiple bits can
be detected. In the context of the error data presented in the
Section IV, this method would detect 100% of the errors and
correct 99.4% of the errors. Memory overhead and complexity
would be equal to double memory overhead and double
complexity of the parity bit. Furthermore, the RP method
provides separated detection and recovery phases, leading to
less recovery time than in other EDAC methods. In addition,
the proposed method is completely independent of the software
architecture as it focuses on the memory’s word level rather
than on the variables or structures [31]. However, the results
also show that the application of the approach is limited to
a 1oo2 architecture, which already provides the required data
redundancy as well as self-tests to detect errors in the data.

VI. CONCLUSION

The main goal of this work was to review software-based
mitigation strategies for mixed-critical memories and identify
challenges, that need to be considered. Soft errors, induced by
external environmental factors, constitute a problem in memory
operation. As safety certificated microcontrollers are expensive
and complex industry is often utilizing COTS microcontroller.

To increase availability and reliability within COTS mem-
ories, a certain level of fault tolerance is required. Current

17Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications



safety-critical applications rely on simple fail-safe architec-
tures like 1oo1D or 1oo2D (which were outlined in Section V).
The reliability and availability of fault-tolerant systems can
be further improved if such simple fail-safe architectures
are extended with software-based recovery techniques such
as EDAC codes. In addition, deployment of the software-
based EDAC codes does not require additional hardware or
a redesign of the underlying architecture.

When deciding on a method to be implemented on existing
hardware, one must be aware of the overhead costs, which
are associated with a respective method, as it will likely
increase run-time and/or reduce the available memory space.
This aspect can be incorporated in strategy design, by di-
rectly addressing mixed-criticality of data within the correction
and detection strategies, and differentiating among memory
regions. The article tried to outline how such an assessment
could be performed, by calculating and comparing memory
consumption and run-time performances of different strategies,
which can then be linked to the existing requirements of
existing safety architectures, such as 1oo1D or 1oo2D.

The comparison of PB and EHC showed that, while PB
exhibits less complexity and run-time overhead it will not
increase availability per se, as detection will not lead to cor-
rection (in contrast to EHC). However, when PB is combined
with existing 1oo2 safety architectures, a mitigation approach
(named redundant parity) can be established, which is able
to both detect and correct most of the soft-error occurring in
memories, and thus significantly improve availability.

The method utilizes 1oo2’s inherent capability of soft error
detecting (achieved by a simple comparison test) and adds the
mechanism of parity bits to distinguish between faulty and
healthy data. In case an error is detected, the innate redundancy
of the 1oo2 architecture is used to recover the error by copying
healthy over faulty data.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the
Austrian Research Promotion Agency (FFG) (#6112792).

REFERENCES

[1] J. Vankeirsbilck, H. Hallez, and J. Boydens, “Soft error protection
in safety critical embedded applications: An overview,” in 2015 10th
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), November 2015.

[2] H. Iwashita, “International standards adopted by itu-t to address soft
errors affecting telecommunication equipment,” ITU-T International
Telecommunication Union - Telecommunication Standardization Sector,
Geneva, CH, Standard, 2018.

[3] H. Forsberg and K. Karlsson, “Cots cpu selection guidelines for safety-
critical applications,” in 2006 IEEE/AIAA 25TH Digital Avionics
Systems Conference, Oct 2006.

[4] V. Thati, J. Vankeirsbilck, J. Boydens, and D. Pissoort, “Data error
detection and recovery in embedded systems: a literature review,”
Advances in Science, Technology and Engineering Systems Journal,
2017.

[5] M. Duncan and P. Roche, “Paving the way towards autonomous
driving — tackling soft errors to security challenges,” in 2017 IEEE
International Reliability Physics Symposium (IRPS), April 2017.

[6] D. Elena, Fault-Tolerant Design. KTH Royal Institute of Technology,
Krista, Sweden: Springer, 2013.

[7] F. Handermann, “Process safety architecture system neutral solution
comparison,” Chemical Engineering Transactions, April 2016.

[8] R. Mariani and P. Fuhrmann, “Comparing fail-safe microcontroller
architectures in light of iec 61508,” in IEEE International Symposium
on Defect and Fault-Tolerance in VLSI Systems (DFT 2007), 2007.

