
A Quantitative and Qualitative Comparison of Machine Learning Inference
Frameworks

Egi Brako
Department of Computer Science

Georg-August-Universität Göttingen
Göttingen, Germany

e-mail: egi.brako@gmail.com

Jonathan Decker
Department of Computer Science

Georg-August-Universität Göttingen
Göttingen, Germany

Julian Kunkel
Department of Computer Science

Georg-August-Universität Göttingen
Göttingen, Germany

Abstract—As Artificial Intelligence (AI) continues to advance
and impact diverse fields, ensuring universal access to its abilities
becomes increasingly crucial. To make AI models accessible to
users, they must be deployed to process inference requests. We
conducted qualitative and quantitative analyses of popular open-
source serving frameworks by evaluating their performance on
three Machine Learning tasks. This research aims to shed more
light on the frameworks’ respective strengths and weaknesses,
consequently addressing the challenges posed by the process
of selecting a method of serving the models. The qualitative
comparison is carried out by taking into account the subjective
characteristics of each framework and scoring them on a number
scale. We then use Locust to run load-tests on these frameworks,
analyse their quantitative results, and compare them with each
other. Our results find that PyTorch TorchServe is the overall
best-performing framework, consistently surpassing the other
two in our performance test. We find that some platforms have
issues handling more complex models, showing incapabilities
for handling specific Machine Learning tasks. Our findings
show significant differences among the frameworks, contributing
valuable insights for developers and researchers in selecting the
most suitable framework serving Machine Learning models.

Keywords-artificial intelligence; inference engines; machine
learning;

I. INTRODUCTION

Machine Learning (ML) has emerged as a pivotal technology
across various domains, revolutionizing industries such as
transportation, healthcare, and finance. With the growing
reliance on ML models for critical decision-making and
everyday applications, the need to effectively serve these
models to a wider audience has become increasingly important.
Model serving refers to the deployment, management, and
maintenance of ML models in production environments, ensur-
ing their availability, responsiveness, and accuracy in delivering
predictions or results in real-time.

Serving frameworks, also known as inference frameworks,
play a crucial role in this process by facilitating the deployment
of ML models at scale. These frameworks manage multiple
requests, optimize computational resources, and enable seam-
less model updates. Despite their significance, selecting the
right serving framework remains a challenge due to varying
requirements and the distinct features each framework offers.

This paper aims to provide a comprehensive comparison
of three popular ML serving frameworks: TorchServe[1],
TensorFlow Serving[2], and Triton Inference Server[3]. By

evaluating both performance metrics, such as latency and
throughput, and usability factors, including user-friendliness
and documentation quality, this research seeks to identify the
most suitable framework for different ML tasks.

The remainder of the paper is organized as follows: Section
II reviews related works, highlighting previous studies, ad-
vancements, as well as gaps in the field. Section III details the
methodology, including the experimental setup and evaluation
metrics. The results of the experiments are then presented in
Section IV followed by an evaluation and discussion of the
findings in Section V. Finally, Section VI concludes the paper
with a summary of the research and suggestions for future
work.

II. RELATED WORK

As the field of ML grows, the focus extends beyond
individual models and their training to include the efficient
deployment and serving of these models to users. Previous
studies, such as MLPerf Inference Benchmark [4] and its
succeeding research The Vision Behind MLPerf: Understanding
AI Inference Performance [5], have made significant strides
in establishing benchmarks for ML inference, focusing on
key performance metrics and trade-offs between accuracy and
performance. These works laid the groundwork for evaluating
ML models across various applications, though they were
limited by the scope of models and scenarios considered. For
instance, models like Bidirectional Encoder Representations
from Transformers (BERT) [6] and transformers [7] were
not included, leaving room for further exploration of these
applications.

In the area of custom serving systems, works like Clipper:
A {Low-Latency} online prediction serving system [8] provided
foundational insights into real-time ML predictions, with a
focus on modularity and performance optimization techniques.
However, Clipper’s evaluation was limited to specific bench-
marks, and it is no longer maintained, making its findings
somewhat outdated.

Edge computing research, as reviewed in Deep Learning With
Edge Computing: A Review [9] or Edge Computing: Vision and
Challenges [10] has also been extensive, focusing on bringing
Deep Learning computations closer to end devices for tasks
like computer vision and Natural Language Processing (NLP).
While valuable, this body of work is more concerned with

7Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability



inference on edge devices rather than general-purpose serving
frameworks.

Our research fills the gap by providing a comprehensive,
up-to-date comparison of widely-used ML serving frameworks,
offering critical insights for selecting the most suitable platform
for diverse ML applications.

III. METHODOLOGY

This research aims to evaluate the performance and usability
of different machine learning inference frameworks. The
challenge here lays in merging these aspects to form a
comprehensive research question. The common part that stands
out is this broad concept of "usefulness". This has led us
to examine both aspects separately, and to form individual
evaluations for them. Both performance metrics and the
practical, user-oriented aspects contribute to determining how
useful these frameworks are, under various conditions, for
different users.

A. Performance

For the performance evaluation, we need to define formal
methods and metrics to find out the best-performing framework.
For this, we chose two different methods of load-testing
(scenarios) for each serving framework: multi-stream load
test, and single-stream throughput test. The former works by
regularly querying the serving platform, and firing the next
request as soon as the previous one completes. This will keep
the platform under constant heavy load, simulating a worst-case
scenario helps ensure the system is reliable, even under heavily
demanding circumstances. On the other hand, the single-stream
test measures how well the platform handles a continuous flow
of requests, one at a time, as quickly as possible. It helps
determine the maximum rate at which the platform can process
inference requests without any delays or slowdowns. In both
of these scenarios, three different metrics will be measured,
namely: Throughput (in Requests per second), Latency (in
milliseconds), and Failures (in failures per second). These
measurements will help us understand how well the systems
work in different situations.

B. Usability

For the usability evaluation, we must define formal metrics
and strictly evaluate the serving frameworks, as it is difficult to
conduct without set criteria. Our usability analysis focuses on
how effortlessly a user can set up and serve the chosen models,
along with the complexity of the serving process. Given that
all of the frameworks under review are considerably sized
projects, it is reasonable to expect a high level of support for
users, both in the documentation and through the community.
It is difficult to judge qualitative characteristics in a specific
way, therefore we have written criteria, which will serve as
our reference parameters throughout our analysis.

The reference parameters throughout our analysis will be
five loose criteria that we have defined, which we will use to
judge the frameworks’ qualitative characteristics. Namely, these
criteria are User-Friendliness, Documentation Quality, Project

Features, Community Support, and Maintainance and Update
Frequency. They will all receive a score based on our experience
with the framework ranging from 1 to 5. A higher score
indicates better usability, with a score of 5 given to a framework
that is intuitive to set up and deploy, with comprehensive
and understandable documentation, active community support,
helpful features for model customization, and frequent updates.
Conversely, a score of 1 would indicate significant problems in
usability, such as convoluted setup processes, incompatibility
with specific models, outdated documentation, no community
engagement, or infrequent updates. Through this, a systematic
comparison can be made based on the observations and findings
made throughout this research. By conducting such a detailed
analysis, we can present a comparison that highlights the
strengths and weaknesses of each framework.

C. Workloads

In order to test these frameworks, we had to choose models
and tasks that represent diverse ML applications and tasks
to ensure as comprehensive a comparison as possible. When
choosing the ML tasks, we focused on ones that are relevant
to the field, and are different in nature from each other. We
decided on three important ones, namely: Image Classification,
Automatic Speech Recognition, and Text Summarization.

Image Classification is the task of analyzing a picture and
automatically identifying and labeling the objects or subjects
it contains. There are many well-known benchmarks and
datasets in this field that allow us to compare performance,
which provide widely accepted metrics, making it easier for
comparison. For this task, we chose the ResNet50 [11] model.
It is a variant of a Convolutional Neural Network (CNN),
explicitly designed for image classification tasks. Due to its
popularity in both research and industry, ResNet50 serves as
a dependable standard for assessing the effectiveness of new
algorithms or techniques in image classification.

Automatic Speech Recognition is the task of transforming a
spoken language into written text. This involves analyzing
the sound waves in a voice file and transcribing them to
text. For this task we have chosen the Wav2Vec2 [12] model,
specifically Wav2Vec2-base-960h, which is a model pre-trained
and fine-tuned on 16kHz sampled speech audio taken from
the LibriSpeech [13] dataset. Wav2Vec2 is a good choice
due to its self-supervised learning being able to directly find
useful representations from raw audio inputs and provides a
fair ground to investigate different ML inference frameworks’
capabilities without the influence of feature extraction tech-
niques. Comparatively, other models might require extensive
preprocessing or feature extraction techniques, which adds
complexity and may introduce biases.

Text summarization is a task in NLP that involves shortening
a text in a way that captures the main points or themes of
the original text. It is a sequence-to-sequence task, which
can shed light on how different frameworks handle and
perform with high-dimensional, textual data. The chosen BART
[14] model is designed for several NLP tasks, such as text
generation, translation, and summarization. It functions by first

8Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability



corrupting the text and then learning to reconstruct it, working
bi-directionally. The "-large-CNN" variation is specifically
trained on article and summary pairs from the CNN and Daily
Mail dataset. This model tackles the challenges of language
understanding, context preservation, and summarization in the
broad field of NLP.

It is important to mention that all the model implementations
are taken as-is, directly from the respective model zoos, such
as the Torchvision and the Keras packages. In some cases,
the pre-trained model weights were not available in the model
zoos, in which case we took their official implementations
in Huggingface. Both PyTorch and TensorFlow have different
formats for the pre-trained model weights, meaning they had to
be saved separately. Usefully, NVIDIA Triton Inference Server
serves models from both these frameworks and accepts any
format of model weights that are accepted by the individual
frameworks.

D. Benchmarking Environment

After downloading and saving the model files in their
respective formats, we have to create our load-testing solution.
Locust was our platform of choice for multiple reasons. It
offers distributed load generation, meaning that all the events
and virtual users can scale to multiple processes, and even
multiple processors. This is very important in our case since
we do not want to overload the model serving platform by
running hundreds of virtual users in the same processor, as
this might lead to inconsistent data. We can take advantage
of this since we have plenty of resources due to our use of
High Performance Computing (HPC). All experiments were
conducted on a NVIDIA Quadro RTX 5000.

After choosing our tasks, models, and load-testing method,
we have to consider putting all of these together in systematic,
reproducible experiments. Due to the fact that we are running
all the tests in an HPC environment, we chose Singularity
to containerize our frameworks. In every experiment, one
container serves the model, and another runs our load-tests.
We have separate containers for each framework, where we
bind the respective models when it is time to test them. All
of the containers have their own configuration, which are
easily reproducible due to the Singularity definition files. Every
experiment started with both containers being deployed using
SLURM batch files. To gather data from the experiments, we
ran each test 5 times, saved the results in a csv file, and took
the average of all runs. We chose this to increase the reliability
and reproducibility of the results, minimizing the impact of
outliers and background noise. After this step was complete, we
raised the number of virtual users created by our load-testing
container, and repeated the previous steps, until the experiment
for a single model was complete.

Our chosen method not only increases reproducibility of
our results, but also provides more data for statistical analysis,
allowing us to understand the range and standard deviation
of the results, strengthening the conclusions drawn from the
study.

IV. RESULTS

All in all, the range of the recorded results was small,
with the only exception of this being the Wav2Vec2 model
running on the Triton (TensorFlow) framework (as shown in
Figure 1). This small range shows that our experimental results
were consistent, suggesting that variations in the results can
be attributed to actual performance differences rather than
methodological inconsistencies or random errors.

In Figure 1, we can see the prediction latency for all the
models when testing the framework performance with only
one virtual user (our single-stream test). We have chosen to
show only the graphics of the tests with 1 user, since the
prediction latency is more or less similar for a specific model
and framework combination, no matter the user load. The
reason why the value of the latency increases when raising
the user count is because all submitted requests must wait in
the queue until all others before it have finished. Since the
throughput stays constant, raising the number of incoming
requests (user count) will raise the amount of time that a
request waits in the queue. This phenomenon can easily be
verified by taking a look at the internal logs of the serving
frameworks, which show the precise inference time.

A. ResNet50

For ResNet50, PyTorch consistently outperformed other
frameworks in terms of throughput across all user counts. That
being said, Figure 2 shows that Triton’s (PyTorch) performance
is trailing not too far behind, whereas TensorFlow Serving is
in this case definitively slower.

When considering all of the frameworks, the reported
throughputs for the ResNet50 model are generally good. Apart
from TensorFlow Serving, the fact that the other frameworks’
throughputs are (consistently) around the 100 RPS (Requests
per Second) mark is really good. It shows that they are able
to handle a very large number of requests at the same time
without any slowing down.

Similar to the throughput, PyTorch exhibited a higher
comparative performance when considering latency, followed

Figure 1. Latency results for 1 virtual user (in milliseconds)

9Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability



Figure 2. Throughput of the ResNet50 model (in requests per second)

closely once again by Triton (PyTorch). TensorFlow showed the
highest latency of all the frameworks. The same relationship
between the frameworks can be seen in the test with 100 users,
although the numbers change slightly in user counts 10-75.

These latency results, although they differ from each other,
show that the frameworks’ general performance is excellent.
With Pytorch and Triton, the average processing time for
any request is under one second, even when considering 100
concurrent users. TensorFlow and Triton (TensorFlow) also
offer a worst-case response time of around 1.3 seconds. In a
realistic scenario, even if the system were under the heaviest
load, this would be a very short time to wait for a response. This
can be attributed to the speed and efficiency of the frameworks,
but also to the small size of the model, which will become
evident later, when we examine the other models.

B. Wav2Vec2.0

Earlier on, we imposed the usability constraint that the model
should be taken as-is, from official resources of the frameworks.
Due to this, it was impossible for us to get the base Wav2Vec2
model running in TensorFlow. Therefore, the performance
analysis for this model will not feature the TensorFlow Serving
framework.

When it comes to throughput, we can tell from Figure 3
that Triton and PyTorch displayed comparable performance at
lower user counts, but Triton excelled as the load increased. In
the test with 10 and more virtual users, all three frameworks’
throughputs stay constant, implying that this is caused by the
models themselves, and not by the user count.

Although we are comparing the frameworks to each other,
we should also consider the absolute values of the throughputs.
Triton (TensorFlow) being able to concurrently process 20
requests at all times is no small feat. This is much more signif-
icant when considering the performance of Triton (PyTorch),
which processes almost double the requests. Overall, we can
say that the throughput of the frameworks when observing
them individually is excellent.

An interesting observation is that Triton’s (TensorFlow)
prediction latency is (in comparison) quite high, starting from
the test with only one virtual user. This gets considerably worse
the more users are added to the load test, peaking at almost

Figure 3. Throughput of the Wav2vec2 model (in requests per second)

double that of Triton’s (PyTorch) prediction latency in the test
with 100 concurrent users.

This being said, in the test with one user, all frameworks
show a very small response time for most requests (under
100 ms). This makes it quite applicable to the task of real-
time text-to-speech transcription. However, as the concurrent
users requesting the Automatic Speech Recognition (ASR)
service increase, we can see the latency dramatically increasing.
Although the processing time for each individual request
remains relatively similar, the latency is higher due to their
waiting time in the queue. This shows that under heavy user
load, performance may degrade to the extent that the service
becomes unusable. Although this should be taken with a grain
of salt, since in real scenarios, the platform is not going to
constantly be under the heaviest load.

C. Wav2Vec2.0 truncated

The truncated version of Wav2Vec2 was implemented to
accommodate the limitations of the official TensorFlow imple-
mentation of the Wav2Vec2 model. This workaround involved
truncating (or padding) the inputs to be able to continue our
performance evaluation across all frameworks. This approach
results in incomplete outputs, as the truncated inputs do not
provide the full context necessary for full model predictions,
resulting in sentences seemingly cutting off. Despite these
obstacles, we believe the analysis offers interesting results into
the performances of the different frameworks.

Figure 4 gives an overview of the throughput results for the
Wav2Vec2 truncated model. This model exhibits the same
behavior as was observed in the base Wav2Vec2 model.
The truncated inputs, which are significantly shorter than
the normal Wav2Vec2 model inputs, reinforce the evidence
from the base Wav2Vec2 model that NVIDIA Triton provides
much better performance. As before, we can see here the
throughput plateauing in the tests with more than 10 users.
This time, however, due to the input being significantly shorter,
the absolute value is higher. Interestingly though, we can
observe that TensorFlow performs slightly better than PyTorch
and much better than Triton (TensorFlow), which is quite a
difference from the behavior observed thus far.

When considering the throughput values for each framework
individually, we can see that the values are 1.5 to 2 times

10Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability



TABLE I. FRAMEWORKS’ PERFORMANCE, BASED ON THROUGHPUT AT 100 USERS (IN RPS)

Frameworks PyTorch Torchserve TensorFlow Serving Triton (PyTorch) Triton (TensorFlow)

ResNet50 104.10 40.59 99.74 74.53
Wav2Vec2 35.16 - 41.43 24.51
Wav2Vec2 (truncated) 51.24 69.34 83.14 41.14
BART 1.44 - - -

better than their respective values from the original Wav2Vec2
model. Due to the fact that all the inputs were truncated in
order to fit this model (meaning a large number of them were
incomplete), we believe it is impossible to reach a consensus
of whether these values would be useful for any real-world
application.

D. Issues and Challenges

Before we evaluate the results of our experiments, we have
to bring up the challenges faced throughout. As mentioned
above, TensorFlow could not serve Wav2Vec2 due to constraints
in TensorFlow Hub[15]. The SavedModel’s serving signature
requires an input tensor of size (-1, 50000), meaning
audio sequences must have 50,000 samples. Our attempts
to define a custom input format failed, possibly due to a
specific operation in the TensorFlow graph, specifically in the
convolutional layer in the positional convolutional embedding
(pos_conv_embed) of the Wav2Vec2 encoder.

After multiple failures, we decided to align all frameworks
with the TensorFlow model’s constraints. To match the required
input size, we truncate or pad the audio, which allows cross-
framework performance evaluation but introduces inaccuracies.
This (unusual) truncation process itself should ideally not
be included in the performance metrics, as it is part of
preprocessing rather than model inference. However, since
we are looking for an overall comparison of the entire model
inference pipeline and all the inputs are being truncated in
the same method, we are considering this step part of the
preprocessing.

We faced additional challenges with serving the BART
model, which can be generalized to generative models as
well. Triton requires models to be converted to TorchScript,

Figure 4. Throughput of the Wav2Vec2 Truncated model (in requests per
second)

using PyTorch’s JIT compiler to optimize and interpret them
at runtime. However, the BART model’s .generate()
function has dynamic operations that are difficult to trace
due to variable-length loops and control flows not handled well
by torch.jit.trace. This method of tracing essentially
captures the operations executed over a single forward pass to
create a static graph, hence failing to correctly trace operations
with dynamic control flow.[16]

Serving the BART model in TensorFlow faced similar
challenges due to the .generate() method’s loops and
conditionals that do not translate well to a static graph format.
Issues with TensorFlow Serving arose due to dynamic tensors
created by the method, which conflicts with the XLA[17].
These issues with BART highlight a serious limitation: the static
graph requirements of these frameworks make it hard to handle
models with complex control flows, such as generative models.
We could only serve BART with PyTorch, as TorchServe does
not require JIT compilation and allows custom model handlers
to call the .generate() method during handling.

V. DISCUSSION | EVALUTION

A. Evaluation

Judging from the individual model graphs as well as Figure 1,
we can see that PyTorch is overall the best when measuring
prediction latency. From the same figure we can also tell that
the range of the latency results for all (but one) frameworks
was quite stable, thus proving that the results are accurate.

Regarding the throughput, the results were consistent across
different user counts, with PyTorch and Triton (PyTorch)
competing closely for first place. The throughput performance
in Table I also points to the fact that the performance of
TensorFlow and Triton (TensorFlow) is consistently the worst,
in most cases performing around 0.5x than the best framework.
Nevertheless, Triton Inference Server showed a good capability
to increase the prediction speed for TensorFlow models,
bringing it closer to that of PyTorch.

Since PyTorch consistently shows the lowest latency in the
chosen models, it is ideal for real-time applications. Whereas
PyTorch excels in low latency, Triton (PyTorch) stands out
for high throughput across all models, only trailing behind the
former framework.

On the usability side, scores ranging from 1-5 were assigned
to each serving framework based on our personal experience
and observations. The scores align with the usability criteria
detailed in Section III.

The scores shown in Table II are crucial for adressing the
question of which is the most usable framework. PyTorch

11Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability



emerges as the most usable framework, scoring nearly perfect
across all criteria. Its relatively easy setup, comprehensive
documentation, and features set it apart from the other
frameworks.

B. Discussion

Our results suggest that, although there have been quite
a few differences from the Biano-AI research [18], the best-
performing framework is still PyTorch. Nevertheless, the failure
rate in our research was completely different from the preceding
one. None of the tests we conducted showed any failed requests
across all frameworks and models tested, marking a significant
difference from the previous study.

The individual performance of all frameworks has also
improved considerably with TensorFlow Serving improving
the most. This suggests that ongoing updates and community
contributions are improving its capabilities, even though it still
lags behind PyTorch in some aspects.

Based on the results in Table 1, it is evident that the per-
formance of the ML inference frameworks varies significantly,
with each framework exhibiting strengths and weaknesses in
different areas.

The lower latency PyTorch consistently demonstrates makes
it a highly suitable choice for applications where real-time
predictions are crucial, such as in ASR tasks. Additionally,
PyTorch exhibits high throughput, meaning it can handle a large
number of requests per second without significant performance
degradation. This makes PyTorch ideal for high-demand
applications where both low latency and high throughput are
required.

TensorFlow, on the other hand, generally shows higher
latency compared to PyTorch and Triton (PyTorch). This higher
latency might be a limiting factor for applications that require
immediate responses. However, TensorFlow’s throughput is
competitive in the ASR task, especially in scenarios with high
user counts. This indicates that TensorFlow can still be effective
in applications where throughput is prioritized over latency,
making it a viable option for certain types of high-demand
environments.

Triton’s throughput, particularly with PyTorch models, is the
highest among the frameworks evaluated. This high throughput
makes Triton highly suitable for applications that need to handle
very high demand. Even when using TensorFlow models, Triton
shows improved latency and throughput compared to native
TensorFlow, making it a better choice for TensorFlow-based
applications that require higher performance.

To apply the results, we must also understand the metrics.
Our analysis pertains more to the relationship with the results,
rather than the results proper. Let us consider the use case
where we want to offer AI-as-a-Service. The important aspect
would be to offer the users requiring this service a response
from the model as soon as possible. When considering a real
scenario like this, the serving framework might not be under
load constantly, which means one of the main goals would
be to offer as low of a latency as possible. This is why when
we look at the results, we consider the latency concerning
the test with a single virtual user. This is also why we would
recommend the choice of either PyTorch or Triton (PyTorch),
instead of the (much) slower TensorFlow Serving. However,
for applications where TensorFlow’s ecosystem and tools are
needed, its performance may still be acceptable, especially
given the significant community support and documentation
available.

Alternatively, in a situation where usability is paramount for
users with limited technical expertise, the choice of serving
framework extends beyond performance metrics alone. Ease
of setup, deployment, and maintenance are critical factors
influencing usability. We identify PyTorch as the best option
here, scoring the highest in our usability scores (see Table II).
Its comprehensive documentation and community support
ensure that users can deploy models with minimal issues
and easily troubleshoot problems that arise. It should be
mentioned that Triton also performs well, particularly in serving
models from other frameworks and offering many features for
optimization.

VI. CONCLUSION AND FUTURE WORK

This work has provided a quantitative and qualitative
comparison of various ML inference frameworks. The research
question aimed to identify the most suitable framework for
different use cases based on performance and usability metrics.

The methodology involved a carefully constructed approach
to ensure the reliability of our findings. We selected representa-
tive models for three distinct tasks. Each model was deployed
and tested on the respective frameworks under controlled
conditions. Our experiments included two different types of
load-tests: single-stream and multi-stream. Both performance
and usability were assessed based on clear, concise criteria
that we constructed.

This study’s contribution lies in its in-depth analysis of
the ML serving frameworks, providing valuable insights for
different use cases and applications. By evaluating both

TABLE II. USABILITY SCORES (1-5). HIGHER SCORES INDICATE BETTER USABILITY.

Frameworks PyTorch Torchserve TensorFlow Serving NVIDIA Triton

User-Friendliness 5 3 4
Documentation Quality 5 3 5
Project Features 5 4 5
Community support 4 5 4
Maintenance and Update Frequency 4 5 5

12Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability



performance and usability, this research shows that the choice
of serving framework is as critical as the selection of the
model for ML tasks, proving that the serving framework can
significantly impact the overall effectiveness and efficiency of
the deployed model.

Our study was limited to the default configurations of the
frameworks and models, therefore future work should include
testing the ML models without any constraints, and exploring
which frameworks would be the most effective at running the
different models. Other than that, expanding the scope of future
work to investigate performance across more diverse use cases,
or to include novel frameworks, such as in edge computing,
could provide valuable insights into the field of ML.

In conclusion, this paper has provided a thorough comparison
of TensorFlow Serving, PyTorch TorchServe, and NVIDIA Tri-
ton Inference Server, showcasing their strengths and weaknesses
in different scenarios. The insights gained from this research
can guide users to select the most suitable framework based
on particular requirements.

REFERENCES

[1] PyTorch, Github - pytorch/serve, https://github.com/PyTorch/
serve, Accessed: 2024.11.15.

[2] TensorFlow, Github - tensorflow/serving, https://github.com/
tensorflow/serving/, Accessed: 2024.11.15.

[3] Triton Inference Server, Github - triton-inference-server/server,
https://github.com/triton-inference-server/server/, Accessed:
2024.11.15.

[4] V. J. Reddi et al., “Mlperf inference benchmark”, Computing
Research Repository (CoRR), vol. abs/1911.02549, 2019. arXiv:
1911.02549.

[5] V. J. Reddi et al., “The vision behind mlperf: Understanding ai
inference performance”, IEEE Micro, vol. 41, no. 3, pp. 10–18,
2021. DOI: 10.1109/MM.2021.3066343.

[6] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT:
pre-training of deep bidirectional transformers for language
understanding”, CoRR, vol. abs/1810.04805, 2018. arXiv: 1810.
04805.

[7] A. Vaswani et al., “Attention is all you need”, CoRR,
vol. abs/1706.03762, 2017. arXiv: 1706.03762.

[8] D. Crankshaw et al., “Clipper: A Low-Latency online prediction
serving system”, in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), 2017, p. 615.

[9] J. Chen and X. Ran, “Deep learning with edge computing: A
review”, Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–
1674, 2019. DOI: 10.1109/JPROC.2019.2921977.

[10] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges”, IEEE Internet of Things Journal, vol. 3,
no. 5, pp. 637–638, 2016. DOI: 10.1109/JIOT.2016.2579198.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition”, CoRR, vol. abs/1512.03385, 2015. arXiv:
1512.03385.

[12] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “Wav2vec
2.0: A framework for self-supervised learning of speech
representations”, CoRR, vol. abs/2006.11477, 2020. arXiv:
2006.11477.

[13] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An asr corpus based on public domain audio books”,
in 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2015, pp. 5206–5210. DOI:
10.1109/ICASSP.2015.7178964.

[14] M. Lewis et al., “BART: denoising sequence-to-sequence
pre-training for natural language generation, translation, and
comprehension”, CoRR, vol. abs/1910.13461, 2019. arXiv:
1910.13461.

[15] Kaggle, Wav2vec2 model on tensorflow2, https://www.kaggle.
com/models /kaggle/wav2vec2/ tensorFlow2/960h/1?tfhub-
redirect=true, Accessed: 2024.11.15.

[16] PyTorch, Torch.jit.trace – pytorch 2.4 documentation, https:
/ / pytorch . org / docs / stable / generated / torch . jit . trace . html,
Accessed: 2024.11.15.

[17] OpenXLA Project, Openxla project, https://openxla.org/xla,
Accessed: 2024.11.15.

[18] Biano AI, Quantitative comparison of serving platforms for
neural networks, https://biano-ai.github.io/research/2021/08/
16/quantitative-comparison-of-serving-platforms-for-neural-
networks.html, Accessed: 2024.11.15.

13Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-216-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

https://github.com/PyTorch/serve
https://github.com/PyTorch/serve
https://github.com/tensorflow/serving/
https://github.com/tensorflow/serving/
https://github.com/triton-inference-server/server/
https://arxiv.org/abs/1911.02549
https://doi.org/10.1109/MM.2021.3066343
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1706.03762
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1109/JIOT.2016.2579198
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2006.11477
https://doi.org/10.1109/ICASSP.2015.7178964
https://arxiv.org/abs/1910.13461
https://www.kaggle.com/models/kaggle/wav2vec2/tensorFlow2/960h/1?tfhub-redirect=true
https://www.kaggle.com/models/kaggle/wav2vec2/tensorFlow2/960h/1?tfhub-redirect=true
https://www.kaggle.com/models/kaggle/wav2vec2/tensorFlow2/960h/1?tfhub-redirect=true
https://pytorch.org/docs/stable/generated/torch.jit.trace.html
https://pytorch.org/docs/stable/generated/torch.jit.trace.html
https://openxla.org/xla
https://biano-ai.github.io/research/2021/08/16/quantitative-comparison-of-serving-platforms-for-neural-networks.html
https://biano-ai.github.io/research/2021/08/16/quantitative-comparison-of-serving-platforms-for-neural-networks.html
https://biano-ai.github.io/research/2021/08/16/quantitative-comparison-of-serving-platforms-for-neural-networks.html

	Introduction
	Related work
	Methodology
	Performance
	Usability
	Workloads
	Benchmarking Environment

	Results
	ResNet50
	Wav2Vec2.0
	Wav2Vec2.0 truncated
	Issues and Challenges

	Discussion | Evalution
	Evaluation
	Discussion

	Conclusion and Future Work