[9] A. Mukati, “A survey of memory error correcting techniques for
improved reliability,” Journal of Network and Computer Applications,
2011.

[10] E. Fujiwara, Code Design for Dependable Systems: Theory and Prac-
tical Application. New York, NY, USA: Wiley-Interscience, 2006.

[11] S. Jeon, E. Hwang, B. V. K. V. Kumar, and M. K. Cheng, “Ldpc
codes for memory systems with scrubbing,” in 2010 IEEE Global
Telecommunications Conference GLOBECOM 2010, Dec 2010.

[12] B. Tahir, S. Schwarz, and M. Rupp, “Ber comparison between con-
volutional, turbo, ldpc, and polar codes,” in 2017 24th International
Conference on Telecommunications (ICT), May 2017.

[13] M. Restifo, P. Bernardi, S. De Luca, and A. Sansonetti, “On-line
software-based self-test for ecc of embedded ram memories,” in IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, October 2017.

[14] N. Maruyama, A. Nukada, and S. Matsuoka, “Software-based ecc for
gpus,” Symposium on Application Accelerators in High Performance
Computing, January 2009.

[15] D. Dopson, “Softecc: a system for software memory integrity checking,”
Ph.D. dissertation, Institute of Technology. Dept. of Electrical Engineer-
ing and Computer Science, Massachusetts, 2007.

[16] Intel R© Embedded Memory User Guide, STMicroelectronics.
[17] MWCT101xS Safety Manual, NXP Semiconductors.
[18] G. Mayuga, Y. Yamato, T. Yoneda, M. Inoue, and Y. Sato, “An ecc-based

memory architecture with online self-repair capabilities for reliability
enhancement,” in 20th IEEE European Test Symposium (ETS), 2015.

[19] R. Santos, S. Venkataraman, A. Das, and A. Kumar, “Criticality-
aware scrubbing mechanism for sram-based fpgas,” in 24th International
Conference on Field Programmable Logic and Applications, 2014.

[20] IEC, “International Standard 61508 Functional safety: Safety related
Systems,” International Electrotechnical Commission, Geneva, CH,
Standard, 2005.

[21] J. S. Miguel and N. E. Jerger, “Data criticality in network-on-chip de-
sign,” in Proceedings of the 9th International Symposium on Networks-
on-Chip, ser. NOCS ’15. New York, NY, USA: ACM, 2015.

[22] K. Itoh, “Embedded memories: Progress and a look into the future,”
IEEE Design Test of Computers, January 2011.

[23] Reference manual for STM32 applications, Intel.
[24] L. Zhengrui, L. Sian-Jheng, and H. Honggang, “On the arithmetic

complexities of hamming codes and hadamard codes,” 2018.
[25] H. Caleb and B. Vipin, “Error detection and correction on-board

nanosatellites using hamming codes,” Journal of Electrical and Com-
puter Engineering, 2019.

[26] F. Reichenbach and A. Wold, “Multi-core technology – next evolution
step in safety critical systems for industrial applications?” in 2010
13th Euromicro Conference on Digital System Design: Architectures,
Methods and Tools, September 2010.

[27] C. Preschern, N. Kajtazovic, and C. Kreiner, “Built-in security enhance-
ments for the 1oo2 safety architecture,” in 2012 IEEE International Con-
ference on Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER), May 2012.

[28] STM32F4 Series safety manual - user manual, STMicroelectronics.
[29] Handling of soft errors in STM32 applications, Intel.
[30] A. Kajmakovic, N. Kajtazovic, K. Diwold, R. Zupanc, and G. Macher,

“Flexible soft error mitigation strategy for memories in mixed-critical
systems,” in 2019 ISSREW: International Workshop on Software Hard-
ware Interaction Faults, Oct. 2019.

[31] A. Kajmakovic, R. Zupanc, S. Mayer, N. Kajtazovic, M. Höffernig,
and H. Vogl, “Predictive fail-safe improving the safety of industrial
environments through model-based analytics on hidden data sources,”
in Proceedings of the 13th IEEE International Symposium on Industrial
Embedded Systems. IEEE Press, June 2018.

18Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-773-3

PESARO 2020 : The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications


