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Abstract—All cryptography currently in use is vulnerable to an 

attacker with enough computational power and most of them 

will become obsolete once quantum computing becomes widely 

available. Continuing the current path seeking for more and 

more complex algorithms cannot guarantee neither secrecy nor 

unbreakability. Increasing the complexity while it keeps being 

vulnerable does not seem to be the right approach. Thinking 

outside the box is not enough. We need to start looking from a 

different perspective for a different path to ensure data privacy 

and secrecy. In this paper, we introduce Poly-Substitution 

encryption and share advances in searching for unconditional 

security instead of complexity and we try to light a path to a 

whole different cryptography based on simplicity and resistant 

not only to quantum attacks but also to what may come later, 

including attackers with infinite computational power.  
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I.  INTRODUCTION 

In this work in progress, we show current achievements in 

the field of cryptography and present some future ideas in this 

area and their potential. No final results or final data is 

available at this time. 

This work updates, continues and expands our paper 

“Seven Steps to a Quantum-Resistant Cipher” presented at 

SECURWARE 2016, The Tenth International Conference on 

Emerging Security Information, Systems and Technologies; 

held in Nice, France – July 24-28, 2016 [1]. 

Since the beginning, cryptography has worked the same 

way; you take the original source of information (the 

plaintext), a key and a fixed substitution and you apply the 

substitution using the plaintext and the key as input to generate 

the cryptogram or ciphertext as its output. Modern 

cryptography keeps working in the exact same way. 

A. Definitions 

To set a common ground and avoid confusions and 

misunderstandings, a minimum set of definitions is required 

and listed here: 

Symbol. A symbol is a representation of something. From 

a single character in any given language like English or an 

ideogram in Chinese to an abstract concept like π representing 

the relation between a circumference and its diameter, which 

is a numeric value with infinite decimal values never 

repeating. 

Alphabet. An alphabet is a finite set of symbols listed in 

a given order. 

Shifted alphabet. It is an alphabet where the symbols are 

shifted place by a given number of positions from the original 

order and the alphabet is considered circular for the shifting 

process, where the first symbol follows the last one and the 

last symbol precedes the first one. 

Mixed or Permuted alphabet. It is an alphabet where the 

order of the symbols is arbitrarily mixed or permuted from the 

original order. 

Word. A word is a finite sequence of symbols in an 

arbitrary order where not all the symbols from the alphabet 

need to be present and any symbol may appear more than 

once. The meaning of a word does not depend on the order of 

the symbols within the alphabet. 

Phrase. A phrase is a finite sequence of separated words. 

Text. A text is a finite sequence of separated phrases. 

Dictionary. A dictionary is a text listing all valid words 

and using phrases to define the meaning of each one. 

Plaintext. The original unencrypted text or message. 

Ciphertext. The result of encrypting the plaintext. 

Unconditionally Secure System. We will use the 

definition given by Whitfield Diffie and Martin E. Hellman 

[2] as they stated that “a system that can resist any 

cryptanalytic attack, no matter how much computation is 

allowed, is called unconditionally secure”. 

B. Caesar Cipher 

Although the first known evidence of some form of 

cryptography is almost four millennia old [3], one of the 

oldest known forms of encryption is the Caesar’s cipher. It 

was a substitution cipher where each character was replaced 

for the one located three places later in alphabetic order and 

considered the alphabet as a round circle as it is shown in 

Figure 1, where ‘A’ follows ‘Z’ and so, ‘X’ would be 

replaced by ‘A’, ‘Y’ would be replaced by ‘B’, ‘Z’ would be 

replaced by ‘C’, ‘A’ would be replaced by ‘D’ and so on.  

To encrypt or cipher a plaintext using Caesar’s cipher, 

each character from the plaintext is replaced by the one 

placed three positions moving clockwise. To decrypt or 

decipher a ciphertext, each character from the ciphertext is 

replaced by the one located three positions moving counter 

clockwise. 

1

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

Figure 1.  Circular positional alphabet and position values. 

The Caesar’s algorithm was just a shift by places process 

and the key used was just three, indicating the algorithm that 

each character in the plaintext needed to be shifted by three 

to generate the cryptogram. All shift by places encryption 

algorithms are generically referred as Caesar ciphers. As in 

this type of cipher each letter is replaced always by the same 

letter, it is called a mono-alphabetic substitution cipher.  

The Caesar’s cipher can be represented using modular 

arithmetic. Modular arithmetic is a system of arithmetic for 

integer numbers where values wrap around upon reaching a 

maximum value.  

To represent Caesar’s cipher using modular arithmetic, 

we start by assigning a numeric value to each letter from the 

alphabet according to their position within such alphabet. In 

the classic English alphabet and its standard alphabetic order, 

to the letter “A” corresponds the value 0 (zero), to the letter 

“B” corresponds the value 1, and so up to the letter “Z” with 

a value of 25. Figure 2 shows a traditional positional alphabet 

and the numeric value associated to each letter of such 

alphabet. 

 

 

 

Figure 2.  Positional Alphabet and Position Values. 

As the maximum value is 25 and the value 26 wraps 

around to zero, the modulus for the Caesar’s cipher will be 

26. 

The substitution of any letter (x) for the one located n 

places to the right can be represented through the 

mathematical formula: 

 

En(x) = (x + n) mod 26   (1) 

 

For the original Caesar’s cipher, the formula to cipher 

would be: 

 

E3(x) = (x + 3) mod 26   (2) 

 

The reverse deciphering process can be represented 

through the mathematical formula: 

Dn(x) = (x - n) mod 26   (3) 

 

For the original Caesar’s cipher, the formula would be: 

 

D3(x) = (x - 3) mod 26   (4) 

 

Although it is considered obsolete and today it can be 

broken without the need of a computer, just with pencil, paper 

and some spare time, it lasted for centuries. 

C. Vigenère Cipher 

In 1553, Italian cryptologyst Giovan Battista Belasso 

described in his book [4] a new cipher later attributed to 

Blaise de Vigenère and which is still known as the Vigenère 

cipher.  

This cipher, instead of using a single key value for the 

substitution, uses a sequence of letters so that instead of 

performing a mono-alphabetic substitution, performs what is 

called a variable or poly alphabetic substitution, where each 

letter may produce a different result. 

Vigenère’s encryption is functionally based on the use of 

the tabula recta, invented by German monk Johannes 

Trithemius in 1508, which is a square table of alphabets 

where each row is made by shifting the row above one 

position to the left. 

To cipher, the plaintext character to be encrypted is 

looked into the table’s first row, the character from the key to 

be used is looked into the table’s first column and the 

ciphertext character will be the one located at the intersection 

of the column corresponding to the plaintext character with 

the row corresponding to the key character. To decipher, the 

key character is looked into the first column and then that row 

is looked for the position of the ciphertext character. Once 

found, the character at the top of this column will be the 

plaintext character.  

Figure 3 shows the Tabula Recta created by Johannes 

Trithemius, which is also called the Vigenère table. 

 

 
Figure 3.  Vigenère Table. 
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The Vigenère cipher can also be represented using 

modular arithmetic, assigning a value to each letter, the same 

way we did with the Caesar’s cipher in Figure 1 and also in 

Figure 2.  

To cipher, for each letter in the plaintext message and the 

corresponding key letter, the alphabet position values are 

added using modular addition module 26 and the resulting 

value will indicate the position of the ciphertext letter 

corresponding to the result. 

Being x the letter in position n within the plaintext message 

we want to cipher and k the corresponding letter from the key 

to be used, the cipher process can be represented using the 

following formula: 

 

E (xn) = (xn + kn) mod 26  (5) 

 

To decipher, the formula would be: 

 

D (xn) = (xn - kn) mod 26  (6) 

 

The Vigenère cipher is known for being easy to be 

understood and implemented and hard to break. It lasted for 

almost four centuries, as we will see when we address its 

vulnerability in Section II.  

D. Vernam Cipher 

About a century ago, Gilbert Vernam invented an 

encryption technique [5] (Patent US 1310719 [6]) that thirty-

something years later Claude Shannon proved [7] it offered 

Perfect Secrecy and properly used will remain impervious to 

any attack no matter how powerful the attacker may be, 

including quantum computing and even an attacker with 

infinite computational power. It is not used because it requires 

the key to have the same length as the plaintext, to be truly 

random and not to be reused. Those constraints were 

considered and are still considered strong enough to prevent 

its usage. 

As today’s information is always measured in bytes or 

multiples of byte sizes (Kilobytes, Megabytes, Gigabytes, 

Terabytes, etc.) for all the explanations and examples here, the 

byte as the basic unit of information will be used. Considering 

the byte as just a group of eight bits, being a bit a binary digit 

that can either have a value of zero (0) or one (1). 

A single byte can represent 256 different values, from 0 to 

255 in decimal notation, from 00 to FF in hexadecimal 

notation and from 00000000 to 11111111 in binary format 

representation. 

For a byte, the Vernam cipher will perform exactly the 

same way as for a single bit, it will use the XOR function 

between the plaintext byte and the key byte. The behavior of 

the function is simple, it will compare each bit within the byte 

from the plaintext to the bit in the same position in the byte 

from the key and will generate a bit with a value of zero if both 

bits have the same value and one if they are different. This 

XOR function will return the cryptogram or ciphertext byte as 

its result. For a specific plaintext byte value, each of the 256 

possible values of the key byte will produce a different 

ciphertext byte value. 

If you get the cryptogram or ciphertext byte and do not 

know the value of the key byte, every single possible value of 

the key byte has the exact same probability of being the right 

one and you have no way to decide which one of them is the 

right one and thus, which of the 256 possible values of the 

plaintext byte is the right one. 

There is no possible cryptanalysis of this process and a 

brute force attack will end up with the plaintext mixed with a 

huge number of false positives (apparently valid results that 

are not the original plaintext) with no way to tell which one is 

the original one. 

Shannon proved that even knowing that the plaintext is 

just text, any possible text with the same length has the exact 

same probability of being the original plaintext [8]. 

Since then, algorithms have grown in complexity looking 

to enhance the security of the process and to make harder to 

recover the plaintext without knowing the key. 

But what has not changed is the logic, i.e., the way it is 

done. Cryptography is still using an algorithm with a fixed set 

of instructions that will use the plaintext and the key as input 

to produce the ciphertext. The same plaintext and the same 

key will always produce the same cryptogram. 

There are two main attacks to try to get the plaintext 

without knowing the key: Cryptanalysis (analyze the process 

trying to find weaknesses or shortcuts that may allow to 

retrieve the original information without having the key) and 

Brute Force (try all possible keys). 

Modern cryptography is not unbreakable and bases its 

security on two premises: 

1) Cryptanalysis is not possible or too complex to be 

achieved. 

2) Brute Force attacks require too much time and 

computational power. 

In this paper, we will prove that Caesar and Vernam 

ciphers are just reduced or limited versions of the Vigenère 

cipher; we will introduce our proposed poly-substitution 

encryption technique and the seven steps to build 

cryptographic algorithms based on it and also prove that the 

Vigenère cipher is a mono substitution cipher and a reduced 

or limited version of our proposed encryption.  

The rest of this paper is organized as follows. Section II 

will analyze the Vigenère cipher and prove Caesar and 

Vernam ciphers are just limited or reduced versions of it and 

will also explain why we consider the Vigenère cipher as a 

poly alphabetic mono substitution cipher. Section III 

describes data persistence, cryptography state of the art and 

their vulnerability to quantum attacks. Section IV introduces 

poly-substitution encryption, its theory, basis, definitions and 

how it works. Section V describes each of the seven steps we 

defined to build a poly-substitution cipher based on our 

proposed encryption technique. Section VI analyzes a cipher 

constructed using our proposed encryption and presents an 

example of it and its results. Section VII compares this sample 
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cipher against Vigenère, Vernam and other current standards. 

Section VIII analyzes all possible attacks to our proposed 

encryption. Section IX describes how partial data universes 

are handled by symmetric and public key cryptography and 

their limitations to offer Format Preserving Encryption (FPE); 

it will also show how our proposed technique handles them 

better. Section X describes how our proposed poly-

substitution encryption can offer and provide unconditional 

security. Section XI addresses practical applicability. In 

Section XII we address key and message distribution taking 

advantage of the use of internet. Section XIII describes the 

conclusions and Section XIV describes the future work and 

goals. 

II. THEY ARE ALL VIGENÈRE 

A. Caesar is Vigenère 

It is trivial to prove that any generic Caesar cipher is a 

reduced or limited version of the Vigenère cipher, where the 

key is just one symbol or character long. 

B. Vernam is Vigenère 

At the level of one bit, modular addition module 2, 

modular subtraction module 2 and XOR, all behave the same 

way and are in fact the exact same operation as it is shown in 

Figure 4. 

 

 
Figure 4.  One-Bit Binary Operations. 

Based on that, it is trivial to prove that the Vernam cipher 

is a reduced or limited version of the Vigenère cipher, where 

the alphabet has only two different symbols or characters. 

C. Vulnerability of the Vigenère Cipher 

In 1863, Friedrich Wilhelm Kasiski published a book about 

cryptography [9], where he described a method for 

cryptanalysis or cryptographic attack based on the existence 

of repeated sequences within the ciphertext. He assumed 

those repetitions were caused by a key shorter than the 

message and that they represented repeated sequences within 

the plaintext encrypted using the same portion of the key. 

The Kasiski method argued that the distance between 

repeated sequences was a multiple of the length of the key. 

Starting from that, searched for multiple repeated sequences, 

measured the distances between repetitions and calculated 

the greatest common divisor to find a value that will be the 

length of the key or a multiple of it. Once the length of the 

key is obtained, the ciphertext is divided into blocks of that 

size and sub-cryptograms are formed by taking the first 

character of each block, then the second one and so on. Each 

one of those sub-cryptograms will have been encrypted using 

the same symbol or letter and so each one of them will be a 

mono-alphabetic substitution and so we would be able to 

perform a simple statistical frequency analysis attack. 

The Kasiski statistical frequency analysis attack is based 

on two pillars: 

 The known statistical distribution of the letters in 

a regular text. 

 The known distance between the letters from the 

alphabet. 

The most common letters in English are letter “E”, letter 

“T” and letter “A”, in that order; and is known that letter “E” 

is the fifth letter of the alphabet and its value is 4, the letter 

“T” is in position 19, 15 positions to the right of letter “E”, 

and letter “A” is in position 0, 7 positions to the right of letter 

“T”.  

The Kasiski statistical frequency analysis attack will search 

in each sub-cryptogram the frequency distribution of the 

encrypted letters, focusing on those with highest frequencies 

(those who should correspond to the letters “E”, “T” and “A”) 

and that also comply with the alphabet structure and the 

distance between the most common letters within the 

alphabet. As letter “E” is in position 4, the following formula 

is true: 

  

Key = cipher letter – E = cipher letter - 4  (7) 

 

So, the relative position of letter “E” on each sub-

cryptogram will form the key ciphered through a substitution 

cipher like Caesar’s with a displacement of 4 positions to the 

right. From it, the key could be retrieved by a simple Caesar 

decryption using a displacement value of 4. 

Statistical analysis is also used to search for repeated n-

grams (known sequences of letters, “e.g.”, bigrams “TH”, 

“HE”, “IN”; trigrams “THE”, “AND”, and so on). 

The use of a mixed or permuted alphabet only adds some 

extra work but it is still vulnerable. 

Christopher Swenson, on his book [10], explains the 

Index of Coincidence (IC) defined by William F. Friedman 

as a measure of how evenly distributed the character 

sequences are within the frequency distribution table.  

He considered "The Complete Works of William 

Shakespeare" as an adequate representation of the English 

language and calculated its IC to be approximately 0.0639. 

He defines theoretically perfect IC as if all characters 

occurred the exact same number of times so that none was 

more likely than any other to be repeated, so, for an alphabet 

of 26 characters, he calculated it to be 1/26, which is 

approximately 0.03846. 

IC can also be used with bigrams (sets of two characters) 

and trigrams (sets of three characters) to measure how evenly 

distributed they are within their corresponding distribution 

tables. 

The theoretically perfect IC for bigrams is approximately 

0.0015 (1/26*26) and for trigrams is approximately 0.00006 

(1/26*26*26). 
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In English, a maximum of 676 bigrams and 17,576 

trigrams can exist, although not every one of them may be 

valid. 

The three most common bigrams HE, TH and IN have an 

IC of about 0.035, 0.034 and 0.0189 respectively. The most 

common trigram THE, has an IC of about 0.022. 

William F. Friedman [11] presents a practical example 

using IC to break a poly alphabetic mono substitution 

encryption when the key has been reused. 

The conditions set by Shannon to the Vernam cipher for 

it to offer unconditional security (The key should be as long 

as the plaintext, it should be random and it should not be used 

again) makes it a One-Time-Pad and the same applies to the 

Vigenère cipher. A plaintext encrypted using the Vigenère 

cipher using a random key with the same length as the 

plaintext that is not used again offers the same unconditional 

security defined by Shannon. 

D. Mono Substitution 

Although being the Vigenère cipher a poly alphabetic one 

and considering it can be used in reverse and use the 

decryption process to encrypt and the encryption process to 

retrieve the original plaintext, the substitution used along the 

encryption or decryption processes is always the same on 

each instance. 

Each symbol or character is processed using the exact same 

substitution, modular addition for the encryption and modular 

subtraction for the decryption. 

That is the reason why we call the Vigenère cipher a poly 

alphabetic mono substitution cipher using mono substitution 

encryption. 

III. STATE OF THE ART 

A. Information and Data Persistance 

Something that is not directly related to cryptography but 

needs to be considered together because it has a direct impact 

on the information life cycle is the persistence of any data or 

information digitally transmitted or stored. Any information 

digitally transmitted or stored, persists.  

Transmitted data leaves traces and copies between the 

source and the destination. Even encrypted information, 

transmitted through secure connections travels from router to 

router, from server to server from the point of origin to the 

destination point, and it can be copied in travel without being 

noticed. 

Stored data also leaves copies behind. To totally delete 

specific data is very but very hard and cannot be assured nor 

guaranteed. Computer forensic tools are capable of retrieving 

information believed to have been deleted.  

Automatic backups, storage cache, redundant storage and 

the cloud also help to the persistence of the information. 

Two simple and clear examples of information persistence 

are: 

 A picture uploaded into a social network remains 

there even after the uploaders believe they deleted them. 

 Data from no longer available internet servers or 

storages can still be found in web search engines’ caches. 

B. Cryptography 

According to the European Telecommunications Standards 

Institute (ETSI), “Without quantum-safe encryption, 

everything that has been transmitted, or will ever be 

transmitted, over a network is vulnerable to eavesdropping 

and public disclosure” [12]. 

But the privacy concerns go beyond that, once a hacker 

breaches the security of a system or organization, the 

information stored there is usually not encrypted. Wikileaks, 

the Panama Papers, the NSA breach and the World Anti-

Doping Agency (WADA) medical records disclosure are 

clear examples of that. 

Encrypting sensitive information within a database is not 

an easy or low cost task and once a hacker has gone beyond 

the system security, everything there is at hand and readable. 

We will come back this topic later when we address Format 

Preserving Encryption related to partial data universes in 

Section IX. 

Discussion and comparison between symmetric and public 

key cryptography currently in use becomes irrelevant once 

one understands that none of them is unbreakable and that 

anything encrypted with any of them can be read if the 

attacker has enough computational power. Something that 

will happen sooner than later. 

Public key algorithms such as RSA (Rivest, Shamir and 

Adleman), ECC (Elliptic Curve Cryptography), Diffie-

Hellman and DSA (Digital Signature Algorithm) will be 

easily broken by quantum computers using Shor’s algorithms 

[13] and so, they are deemed to be insecure to quantum 

computing. 

Symmetric algorithms as AES (Advanced Encryption 

Standard) [14] or Blowfish [15] are believed (but not proven) 

to be resilient against quantum attacks by doubling the key 

length.  

Cecilia Boschini, from IBM’s Zurich Research 

Laboratory, was overwhelming during her presentation in 

IBM’s annual conference Think 2018, when she emphatically 

affirmed that “The security our current cryptography is based, 

are solvable with a quantum computer”.  

During his talk at RSA 2018 Conference held in San 

Francisco, CA, USA, Konstantinos Karagiannis, CTO of 

Security Consulting, BT Americas, estimated that symmetric 

algorithms (DES, AES) with 512-bit key lengths will fall 

first, when the number of qubits surpasses 100. 

According to Sergey Lurye from Kaspersky's Lab blog 

[16], "We may forecast that symmetric encryption with 512-

bit keys might finally get breached by a hypothetical 144-

qubit Bristlecone (Google’s latest quantum processor) 

descendant sometime in late 2019." 

Even theoretical Quantum Key Distribution (QKD) has 

been proved vulnerable to eavesdropping. 

Any cipher that bases its strength on its complexity and in 

the assumption of the unavailability of the computational 
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power required for an attack, will eventually be broken and 

persisting on this way will only provide a false sense of 

security that will last briefly.  

C. Post-Quantum Cryptography 

Post-Quantum Cryptography is still theoretical and far 

from being available. 

Johannes A. Buchmann, Denis Butin, Florian Göpfert and 

Albrecht Petzoldt from the Technische Universität Darmstadt 

in their paper “Post-Quantum Cryptography: State of the Art” 

[17] ask and answer the question. How far is post-quantum 

cryptography? Their answer; “There are many promising 

proposals some of which are rather close to becoming 

practical”. 

Some theoretical and practical advances in Quantum 

Cryptography had already been proved to be vulnerable even 

to current non-quantum computers. 

D. Vulnerability 

By definition, all the cryptography in use nowadays is 

vulnerable to an attacker with enough computational power. 

The matter is not if they can be broken but when will this 

happen. 

Cryptography and cryptographers have been racing the Red 

Queen’s race for a very long time. Like Alice in Lewis 

Carrol’s “Through the Looking-Glass” [18], cryptographers 

have been taking all the running they can do, just to keep in 

the same place. 

All used encryption algorithms are just temporary 

solutions that will eventually be rendered obsolete. A clear 

example of this is the Data Encryption Standard (DES) [19], 

it became a standard in 1977 and was broken by brute force 

in 1999. The Advanced Encryption Standard (AES) became 

a standard in 2001 and is already 17 years old. 

All this because, with the only exception of the Vigenère 

and Vernam ciphers properly used, none of the currently used 

encryption solutions can answer yes to the simple question: 

Can this cipher resist an attacker with infinite computational 

power? 

It is not sure whether any of the new ciphers and 

algorithms being developed, including those considered to be 

post-quantum ones, can answer yes to that same question or 

not. 

Cryptographers will continue running the Red Queen’s 

race as far as they continue to design complex but breakable 

algorithms offering only conditional and temporary security 

that will eventually be rendered obsolete. 

E. Quantum Computingy 

Quantum Computing is computing using quantum 

mechanics and is a field that was initiated by the work of Paul 

Benioff [20] and Yuri Manin [21] in 1980, Richard 

Feynmann [22] in 1982 and David Deutsch [23] in 1985. 

Current digital computers use data encoded into binary digits 

or bits, which can have only one value or state (0 or 1). A 

Quantum Bit or Qubit can have a value of 0, or 1 or 0 and 1, 

all at the same time.  

In May 2016, International Business Machines (IBM) 

publicly announced they will grant access through their cloud 

to one of their 5 qubit quantum computers for everyone to run 

programs or just play with it, as a way to motivate, encourage 

and accelerate innovation. 

In October 2017, Edwin Pednault, John A. Gunnels, 

Giacomo Nannicini, Lior Horesh, Thomas Magerlein, Edgar 

Solomonik, and Robert Wisnieff presented their paper 

“Breaking the 49-Qubit Barrier in the Simulation of Quantum 

Circuits” [24]. There they present calculations that were 

previously thought to be impossible due to impracticable 

memory requirements. 

In November 2017, the MIT Technology Review informed 

and commented IBM’s announcement of a 50-qubit 

commercial quantum computer [25]. 

In March 2018, Google introduced their new Bristlecone 

quantum processor with 72 qubits. 

They are not the only ones on the field. Most governments 

and cutting edge technological companies and universities 

around the world, are dedicating time and effort in researching 

and investing in the development, design and manufacturing 

of quantum computers. 

On May 2016, the European Commission announced €1 

billion quantum technologies flagship project for the next ten 

years with the objective to reinforce European scientific 

leadership in quantum research and in quantum technologies. 

Canadian company D-Wave [26] is already manufacturing 

quantum computers with two thousand qubit processors (the 

D-Wave 2000QTM System) and they continue improving, 

growing and expanding their processors. 

According to CBC News, big names in the worlds of big 

brains and cutting edge technology like Google, NASA, 

Lockheed Martin and Los Alamos National Laboratory, 

among others, are investing big money into this company. 

The Los Alamos National Laboratory’s magazine 1663, on 

its July 2016 edition [27], published a very interesting article 

titled “Not Magic… Quantum”, telling about a nascent 

commercial quantum computer that arrived to their facilities 

and may solve certain problems with such astonishing speed 

that it would be like pulling answers out of a hat. 

Bjoern Lekitsch, Sebastian Weidt, Austin G. Fowler, 

Klaus Mølmer, Simon J. Devitt, Christof Wunderlich and 

Winfried K. Hensinger published the blueprint for a 

microwave trapped ion quantum computer in Science 

Advances magazine in February 2017 [28]. 

What we hope to achieve is to provide a technique to create 

ciphers offering perfect unconditional security against 

eavesdroppers no matter how arbitrarily powerful they may 

be or become in the future and without the constraints the 

Vigenère and Vernam ciphers have.  

We want to provide a technique to create ciphers with 

perfect unconditional security against arbitrarily powerful 

eavesdroppers even if they have infinite computational 

power. 

Something none of the currently in use standards and 

solutions can offer. 
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IV. POLY-SUBSTITUTION ENCRYPTION 

A. Multiple Substitutions as Part of the Encryption 

In mono substitution encryption, the ciphertext is usually 
referred as the result of applying the key to the plaintext and 
this is not exact, which leads us to our first definition: 

Definition 1. In substitution encryption, each ciphertext 
character is the result of applying the defined substitution and 
the corresponding key character’s positional value to the 
plaintext character. 

Based on that, we define the ciphertext as follows: 
Definition 2. The ciphertext is the result of applying a 

sequence of pairs formed by the substitution and the key value 
to each symbol or character from the plaintext until the 
plaintext is exhausted. 

It is crucial to understand that the ciphertext is not just the 
result of applying the key to the plaintext but the result of 
applying the sequence of pairs formed by each substitution 
and each key value used. 

When the key is shorter than the plaintext, it wraps up at 
the end starts to repeat. In fact, in mono substitution 
encryption what starts to repeat is the same sequence of pairs 
formed by the substitution and the key value. 

B. Multiple substitutions 

Vigenère used modular addition as the substitution for 
encrypting and modular subtraction as the substitution for 
decrypting and those two substitutions are different, as the 
following example shows: 

 

(17 + 23) mod 26 ≠ (17 – 23) mod 26  (8) 

 

(17 + 23) mod 26 = 14     (9) 

 

  (17 – 23) mod 26 = 20   (10) 

 
We used module 26 because Vigenère used an alphabet 

with 26 different symbols or characters, but an alphabet may 
include any number of symbols or characters with a minimum 
of two. 

From now on, we will consider a generic alphabet called 
A that contains a number equal to a of different symbols or 
characters, being a ≥ 2.  

Formulas (5) and (6) will be generically expressed as:  
 

E (xn) = (xn + kn) mod a   (11) 

 

D (xn) = (xn - kn) mod a   (12) 

 
Being v and v’ two integer variables with values from 0 to 

a–1, the following formulas are always true: 
 

(xn + kn + v) mod a = (xn + kn + v’) mod a,   for v = v’     (13) 

 

(xn + kn + v) mod a ≠ (xn + kn + v’) mod a,   for v ≠ v’     (14) 
We will represent Vigenère’s encryption through the 

mathematical formula: 

 

E (xn) = (xn + kn + v) mod a  (15) 

 
Vigenère’s decryption through the mathematical formula: 

 

D (xn) = (xn - kn - v) mod a  (16) 

 
So far, we have as many different encryption and 

decryption substitutions as symbols or characters are present 
in the alphabet, and as any decryption substitution can be used 
for encryption, we have in fact twice as many substitutions as 
symbols or characters in the alphabet. 

If we take into consideration another mono substitution 
cipher as it is the Beaufort cipher, created by Sir Francis 
Beaufort, we can get another set of substitutions.  

The Beaufort cipher, created by Sir Francis Beaufort, is a 
variation of the Vigenère cipher where, plaintext is subtracted 
from the key in order to obtain the ciphertext.  

The logic is similar, only a different substitution is used, 
as it is shown in the following formula:  

 

  E (xn) = (kn - xn) mod a   (17) 

 
Applying what we have seen, such formula will become 

the following one: 
 

  E (xn) = (kn - xn + v) mod a   (18) 

 
The main difference here is that while in the Beaufort 

cipher the encryption and decryption substitution is the same 
(the plaintext is subtracted from the key to obtain the 
ciphertext and the ciphertext is subtracted from the key to 
recover the original plaintext), for v ≠ 0, the formula for the 
decryption substitution will be: 
 

  D (xn) = (kn - xn - v) mod a   (19) 

 
For v = 0, the encryption and decryption substitutions are 

both the same. 
This proves the existence of far more available encryption 

substitutions than symbols or characters in any given alphabet. 

C. Multiple Alphabets 

The use of more than one alphabet is possible, each with 
its own set of substitutions and the substitution to be used 
selected according to the alphabet the plaintext belongs to. 

Suppose there are two alphabets, one with the letters A…Z 
and another one with the numbers 0…9, that way the 
encryption process may allow to encrypt letters into letters and 
numbers into numbers in a single pass. 

We will come back to this later in Section IX. 

D. Fixed Substitution Sequences 

Arbitrary Sequences of substitutions can be built up with 
any given length, using any available substitution and placing 
them in any order. Each substitution may be used more than 
once and not all of them require to be used. 
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As with the key, the substitution sequence wraps up at the 
end when the plaintext is longer than the sequence. 

If the key and the substitution sequence have the same 
length, then the same sequence of pairs formed by the 
substitution and the key value will repeat and that will make 
the whole encryption process vulnerable to a statistical 
analysis attack. 

But, if the key and the substitution sequence have different 
lengths, when the key starts to repeat, the substitution 
sequence will not be the same and so there will be no sequence 
pair of substitution and key value at least until a position is 
reached within the plaintext equal to the less common multiple 
of the lengths of the sequence and the key. 

If the less common multiple of the lengths of the 
substitution sequence and the key is larger than the length of 
the plaintext, unconditional security will be achieved, but only 
on such case. 

E. Variable Substitution Sequences 

The best and simplest way to get a variable substitution 
sequence is to get a fixed one and make it variable. 

When hardware is constructed or software is written, the 
substitutions to be used are listed and located in a given order. 

A list of n items can be ordered into n! (n! = 1x2x…xn) 
different orders and two different orders will produce two 
different ciphers. 

Once the list is built up, the order they are listed in will not 
change, so, to make it variable we need an additional 
parameter. 

There are two types of parameters we may use for that. 

 External Substitution Sequence 
Instead of hardcoding the substitution sequence 
within the encryption process, it can be an 
external parameter. Doing that will allow the 
encryption process to use a different substitution 
sequence on each run. Each item on this 
substitution sequence will indicate which 
substitution will be used on each instance. 

 Order Changing Parameter 
Suppose there are n different substitutions used 
and listed in a given order and they are numbered 
from 0 to n-1. That means there are n! different 
possible orders of the numbers from 0 to n-1. One 
of those permutations is loaded into an array and 
used as an external parameter. Each element of 
such array will point to a specific substitution 
from the list. 

Using the same external substitution sequence with a 
different order changing parameter will produce a different 
substitution sequence to be used. 

If every time the key and/or the substitution sequence is 
exhausted a new order changing parameter is used, it may be 
guaranteed that there will be no sequence pairs of substitution 
and key value repetition no matter how long the plaintext may 
be. We will come back to this later. 

F. Variable Processing Blocks 

With the substitutions we have seen so far, what any 
attacker will know for sure is that the first character in the 

ciphertext corresponds to the first character in the plaintext 
and so on up to the last character. 

This can be avoided in a simple and elegant way. Another 
external parameter is used to specify a block size used to 
process the plaintext. As a mode of example, the block size 
parameter is used to define how many symbols or characters 
will be read at once from the plaintext and then processed in 
reverse order, from the last symbol or character to the first 
within the defined block. If the remainder of the plaintext is 
shorter than the last block, the block size is adjusted 
accordingly. 

This external parameter can be a single block size or a list 
of different block sizes to be used along the encryption 
process. 

Even if an attacker gets the encryption process, it provides 
no information about the external parameters used and so 
there is no way to match the plaintext symbol or character 
order with the ciphertext symbol or character order.  

G. Poly Substitution Encryption 

Now we can define what we understand for poly 
substitution encryption and decryption: 

Definition 3. Poly Substitution Encryption is encrypting 
in such a way two or more different substitutions are used in 
sequence among the key to produce a ciphertext from the 
plaintext. 

Definition 4. Poly Substitution Decryption is decrypting 
in such a way two or more different substitutions are used in 
sequence among the key to retrieve the original plaintext form 
the ciphertext. 

V. THE SEVEN STEPS 

We defined the process to build up ciphers based on our 

technique as a step by step process comprised of 7 steps.  

A. Step One (Use Multiple Encryption Substitutions) 

While Vigenère used modular addition module 26 as the 
substitution and Vernam used a single function (XOR) as the 
substitution. Our approach will use many of them. Each 
substitution will take a plaintext character and a key character 
and will return a ciphertext character and for each of the 
possible key character values will return a different ciphertext 
character. 

Using multiple substitutions provides additional security 
because, if an attacker has a cryptogram or ciphertext 
character or symbol, not only the key character used is 
unknown, but also the substitution used. 

For a given plaintext byte character, any valid substitution 
should return different results for each possible value of the 
key character.  

When the plaintext’s length is larger than one character we 
can use one substitution to process the first byte, the same or 
a different one to process the second character and so on. That 
leads us to the following step. 

B. Step Two (Use a Third Parameter) 

The first two parameters will be the plaintext and the key. 
A third parameter will be used to indicate which 

substitution to use on each instance. 
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A value from this third parameter will indicate which one 
of the many available substitutions will be used to process a 
character or symbol from the plaintext and one from the key. 

Let us say we decide to use the same number of different 
substitutions from all that can be created as the number of 
symbols or characters in the used alphabet. In such case, we 
will only need one character from this third parameter to 
indicate which of those substitutions will be used for these 
specific plaintext and key characters. So far, the third 
parameter character value x will trigger substitution z. How 
do we know which of the available substitutions is substitution 
z, is explained in the next step. 

C. Step Three (Order of the Substitutions) 

When we have many different substitutions, we need to 
identify them somehow and make a list of them. 

This list is what will be used to decide which substitution 
will be triggered by which value from the third parameter. 

As previously indicated, this list is not unique and a 
different substitution order will produce a different ciphertext 
for the same plaintext and key. 

Now, an attacker not only needs to try every possible key, 
also needs to try every possible third parameter and guess 
which substitution is triggered by each possible value of the 
third parameter, assuming the selected substitution order is 
hardcoded within the process. 

So far, parameter byte value x will always trigger 
substitution z, unless we can make parameter value x trigger 
substitution w in a different run. 

The order of the substitutions can be changed, as explained 
in the next step. 

D. Step Four (Changing the Order of the Substitutions) 

How do we make third parameter byte value x to trigger 

a substitution different from substitution z? 

The solution is both simple and elegant. 

We add a fourth parameter. One of those n! possible 

orders of the numbers from 0 to n-1 is loaded into a n element 

array, and value x is used to point to the array’s element 

whose value will be used to trigger the substitution. 

A different fourth parameter will provide a different 

substitution order. 

Now, third parameter character value x will trigger a 

substitution depending on the xth element of the fourth 

parameter. 

So far, any attacker would know that the first byte from 

the ciphertext corresponds to the first byte of the plaintext, 

the second byte from the ciphertext corresponds to the second 

byte of the plaintext, and so on. 

The next step will show how to change that. 

E. Step Five (Block Processing) 

Let us take a block of characters of a given length from 

the plaintext and process it in reverse order, starting from the 

last symbol or character in the block, processing it and saving 

it as the first character in the ciphertext block. Then the 

previous to the last to be the second character in the ciphertext 

block and so on, until we end processing the block by 

processing its first character and then continue with the next 

block. 

The last block may be shorter but it is equally processed 

from last character to first one as any other block without any 

need of any padding or additional dummy information to be 

added. 

Now, unless the attacker knows the exact length of the 

block used, there is no way to know from where to start to 

retrieve from the ciphertext to obtain the original plaintext in 

the original order. 

F. Step Six (Key Length and Key Repetitions) 

So far, no mention has been made of the key length.  

When encrypting, the process uses two items with the 

plaintext: the key and the encryption substitution. So, for each 

portion of the plaintext, a key-substitution pair is used. This 

is usually ignored due to the encryption substitution being 

always the same. 

Vigenère’s and Vernam’s ciphers require the key to have 

at least the same length as the plaintext for them to offer 

unconditional security. If the key is shorter, the process starts 

to repeat the same key-substitution pair sequence and this 

weakens its security and makes a statistical distribution 

analysis attack feasible. 

If we use a key shorter than the plaintext it will wrap up 

at the end, but unless the key and the third parameter both 

have the exact same length, there will be no same key-

substitution pair sequence repetitions until we reach a 

position within the plaintext equal to the least common 

multiple of the lengths of both the key and the third 

parameter. As it may eventually happen the whole process 

would be vulnerable unless we find a way to avoid 

repetitions. 

The solution is, once again, simple and elegant. When the 

end of the key is reached (or the end of the third parameter or 

the less common multiple of both lengths, or at any point 

between them), before starting to repeat it, the process 

changes the substitution order by modifying the elements in 

the array explained in step four.  

One way to do it is to use the last used substitution and 

last used plaintext or ciphertext symbol or character and 

apply that transformation to each element of the array using 

the element’s content and the plaintext character as input and 

replacing the content of the element with the result, thus 

obtaining a different permutation of the array elements. 

Each time this happens, the change process behaves 

differently and a different permutation is obtained. Now, 

even if the key and the third parameter have the exact same 

length and they start to repeat in the exact same order, the 

sequence of key-substitution pairs triggered will not be the 

same and so no repetitions will occur. The same third 

parameter value will point to the same array element but a 

different substitution will then be triggered because the 

content of the array element will have changed and so the 

second parameter-substitution pair sequence will be totally 

different.  
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G. Step Seven (Make Lengths Variable) 

Current encryption standards use fixed length blocks and 

fixed length keys (they may offer different key sizes but with 

very limited pre-defined fixed sizes).  

Our solution allows for user selected lengths for the key, 

the third parameter and the processing block (or blocks). Two 

successive encryptions may use not only different keys but 

also the lengths of both keys may be different. The same 

applies to the third parameter and also the processing block 

size may be different. The key length may go from a single 

character to any length, even the same length of the plaintext 

or longer. The third parameter may go from a single character 

to any length, even the same length of the plaintext or longer. 

The processing block size may go from a single character to 

any length up to the length of the plaintext and is limited only 

by the maximum size allowed by the system where the 

encryption is implemented. It is also possible to process 

consecutive blocks of different sizes by using a sequence of 

values instead of a fixed one, indicating the individual size 

for each individual block to be processed. When the last 

processing size list element is exhausted, it wraps up and 

starts over from the beginning. When building up an 

application, different groups and number of substitutions may 

be used to create personalized non-standard versions. 

VI. BUILDING UP A POLY SUBSTITUTION CIPHER 

A. A cipher complying with these seven steps 

In order to be able to make comparisons with known 
standards, we decided to use a standard alphabet of 26 letters 
(A…Z). 

We built up a cipher accordingly and complying with these 
seven steps and it uses five parameters: 

 The plaintext to encrypt 
The plaintext is just a sequence of characters of 
any length. 

 The key to be used. 
This key is just a sequence of characters of any 
length and can be longer, equal in length or 
shorter than the plaintext. 

 A third parameter defining which substitution to 
use on each instance. 
This third parameter is a sequence of characters 
of any length and there is no required relation 
between its length and the lengths of the plaintext 
or the key. 

 An initial substitution order. 
This is a sequence of values that will be used to 
define an initial order for the encryption 
substitutions to be used. 

 A processing block size. 
This will define the number of characters to be 
read at once from the plaintext and processed in 
reverse order (from the last character to the first 
one) to generate the ciphertext. A value of 1 (one) 
will make the plaintext to be processed straight 
from the first character to the last one. 

This can be a fixed value to process same size 
blocks (all but maybe the last one) or a sequence 
of values to indicate the size of each individual 
block to be processed. 

Depending on how the cipher is programmed and 

implemented, it can allow the user to manually type every 

parameter or to select or chose them. 

The encryption process will work as follows: 

1. The user may select or enter the plaintext to 

process, the key, the third parameter, the initial 

substitution order and the processing block size 

or sizes.  

2. The process loads the initial substitution order 

into an array with the same number of elements 

as substitutions to be used.  

3. If the remaining of the plaintext is shorter than 

the processing block, the processing block size 

is adjusted accordingly. 

4. The process reads a processing block from the 

plaintext. If the plaintext has been exhausted, 

the process ends. 

5. The process takes the last character from the 

processing block. 

6. The process takes a character from the key. 

If the key has been exhausted, reorder the initial 

substitution order array elements and read the 

first key byte again. 

7. The process takes a character from the third 

parameter. 

If the third parameter has been exhausted, start 

over from its first character. 

8. The process uses the character from the third 

parameter to point to an element from the 

substitution order array and uses its value to 

trigger an encryption substitution passing the 

plaintext and key characters as parameters. 

9. The substitution triggered returns a ciphertext 

character that is written to the ciphertext output. 

10. The process takes the previous character from 

the processing block.  

If the processing block has been exhausted, 

jump to step 3. 

11. Jump to step 5. 
 
The decryption process will work the exact same way, 

using the ciphertext instead of the plaintext and reversing the 
encryption process, using the same key, and same remaining 
parameters, using the reverse substitution on each instance.  

B. Typical Distribution of Letters in English Language 

There is not an unique and generic distribution of letters in 
the English language and the use of field-related jargons may 
impact the results. (i.e., a statistical analysis of medical books 
may provide a different result from financial or sports books). 
Despite those small differences, the results are mostly similar 
on which are the most common letters. Figure 5 shows the 
relative frequencies of letters in the English language based 
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on “Letter Frequencies in English”, published by The Oxford 
Math Center [29] from Oxford College of Emory University. 

 

Letter Frequency (in %) 

A 8.167% 

B 1.492% 

C 2.782% 

D 4.253% 

E 12.702% 

F 2.228% 

G 2.015% 

H 6.094% 

I 6.966% 

J 0.153% 

K 0.772% 

L 4.025% 

M 2.406% 

N 6.749% 

O 7.507% 

P 1.929% 

Q 0.095% 

R 5.987% 

S 6.327% 

T 9.056% 

U 2.758% 

V 0.978% 

W 2.360% 

X 0.150% 

Y 1.974% 

Z 0.074% 

Figure 5.  Relative Frequencies of Letters in English. 

These letter frequency values can also be graphically 

represented as it is shown in Figure 6, which is very similar 

to the one published by Wikipedia [30]. 

 

 
Figure 6.  English Letters Frequency Graph. 

C. Our Test 

We took a text file from Project Gutemberg containing the 
Complete Works from Winston Churchill (the American 

Winston Churchill, not the British one) [31]. A simple text file 
9,540,229 characters long from which we removed all non-
alphabetic characters and obtained a 7,221,951 character long 
alphabetic only text. 

We selected the 13 character long non-random key 
“WHENIWASYOUNG” and the 15 character long non-
random value “WEONLYJUSTBEGUN” as the third 
parameter and used a fixed block size of 1 byte to keep the 
character sequence between the plaintext and the ciphertext. 

From all 26 that form the English alphabet, the key uses 
only 11 different letters (A, E, G, H, I, N, O, S, U, W and Y) 
while the third parameters uses only 12 different letters (B, E, 
G, J, L, N, O, S, T, U, W, and Y). Both parameters share 8 
letters in common (E, G, N, O, S, U, W and Y). 

The less common multiple of the lengths of the key and 
the third parameter is 195. The same sequence pair of third 
parameter character and key character repeats over 37,035 
times to match the plaintext file length. 

We performed a frequency distribution analysis of the 
source file and the results are listed in Figure 7. 

 

Letter Frequency (in %) Frequency 

A 8.0788% 583,448 
B 1.4146% 102,161 
C 2.4972% 180,350 
D 4.5871% 331,279 
E 12.6098% 910,672 
F 2.1128% 152,585 
G 2.0429% 147,538 
H 6.6493% 480,210 
I 6.9210% 499,830 
J 0.1486% 10,732 
K 0.8086% 58,399 
L 3.8873% 280,738 
M 2.6948% 194,620 
N 6.9766% 503,850 
O 7.5462% 544,985 
P 1.6051% 115,918 
Q 0.0815% 5,884 
R 5.8154% 419,982 
S 6.1690% 445,519 
T 9.0004% 650,006 
U 2.7707% 200,100 
V 0.9488% 68,521 
W 2.4342% 175,795 
X 0.1404% 10,140 
Y 1.9878% 143,558 
Z 0.0710% 5,131 

Figure 7.  Plaintext File English Letter Frequency in numbers. 

The result is not an exact match but the differences are 
minimal and the order of the four most common letters (E, T, 
A and O), is the same. Based on those results, we generated a 
graphical representation, which is presented in Figure 8 and 
matches the standard graphical distribution from Figure 6. 
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Figure 8.  Plaintext File Statistical Letter Frequency Graph. 

There are 7,221,950 bigrams formed by two consecutive 

letters in the plaintext and 7,221,949 trigrams formed by three 

consecutive letters. Figure 9 shows the results for the 30 most 

common bigrams found in the source file (those that are 

repeated more times along the plaintext). 

 

Order Bigram Frequency in % Frequency 

  1 TH 3.0676% 221,539 

  2 HE 3.0159% 217,807 

  3 IN 1.7960% 129,709 

  4 ER 1.7902% 129,286 

  5 AN 1.6384% 118,326 

  6 RE 1.3856% 100,070 

  7 ED 1.3314% 96,154 

  8 HA 1.2584% 90,882 

  9 ES 1.2079% 87,233 

10 TO 1.2042% 86,970 

11 ND 1.1985% 86,552 

12 EN 1.1590% 83,704 

13 OU 1.1378% 82,169 

14 NT 1.1341% 81,903 

15 ON 1.1195% 80,850 

16 AT 1.0931% 78,943 

17 ST 1.0649% 76,909 

18 EA 0.9474% 68,424 

19 HI 0.9456% 68,293 

20 IT 0.9145% 66,047 

21 AS 0.8947% 64,612 

22 ET 0.8520% 61,530 

23 OR 0.8452% 61,039 

24 NG 0.8423% 60,833 

25 IS 0.8241% 59,517 

26 TE 0.7945% 57,378 

27 AR 0.7714% 55,710 

28 TI 0.7699% 55,600 

29 OF 0.7433% 53,678 

30 SE 0.7316% 52,837 

Figure 9.  Source File Bigram Frequency. 

On the other extreme of the listing, from all 676 possible 

bigrams, there are 97 that are repeated 10 times or less within 

the plaintext. From them, 49 of them are not present at all, 11 

are present only once, 9 appear twice, 4 appear three times, 4 

appear four times and 4 appear five times. The results from 

the plaintext will be compared with the results from the 

ciphertext. 

Figure 10 shows the results for the 30 most common 

trigrams found in the source file. 

 

Order   Trigram Frequency in % Frequency 

  1   THE 1.8690% 134,980 

  2   AND 0.8596% 62,080 

  3   ING 0.6603% 47,687 

  4   HER 0.6143% 44,362 

  5   THA 0.4724% 34,118 

  6   ERE 0.4350% 31,419 

  7   HAT 0.4128% 29,811 

  8   YOU 0.3814% 27,542 

  9   NTH 0.3670% 26,504 

10   ENT 0.3650% 26,363 

11   WAS 0.3440% 24,845 

12   SHE 0.3425% 24,733 

13   HIS 0.3362% 24,278 

14   ETH 0.3251% 23,478 

15   HES 0.3168% 22,876 

16   DTH 0.3046% 21,999 

17   THI 0.2988% 21,577 

18   INT 0.2934% 21,190 

19   FOR 0.2912% 21,030 

20   ITH 0.2707% 19,548 

21   HAD 0.2693% 19,450 

22   TTH 0.2476% 17,880 

23   TER 0.2392% 17,272 

24   ION 0.2372% 17,128 

25   OFT 0.2360% 17,047 

26   FTH 0.2351% 16,981 

27   EST 0.2327% 16,807 

28   OTH 0.2315% 16,716 

29   EDT 0.2286% 16,507 

30   WIT 0.2232% 16,119 

Figure 10.  Source File Trigram Frequency. 

On the other extreme of the listing, from all 17,576 

possible trigrams, 8642 are not present at all, meaning that 

almost half of all possible trigrams (49.17%) are not present 

in the plaintext. 

After encrypting the file, we performed the same 

frequency distribution analysis on the encrypted file as we 

did on the original source text file. Figure 11 shows the 

encrypted file letter frequencies graphical distribution 

(showing frequency distribution as a percentage of the total 

number of characters). 
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Figure 11.  Ciphertext File Statistical Letter Frequency Graph. 

The letter frequency of the encrypted file is homogeneous 

and almost flat making impossible a statistical distribution 

analysis attack based on the statistical distribution of the 

letters in the English language. There is no way to match the 

letters from the encrypted file with those from the source file. 

Figure 12 shows the letter frequency from the ciphertext. 

 

Letter Frequency (in %) Frequency 

A 3.7686% 272,167 
B 3.8798% 280,198 
C 3.5510% 256,452 
D 4.2553% 307,314 
E 3.7649% 271,896 
F 3.6380% 262,733 
G 3.3720% 243,523 
H 4.4154% 318,879 
I 3.5593% 257,049 
J 4.6710% 337,340 
K 3.7397% 270,079 
L 3.7402% 270,112 
M 4.5380% 327,730 
N 3.4808% 251,384 
O 4.1863% 302,336 
P 3.8112% 275,244 
Q 4.0089% 289,520 
R 3.7138% 268,209 
S 3.7167% 268,416 
T 3.7002% 267,229 
U 4.1338% 298,538 
V 3.6556% 264,003 
W 3.7597% 271,523 
X 3.4586% 249,776 
Y 3.7073% 267,740 
Z 3.7741% 272,561 

Figure 12.   Ciphertext File Letter Frequency. 

When we order the letters from the plaintext and the 

ciphertext sorting them down in decreasing order of the 

statistical distribution of the letters within them, we get the 

graphical representation displayed in Figure 13. 

 
Figure 13.  Statistical Letter Distribution Comparison. 

We analyzed the frequency distribution of bigrams and 

trigrams within our encrypted text file and Figure 14 shows 

the results for the 30 most common bigrams in the ciphertext. 

 

Order   Bigram Frequency in % Frequency 

  1 JJ 0.2181% 15,750 

  2 JM 0.2118% 15,299 

  3 MJ 0.2096% 15,136 

  4 JH 0.2055% 14,843 

  5 HJ 0.2040% 14,734 

  6 MM 0.2022% 14,603 

  7 MH 0.2021% 14,596 

  8 JD 0.2007% 14,492 

  9 JO 0.1997% 14,422 

10 HM 0.1995% 14,411 

11 MD 0.1968% 14,211 

12 DJ 0.1962% 14,168 

13 OJ 0.1957% 14,130 

14 HH 0.1955% 14,116 

15 JU 0.1944% 14,036 

16 UJ 0.1940% 14,008 

17 DM 0.1938% 13,999 

18 MU 0.1904% 13,753 

19 QJ 0.1897% 13,701 

20 JQ 0.1888% 13,632 

21 MO 0.1883% 13,602 

22 OM 0.1878% 13,565 

23 UM 0.1868% 13,494 

24 DH 0.1864% 13,461 

25 OH 0.1857% 13,412 

26 HU 0.1853% 13,384 

27 HO 0.1851% 13,369 

28 QM 0.1843% 13,310 

29 HD 0.1836% 13,257 

30 MQ 0.1826% 13,185 

Figure 14.  Encrypted File Bigram Frequency. 

The first finding analyzing bigrams was that all possible 

676 bigrams are present in the ciphertext, the most repeated 

one appears 15,750 times and the least repeated one appears 
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8,223 times in it. The bigram distribution for the encrypted 

file is almost flat and homogeneous and there is no way to 

match the bigrams from the encrypted file with those from 

the source file as Figure 15 shows. 

 

 
Figure 15.  Bigram Statistical Frequency Comparison. 

Figure 16 shows the results for the 30 most common 

trigrams found in the encrypted file. 

 

Order   Trigram Frequency in % Frequency 

1 MMJ 0.0106% 763 

2 HJJ 0.0105% 759 

3 MJJ 0.0105% 755 

4 JJM 0.0102% 739 

5 JMJ 0.0101% 733 

6 MJH 0.0101% 727 

7 JJH 0.0101% 726 

8 MDM 0.0100% 722 

9 JJJ 0.0099% 718 

10 JJD 0.0098% 710 

11 MHJ 0.0098% 710 

12 HJM 0.0098% 709 

13 JHM 0.0098% 707 

14 MMM 0.0097% 704 

15 JMM 0.0097% 701 

16 JMD 0.0097% 698 

17 JDM 0.0097% 697 

18 MHH 0.0096% 695 

19 JHH 0.0096% 694 

20 JJU 0.0096% 691 

21 MJO 0.0096% 691 

22 JEJ 0.0095% 688 

23 HMJ 0.0095% 687 

24 UJO 0.0095% 687 

25 JOJ 0.0095% 684 

26 JOH 0.0095% 683 

27 DJJ 0.0094% 681 

28 MPJ 0.0094% 681 

29 YJJ 0.0093% 675 

30 HHJ 0.0093% 673 

Figure 16.  Encrypted File Trigram Frequency. 

The first finding analyzing trigrams was that all possible 

17,576 trigrams are present in the ciphertext, the most 

repeated once appears 763 times and 260 times the least 

repeated one. The most repeated bigram (MMJ) repeats less 

than three times the least repeated one (GGV) and the flatness 

of the distribution makes unfeasible any statistical analysis 

attack to retrieve the original plaintext from the ciphertext 

based on the distribution of trigrams. 

Comparing the statistical distribution of the 30 most 

common trigrams from the plaintext and the ciphertext, 

Figure 17 shows the differences that make unfeasible a 

statistical analysis attack based on the distribution of 

trigrams. 

 

 
Figure 17.  Trigram Statistical Frequency Comparison. 

Going one step further and considering tetragrams (sets 

of four consecutive letters), there are 456,976 possible 

tetragrams and from them 378,431 are not present in the 

plaintext. Only 17.188% from all possible tetragrams appear 

in the plaintext being THAT with a 0.3171% (22,898 

repetitions) and THER with 0.3089% (22,305 repetitions) the 

two most common of them. From all 456,976 possible 

tetragrams, only two are not present within the ciphertext 

(HXYA and NGXC), being HJMJ with a 0.00071% (51 

repetitions) and HHJJ with 0.00068% (49 repetitions) the two 

most common of them. 

Figure 18 compares the statistical distribution of the 26 

most common tetragrams from the plaintext and the 

ciphertext. 

 

 

Figure 18.  Tetragram Statistical Frequency Comparison. 
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D. Results of Our Test 

Although the key used was very short (only 13 characters 
long) and not random, the third parameter was also very short 
(only 15 characters long) and also not random, and the source 
file was pretty big (over 7 Megabytes long), the use of poly 
substitution encryption provided a level of confusion and 
diffusion that makes any cryptanalysis or statistical 
distribution analysis attack totally unfeasible, as will be 
proved in Section VIII.  

When the gross frequency (the number of times each item 
is repeated as a number, not as a percentage) of letters, 
bigrams, trigrams and tetragrams are compared between the 
plaintext and the ciphertext, the flatness of the results gets 
visually clear. 

In the distribution of letters within the plaintext 
(alphabetically ordered from A to Z), as shown in Figure 19, 
the most common letters E, T, A and O are clearly 
distinguishable. 

 

 

Figure 19.  Plaintext Letter Distribution. 

A ciphertext obtained from a Vigenère encryption of the 
plaintext using the same key, would have produced the exact 
same graph. The graphic of the letter distribution within the 
ciphertext displayed in Figure 20, shows not only the flatness 
of the distribution obtained through the use of a cipher based 
on our proposed encryption, but the small variation among the 
letters.  

 

 

Figure 20.  Ciphertext Letter Distribution. 

In the distribution of bigrams within the plaintext (ordered 
from AA to ZZ), as shown in Figure 21, the most common 
bigrams TH and HE are clearly distinguishable. 

 
Figure 21.  Plaintext Bigram Distribution. 

The distribution of bigrams within the ciphertext also 
shows the flatness of the result and the low variation between 
the different bigrams, as shown in Figure 22. 

 

 

Figure 22.  Ciphertext Bigram Distribution. 

Although some bigrams are not present in the plaintext, all 
possible bigrams are present in the ciphertext. 

In the distribution of trigrams within the plaintext (from 
AAA to ZZZ), as it is shown in Figure 23, the most common 
values THE, AND, ING and HER, are clearly distinguishable. 

 

 
Figure 23.  Plaintext Trigram Distribution. 

But the distribution of trigrams within the ciphertext (from 
AAA to ZZZ), as it is shown in Figure 24, tells a totally 
different story. Once again, the graphic of the trigram 
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distribution within the ciphertext displayed in Figure 24, 
shows not only the flatness of the distribution obtained 
through the use of a cipher based on our proposed encryption, 
but the small variation among the different trigrams.  

 

 
Figure 24.  Ciphertext Trigram Distribution. 

The graphical representation of the ciphertext trigram 
distribution resembles white noise. White noise is basically 
pure random noise that has all the frequencies in the audio 
spectrum. It is a random signal having equal intensity at 
different frequencies, giving it a constant power spectral 
density. Different sounds and musical notes are produced by 
a combination of different frequencies, the same way as words 
and phrases are formed by a combination of different letters 
from an alphabet. Some random number generators are based 
on white noise like the one used by Random.org, whom uses 
a system of atmospheric antennae to generate random digit 
patterns from white noise. White noise sounds pretty close to 
static from your old television set or radio when no station was 
tuned or a whooshing sound. Additive white Gaussian noise 
(AWGN) is a basic noise model used in information theory 
(originally proposed by Claude E. Shannon in 1948 in his 
landmark paper [7]) to mimic the effect of many random 
processes that occur in nature.  

This shows how the distribution of trigrams within the 
ciphertext cannot be distinguished from being totally random. 
Considering that the same occurs with the distribution of 
bigrams and single letters within the ciphertext, that proves 
that any statistical analysis attack on the ciphertext will not 
succeed as we will prove in Section VIII. 

VII. ANALYSIS 

A. Comparing this cipher with Vigenère’s and Vernam’s 

It is trivial to prove that the Vigenère cipher is a limited or 
restricted version of our proposed encryption where the 
processing block size is one character and only one 
substitution is used (modular addition with v = 0), which 
means the third and fourth parameters need to be built in a way 
that ensure the same substitution will always be triggered. 

It has already been proved that the Vernam cipher is a 
restricted or limited version of the Vigenère cipher, where the 
alphabet used has only two characters or symbols). 

A text message properly ciphered through the Vigenère or 
Vernam Ciphers (using a random one-time key as long as the 

plaintext) gives absolutely no clue on the key used or the 
original plaintext and a brute force attack will end up with a 
huge number of false positives. 

A brute force attack will return some invalid or unreadable 
results but will also return any possible message with the exact 
same length and there is no way to decide which one is the 
true original one. 

Vigenère and Vernam ciphers are not used because they 
have the same three requirements that need to be fulfilled to 
comply with Shannon’s definition for Perfect Secrecy: 

1) The key needs to have the same length as the 

plaintext. 

2) The key must be random. 

3) The key must not be reused. 

These three requirements are mandatory because Vigenère 
and Vernam used a single encryption substitution (Modular 
Addition and XOR) in the process.  

With the Vernam cipher, for any given ciphertext byte, the 
attacker needs to try every possible key byte value and will 
end up with 256 different results, each one with the exact same 
probability of being the plaintext byte value. 

With the Vigenère cipher, for any given ciphertext 
symbol, the attacker needs to try every possible key symbol 
and will end up with every possible symbol in the alphabet, 
each one with the exact same probability of being the plaintext 
symbol. 

With our proposed encryption technique and even 
assuming the attacker knows the exact processing block size 
used for this specific ciphe text, all the encryption 
substitutions used and can match each ciphertext byte with the 
corresponding byte position in the plaintext; the attacker will 
still need to try each of the 256 possible key byte values with 
each of the encryption substitutions involved. So, if we used 
256 different encryption substitutions, the attacker will end up 
with 65,536 possible values for the plaintext byte, each one 
repeated many times and no way to decide which value is the 
original one. 

If the attacker does not know the processing block size, it 
multiplies the effort required as the first byte from the 
plaintext may correspond to any of the bytes in the ciphertext, 
the second one to any of the bytes except the last and so on, 
doing the math it means there are n! possible orders for the 
ciphertext to match the byte order of the plaintext, being n the 
length in bytes of both the plaintext and the ciphertext.  

Our proposed cipher does not have any constraints as 
Vigenère and Vernam ones do, and we will prove that our 
encryption overcomes those constraints that come from mono-
substitution encryption limitations. 

As we can assure the same key value-encryption 
substitution sequence will not be repeated, the length of the 
key becomes irrelevant, it may have any length and it does not 
matter if it is shorter than the plaintext. 

So far, we have been able to overcome the first of 
Vigenère’s and Vernam’s constraints and now the key can be 
shorter than the plaintext without impacting the safety of the 
process. 

As we use some additional parameters, does the key truly 
need to be random? 
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Leaving aside any discussion about what is truly random 
and what is not, anything can be used as a key; a text, a web 
page, a file from the Internet. As far as the key is kept secret, 
it really does not matter whether it is truly random or not. 

In the example we provided the key used was extremely 
short compared to the length of the plaintext (the plaintext 
length was about half a million times the length of the key) 
and it was not random at all and despite that, no statistical 
analysis attack will succeed in retrieving the original plaintext 
having only the ciphertext. 

As the process does not use an unique encryption 
substitution but a pool of them, the randomness of the key has 
no impact on the outcome because the substitution sequence 
order cannot be predicted. 

Our test showed how using a short non-random key had 
no impact on the security of the process. 

So far, we have been able to overcome the second of 
Vigenère’s and Vernam’s constraints and now the key does 
not need to be random. 

What if the key is reused? 
As we consider the encryption process as the result from 

applying a sequence of key value-encryption substitution 
pairs, what we need to avoid is reusing that exact same 
sequence. 

It is clear that if any of the third parameter, the initial 
substitution order or the block size (or sizes) is different, the 
key value-encryption substitution pair sequence will be 
different for the same key. If the same substitution order array 
rearrangement used when the key is exhausted is used every 
time a processing block is exhausted, it can be guaranteed that 
the same key value-encryption substitution pair sequence will 
not be repeated for a different plaintext even if the exact same 
parameters are used and if the first processing block is just one 
byte long, then no other key value-encryption substitution pair 
sequence will be repeated beyond the first symbol even if the 
same exact parameters are reused. This happens because the 
probability that two different plaintexts or ciphertexts may 
have matching characters in the exact same position every 
time the key, the processing block or whatever trigger may be 
used is exhausted, is just zero. 

This overcomes the third of Vigenère’s and Vernam’s 
constraints and now the key may be reused without 
compromising the unconditional security.  

As you see, an encryption algorithm based on our 
proposed technique and complying with its seven steps can 
guarantee unconditional security using non-random keys that 
can be shorter than the plaintext and can be reused. 

Also, two successive encryptions may exchange the key 
with the third parameter using the third parameter as the new 
key and the old key as a new third parameter keeping the 
unconditional security. 

As far as the key does not need to be random, selecting a 
new different key is quite easy. There is no need of a random 
or pseudo-random key generator as any possible file may be 
used as a key (or third parameter). A web page from any site, 
a file of any type or even portions of them can be used. 

Been Vernam the only cipher mathematically proved to be 
unbreakable if properly used, let us do a comparison between 
a cipher based on our proposed poly-substitution encryption 

and the Vernam cipher. Figure 25 shows a comparison 
between Vernam’s cipher and our proposed one. 

 

 VERNAM 

Cipher based on 

our Proposed 

Technique 

Sample plaintext length 140 140 

Processing block size 1 Variable 

Key size 140 Variable 

Key and plaintext length 
must match 

Yes No 

Key must be true random Yes No 

Key must not be reused Yes No 

No. of substitutions 1 256 

No. of possible results 

per substitution 
256 256 

No. of possible results 

per Byte 
256 65,536 

Ciphertext to plaintext 
match 

1 140! 

No. of possible results 

per Byte from brute force 

attack 

256 65,536 x 140! 

No. of possible results 

per Byte from brute force 

attack as power of 2 

2^(8) 2^(809) 

Probability of being the 

plaintext byte 
0,39% 0,39% 

Rounds 1 1 

False Positives Yes Yes 

Figure 25.  Comparing Vernam’s cipher to our proposal. 

An encryption algorithm based on our technique and 
complying with the seven steps will offer the same 
unconditional security offered by the Vernam cipher without 
the constraints it has. 

A plaintext encrypted with such algorithm will remain 
impervious to any attack, no matter how powerful the attacker 
may be or may become, even if the attacker has infinite 
computational power. 

B. Comparing this cipher with currently used ciphers 

Due to their extreme complexity, none of the current 
encryption standards will produce a false positive when an 
incorrect or wrong key is used.  

All currently used encryption base their privacy and 
security on the unavailability of enough computational power 
required to try all possible keys in a short time and that is why 
they will all fall under a quantum attack capable of trying 
every possible key in very little time. 

There is an old saying: “How do you hide an elephant on 
a beach? By filling the beach with elephants”.  

The strength of our proposed encryption technique relies 
not on the computational power required to try every possible 
key, third parameter, initial substitution order, substitution set 
or block size or sizes; its strength relies on the fact that we 
assume it can be done but the real original plaintext will be 
hidden at plain sight within an immense sea of false positives 
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with absolutely no indication on which one is the right one. It 
is not that the attacker will not be able to get the original 
plaintext, it is that the attacker will not be able to distinguish 
the original plaintext from the false positives. 

We assume the attacker will reach the beach and see all 
that is there. There can also be palms and monkeys, and 
seagulls and turtles, and crabs and people and of course sand 
and water on that beach, but even if the attacker knows that 
what is hidden there is only an elephant, still will have no clue 
and no way to know which one of all the elephants there is the 
right one. Even if the attacker is capable of knowing that what 
is hidden there is an elephant and ignores all the palms and 
monkeys and seagulls and turtles and crabs and people and 
any other element that is not what is hidden there, even then, 
there is absolutely no way and no clue to know which elephant 
is the right one. 

Symmetric key cryptography relies on very complex 
processes where a brute force attack may need too much 
computational power to succeed and no such power is yet 
available. They do not say their ciphers cannot be broken with 
enough computational power, they claim and hope for the 
required computational power not to be available anytime 
soon.  

Besides the existence of some known partial attacks that 
may succeed with more computational power like quantum 
computers promise to deliver, the use of a fixed size 
processing block and fixed size keys (they may offer different 
key sizes but limited to very few pre-defined options. They do 
not allow the user to freely choose any key size, less to select 
the block size), make them vulnerable to brute force attacks 
given the attacker has enough computational power. 

While currently in use symmetric encryption standards use 
block sizes of 64 or 128 bits and keys of 128 to 512 bits, our 
encryption handles blocks of any size including successive 
blocks of different sizes and keys of any length. Figure 26 
shows a comparison between a cipher based on our proposed 
technique and other symmetric ciphers. 

 

 Block 
Size 

Key Size Rounds 
False 

Positives 

DES  64 bit 56 bit 16 No 

3DES [33] 64 bit 128 bit 48 No 

AES 128 bit 
128, 192, 

256 bit 
9, 11, 13 No 

BLOWFISH 

[34] 
64 bit 32-448 bit 16 No 

Cipher 

based on our 

Proposed 

Technique 

Variable Variable 1 Yes 

Figure 26.  Comparison between a cipher based on this technique and 

current symmetric standards. 

Public-key cryptography currently in use (including RSA 
and ECC) relies on the assumption that some problems cannot 
be solved or would will require an extremely long time to be 
solved, and therefore, that it would take a very long time for 
their secured data to be decrypted. But as quantum algorithms 
can solve some of these problems with ease, that assumption 

is fatally challenged. It is known that a quantum computer 
running Shor’s algorithms can easily solve complex problems 
like long integer factorization and discrete logarithms, which 
are the foundation of public key cryptography.  

VIII. ATTACKING A CIPHER BASED ON THIS TECHNIQUE  

Trying to retrieve the plaintext from a ciphertext created 
through an implementation of this technique without having 
any additional information will be at least as difficult as trying 
to retrieve the plaintext from a one-time pad created ciphertext 
or one created through a proper use of Vigenère’s or Vernam’s 
ciphers having only the ciphertext. 

Any attack must take into consideration that all the 
parameters are external to the process and they all may be 
different from one encryption to the next and also the fact that 
the process may be used in reverse order. Decryption can be 
used to protect the plaintext and encryption with the same 
parameters used to retrieve the original plaintext. 

As cryptanalysis of our encryption is just not possible, any 
possible attacker will need to face the following difficulties 
when attempting a brute force attack to break an encryption 
created with a cipher based on this technique and complying 
with its seven steps: 

 Which ciphertext byte corresponds to each 
plaintext byte. 

 Which encryption substitutions exist and which 
of them were used. 

 Which substitution was used on each instance. 

 Which was the key used. 

 Which processing block size or sizes were used. 
Let us give the attacker the advantage of knowing all the 

encryption substitutions involved, the specific set used to 
create the ciphertext and the processing block size or sizes 
used. In such situation, for each byte in the ciphertext, the 
attacker needs to try every possible substitution for every 
possible key byte value and so, instead of getting 256 possible 
values as with Vigenère’s or Vernam’s ciphers, the result will 
be 65,536 possible values having every single one the exact 
same probability of being the plaintext byte value despite the 
repetitions. 

That is the best case scenario for the attacker. 
If the processing block size or the sequence of block sizes 

is not known, the attacker will need to try any possible fixed 
or variable block size from a single byte to the length of the 
ciphertext. While this adds time and difficulty to the attack, 
every possible outcome still has the exact same probability of 
being the original plaintext despite the repetitions. 

The original plaintext will still be lost in a sea of false 
positives with no way to decide which one is the right one. 
The beach will remain full of elephants with no clue on which 
one is the right one. 

As Ronald Linn Rivest, Adi Shamir and Leonard Adleman 
stated on their seminal paper [35], “Since no techniques exist 
to prove that an encryption scheme is secure, the only test 
available is to see whether anyone can think of a way to break 
it.” Based on that, we will give a try to classical and modern 
cryptanalysis attacks and try to show how and why they will 
not succeed in breaking the encryption. 
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A. Statistical Letter Distribution Attack 

We have seen that single character distribution within the 
ciphertext is practically flat, making impossible to identify the 
original corresponding characters from the plaintext through a 
statistical distribution attack. 

B. Kasiski Statistical Analysis Attack 

A Kasiski Statistical Analysis attack uses repeated 
sequences from the ciphertext to try to narrow down the length 
of the key.  

First we analyzed the 10 most common bigrams (JJ, JM, 
MJ, JH, HJ, MM, JD, JO and HM) and measured the distances 
between consecutive occurrences of the same bigram across 
the ciphertext and found out that for all of them, the minimum 
distance between two occurrences of the same bigram is zero, 
meaning that each bigram shows two times consecutively and 
together, and this happens many times for each of them. 
Figure 27 shows the ten most common bigrams and the 
number of times they appear twice together within the 
ciphertext. 

 

Order Bigram Appears as Occurrences 

1 JJ JJJJ 37 

2 JM JMJM 36 

3 MJ MJMJ 30 

4 JH JHJH 23 

5 HJ HJHJ 35 

6 MM MMMM 26 

7 MH MHMH 32 

8 JD JDJD 23 

9 JO JOJO 28 

10 HM HMHM 33 

Figure 27.  Trigram distances between repetitions. 

Being zero the minimum distance between occurrences of 
the same repeated bigram and having the same happening for 
all 10 most common bigrams across the ciphertext, allows us 
to affirm that the distances between repeated occurrences of 
bigrams gives absolutely no information about the length of 
the key, making totally useless a Kasiski statistical analysis 
attack based on the repetition of bigrams. 

Second, we took the three most repeated trigrams, MMJ, 
which repeats 763 times within the ciphertext, HJJ, which 
repeats 759 times and MJJ, which repeats 755 times. 

We built up a table listing the distances from each 
appearance of each trigram to the next in one column and the 
list of distances sorted out from the smallest distance to the 
biggest and we did the same for each of the three trigrams. 

For the first trigram (MMJ) only 58 out of the 763 
repetitions are at a distance that is a multiple of the key length 
of 13 characters and only 5 of them were a multiple of the less 
common multiple of the lengths of the key and the second 
parameter. 

For the second trigram (HJJ) only 48 out of the 759 
repetitions are at a distance that is a multiple of the key length 
of 13 characters and only 2 of them were a multiple of the less 

common multiple of the lengths of the key and the second 
parameter. 

For the third trigram (MJJ) only 49 out of the 755 
repetitions are at a distance that is a multiple of the key length 
of 13 characters and only 7 of them were a multiple of the less 
common multiple of the lengths of the key and the second 
parameter. 

It is clear that the encryption generates a diffusion of the 
results even using short keys, which makes any statistical 
analysis attack unfeasible. No matter how you compare the 
results of analyzing the most repeated trigrams, no 
information about the key length can be obtained. 

Figure 28 shows the first 24 results for each of the 
trigrams. 

 

  MMJ HJJ MJJ 

  U/O O U/O O U/O O 

1 11,339 5 771 4 5,020 7 

2 6,817 11 487 15 11,054 11 

3 8,828 12 19,573 38 4,003 13 

4 1,944 15 8,517 55 6,997 20 

5 6,598 22 1,248 58 5,062 32 

6 11,538 45 854 69 4,700 44 

7 9,032 46 13,103 80 19,637 53 

8 2,079 66 2,111 82 7,679 58 

9 33,580 75 2,507 91 6,878 66 

10 638 106 692 109 1,784 66 

11 1,164 121 20,869 113 36,239 74 

12 11,664 124 5,634 133 8,294 77 

13 12,180 130 1,390 139 6,008 99 

14 1,687 156 6,226 144 6,341 152 

15 13,358 171 12,450 160 7,704 163 

16 4,925 183 287 227 2,888 190 

17 2,659 187 1,323 228 6,840 216 

18 2,018 192 5,049 239 22,798 233 

19 1,394 199 26,270 241 26,708 242 

20 26,814 209 42,915 243 2,959 266 

21 4,457 216 11,013 246 7,174 268 

22 3,385 242 797 260 5,527 269 

23 10,621 259 5,021 267 10,530 270 

24 2,411 265 5,061 267 9,970 284 

Figure 28.  Trigram distances between repetitions. 

U/O stands for unordered, listing the distance from an 
occurrence of the trigram to the next one, while O stands for 
ordered, which is an ordered list of the distances between two 
occurrences of the same trigram ordered in ascending order 
from the shortest distance between two occurrences of the 
same trigram to the longest one. 

This table shows that it is not possible to find any relation 
between the distances of the different trigram repetitions and 
the key length. We grayed out and styled in bold and italic 
those distances between two consecutive repetitions of the 
same trigram that are in fact a prime number, meaning either 
the key cannot be shorter or they are random repetitions. 
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It is clear that a Kasiski statistical analysis attack will not 
succeed even considering that the key is not random and 
extremely short when compared to the length of the original 
plaintext.  

C. Friedman’s Index of Coincidence Attack 

The formula to calculate the Index of Coincidence (IC) for 
any given text is as follow: 

 

𝐼𝑐 = ∑ (
𝑐𝑜𝑢𝑛𝑡(𝑐) × (𝑐𝑜𝑢𝑛𝑡(𝑐) − 1)

𝐿𝑒𝑛𝑔𝑡ℎ × (𝑙𝑒𝑛𝑔𝑡ℎ − 1)
)

𝑐 ∈𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡

             (20) 

 
Theoretically perfect IC is defined as if all characters 

occurred the exact same number of times so that none was 
more likely than any other to be repeated, so, for an alphabet 
of 26 characters, it was calculated to be 1/26, which is 
approximately 0.03846. The closest the IC of a given 
ciphertext is to the perfect IC, the more difficult it will be to 
try to obtain the key length or the original plaintext. 

The calculated IC of the original plaintext is 0.0659 and 
the calculated IC for the ciphertext produced by our 
encryption is 0.03874, a difference of 0.00028 from the 
perfect IC. 

Poly-substitution encryption generates a level of diffusion 
that makes obtaining the key length through the IC an 
impossible task. 

D. Linear Cryptanalysis. 

The discovery of linear cryptanalysis is credited to 
Mitsuru Matsui [36], who first applied the technique to the 
FEAL cipher in 1992. Later, he published an attack on the 
Data Encryption Standard (DES) [37]. 

Linear cryptanalysis focuses on finding a linear 
relationship between a subset of plaintext bits and a subset of 
data bits that behaves in a non-random fashion. It is a known-
plaintext attack, meaning the attacker will have some sets of 
plaintexts and associated ciphertexts, all encrypted with the 
same key. It was first intended as a cryptanalysis attack to 
DES, but proved to be useful for other multi-round fixed-
block ciphers. It requires to have some pairs of known-
plaintext/ciphertext pairs encrypted with the same key. The 
first difficulty linear cryptanalysis will find is that the key does 
not have a fixed length and also the processing block size or 
sizes are also of not fixed length. The second difficulty is that 
there are no s-boxes and the encryption is made in a single 
round. Even if the attacker gets a huge number of known-
plaintext/ciphertext pairs all encrypted using the exact same 
parameters, the length of the key and the length or lengths of 
the processing block remain unknown and those pairs of 
known-plaintext/ciphertext give no clue about them, making 
unfeasible the use of linear cryptanalysis to attack poly 
substitution encryption as it is defined in this paper. 

E. Differential Cryptanalysis. 

Differential cryptanalysis discovery is usually credited to 
Adi Shamir and Eli Biham, who published a number of attacks 
against several block ciphers in the late 1980s. Don 
Coppersmith, a member of the original IBM DES team, 

published a paper stating that differential cryptanalysis was 
known to IBM as early as 1974 [38]. 

Linear cryptanalysis is based on exploiting linear 
relationships between bits in the cipher, while differential 
cryptanalysis uses differential relationships between various 
bits in the cipher. Differential cryptanalysis is a chosen-
plaintext attack where the attacker is able to make a 
cryptosystem encrypt data he chooses using the target key 
which is unknown and remains secret. Analyzing the 
ciphertext obtained (which is known), the attacker can obtain 
the key used. 

The standard differential cryptanalysis method is a 
probabilistic chosen-plaintext attack. It is also oriented to 
multi-round ciphers like AES with a fixed length key and a 
fixed length processing block. There is no way the 
cryptosystem may encrypt without providing all the 
parameters, including the key and as we have seen in the linear 
cryptanalysis attack, even having pairs of known-
plaintext/ciphertext gives no information about the lengths of 
the key and the processing block or blocks used, making 
unfeasible the use of differential linear cryptanalysis to attack 
poly substitution encryption as it is defined in this paper. 

F. Side-channel attacks.. 

A side-channel attack is an attack based on knowledge 
gained from the implementation of a computer system instead 
of weaknesses from the encryption algorithm itself. As the 
encryption we propose is based in simple arithmetic 
operations like addition and subtraction of byte values, timing 
and power-analysis attacks will fail as well as other side-
channel attacks like Power-monitoring attacks, 
electromagnetic attacks or differential fault analysis just 
because none of them may distinguish an addition from a 
subtraction or two different additions being performed. 

G. Other Modern Cryptanalysis 

Time-Space Trade-Offs like Diffie-Hellman’s meet-in-
the-middle attack, Hellman’s Time-Space Trade-off, or 
Rivest’s Distinguished Endpoints just will not work, and we 
will explain why.  

Diffie-Hellman’s meet-in-the-middle attack is oriented to 
break multiple-encryption algorithms repeating the same 
encryption using different keys as in Double-DES and Triple-
DES and it is not the case with our single round poly 
substitution encryption. 

Hellman’s Time-Space Trade-off is based on pre-
computing sample plaintext/ciphertext pairs using random 
keys and considering the mapping of key k to ciphertext c as 
a random permutation function f over an N point space, being 
N the total number of possible keys and also assumed to be 
the total number of possible plaintexts and ciphertexts. The 
first difficulty such approach will face is that there is not an 
unique random permutation function f. For the same plaintext, 
it will exist more than one key-substitution pair sequence that 
will produce the exact same ciphertext. If we consider that we 
are using an alphabet A with a characters or symbols and we 
are using a third parameter with the same alphabet and using 
a number a of different substitutions, for any given plaintext 
symbol-ciphertext symbol pair and for each different 
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substitution, there will be a key value that will produce the 
ciphertext symbol from the plaintext one using that 
substitution and key values. The crucial issue Hellman’s 
Time-Space Trade-off will find with poly-substitution 
encryption is that if the number of possible plaintexts and 
ciphertexts is N, and an alphabet with a symbols is used, the 
number of possible keys will be in the order of aN, which for 
a ≥ 2 is a lot bigger than N, making unfeasible to use this 
attack. 

Rivest’s Distinguished Endpoints is an enhancement of 
Hellman’s Time-Space Trade-off but will face the same 
difficulties with poly-substitution encryption and will not 
work for the same reasons. 

IX. PARTIAL OR LIMITED DATA UNIVERSES 

In certain situations, some byte values or sequences may 

be considered restricted, invalid or not acceptable. As an 

example, when transmitting data, the end-of-message value 

cannot be part of the transmitted message and an encrypted 

message cannot include the end-of-message within it. Also, 

some structured messages require the information stored 

within the message to comply with some structural lengths 

and data types for specific parts of the message and to encrypt 

such messages, the encryption must respect data structures 

and formats, something none of the available encryption 

solutions, either symmetric or public-key can provide. 

A. Format Preserving Encryption 

Format Preserving Encryption (FPE) refers to encrypting 
in such a way that the output ciphertext is in the same format 
as the input plaintext, including having the exact same length. 
If the plaintext is just numbers, you get numbers, if it is 
alphabetic characters you get alphabetic characters, etc. 

For example: To encrypt a sixteen-digit credit card 
number so that the ciphertext is another sixteen-digit number, 
or, to encrypt a nine-digit social security number so that the 
ciphertext is another nine-digit number, or to encrypt a 
person’s name so the ciphertext is another alphabetic string 
with the same length. 

One reason to use FPE comes from the difficulty to 
integrate encryption into existing applications with well-
defined data models like banking, industry, financial 
technologies or medical records databases among others. 

Adding encryption to such applications comes with high 
costs associated to the field length limits, data type changes 
and computational power required. 

Recent scandals like de Panama papers, the NSA secrets 
offered in auction or the World Anti-Doping Agency 
(WADA) medical records disclosure are clear examples of the 
need for format preserving encryption to protect sensitive 
information within databases. In the Panama papers and the 
WADA cases, if the fields containing sensitive information 
would have been encrypted, the information stolen would 
have been useless for the hackers despite the security breach 
they achieved, precisely because the names of the persons 
involved and other personally identifiable information (PII) 
would have been encrypted.  

B. Symmetric Key Format Preserving Encryption 

Block ciphers cannot preserve the plaintext length without 

additional work unless it exactly matches the block size used 

or an exact multiple of it. 

If you are trying to encrypt a nine-digit social security 

number stored in a nine byte plaintext, by default a block 

cipher like AES will return a 16 byte (128 bits) ciphertext that 

cannot be guaranteed to be numeric. 

John Black and Philip Rogaway [39] described three ways 

to implement Format Preserving Encryption they proved as 

secure as the block cipher used to construct each of them: 

 FPE from a prefix cipher. 

Assign a pseudorandom weight to each integer in the 

range {0,…,N-1} and then sort by weight. The 

weights are defined by applying a block cipher to each 

integer and then sorting by the result ciphertext value. 

A different key will result in a different weight order. 

The size and number of entries required for the lookup 

table and the number of encryptions that need to be 

performed to initialize the table make this technique 

impractical for large values of N. 

 FPE from cycle walking. 

If there is a limited set of valid values within the block 

cipher permutation domain, a Format Preserving 

Encryption algorithm can be created by repeatedly 

applying the block cipher until the result is within the 

valid ones. As the domain is finite and the 

permutation is one-to-one, the cycle walking is 

guaranteed to terminate, but it may end up with the 

same original value. 

The advantage of this technique is that the valid 

values do not need to be mapped as a consecutive 

sequence. The disadvantage is that too many cycles 

may be required for each operation and the encryption 

process stops being deterministic as it is impossible to 

know in advance how much time will the encryption 

process need. 

 FPE from a Feistel network [40][41]. 

The output of the block cipher can be used as the 

source of pseudo-random values for the sub-keys for 

each round of the Feistel network; the resulting 

construction is good if enough rounds are used. 

It cannot be guaranteed that the Feistel network will 

preserve the format, but it is possible to iterate it in 

the same way as the cycle-walking technique to 

ensure the format can be preserved. 

The United States’ National Institute of Standards and 

Technology (NIST) Special Publication 800-38G [42] defines 

methods for Format-Preserving Encryption for Block Ciphers 

that can be used for partial or limited data universes and not 

limited to numeric values only. The core of the proposed 
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solutions is derived from an approved block cipher with 128-

bit blocks, mainly, the Advanced Encryption Standard (AES) 

algorithm. Classic and currently used Symmetric key FPE 

requires additional processing which implies more time and 

computational power is required. 

C. Public-Key Format Preserving Encryption 

There are no developments in public key FPE because 

based on the math used for the encryption, no secure Public-

Key encryption can preserve the length. Besides that, being 

the key public and known to everybody, an attacker can just 

try encrypting every possible plaintext to see if the result 

matches the encrypted text. 

If what was encrypted is a Social Security Number (SSN), 

the attacker only has to try every possible nine-digit numeric 

value, a mere billion tries that can be accomplished in short 

time with currently available computational power. 

To prevent this, the public key encryption algorithm must 

not be deterministic and must include some randomness so 

that a large set of possible ciphertexts may result from a given 

plaintext using a given public key. 

Using RSA as defined by PKCS#1 [43] pads the plaintext 

with random bytes causing the ciphertext to be necessarily 

larger than the plaintext. 

We can conclude that Public key encryption is not suitable 

for FPE. 

D. Our Proposed Format Preserving Encryption 

Continuing with our character or byte level data usage, 

what we need is just an array containing all valid byte values 

corresponding to the characters or symbols from the defined 

alphabet, and this array can have at most 256 elements when 

all possible byte values are valid. The number of elements in 

the array will be the Module for all module based 

substitutions. 

What each of the valid values represents is irrelevant to the 

process: 

 If what we want to encrypt, preserving the format, is 

a 16-digit credit card number or a 9-digit social security 

number, the process needs to have an array with 10 elements 

with different values, one for each of the decimal values from 

0 to 9.  

 If what we want to encrypt is a database field 

corresponding to a person’s name and we want the valid 

values to be all capital letters {A…Z}, all lower case letters 

{a…z}, the apostrophe and the space, we will need to have an 

array with 54 elements with different values. 

 If what we want to encrypt is a database field 

corresponding to an address and we want the valid values to 

be all capital letters {A…Z}, all lower case letters {a…z}, all 

ten decimal numbers {0…9}, the apostrophe, the comma, the 

period and the space, we will need to have an array with 66 

elements with different values. 

Which are those values and how they are ordered is totally 

irrelevant to the process because we are not using the byte 

value for the character itself, but its position within the defined 

alphabet. 

E. A practical example  

Let us suppose an organization wants to encrypt a specific 

field within a database and the group of valid values for each 

character in that field, expressed in decimal values are:  

{32,39,44,48…57,65…90,97…122}  

We can see they are 65 different values, and the group as 

a whole is non-continuous. 

The values can be stored into an array with 65 elements 

and there can be 65! (8.24765 * 10^90) possible orders for 

those values. 

Please notice there is no mention to the field length. This 

is because the field id and length are values that can be 

obtained and used during the process and has no impact over 

the encryption because everything is encrypted at a byte level. 

In this particular example, the module M will be 65 and an 
encryption algorithm using encryption substitutions like those 
presented here and complying with the seven steps of our 
technique will guarantee a very fast single-pass format 
preserving encryption without the need of any cycle walking 
or additional processing to obtain a valid result. 

It preserves the unconditional security and also offers the 
advantage that the encryption process timing can be 
accurately estimated based on the size of the information to be 
encrypted (or decrypted) independently of its content. 

Due to their intrinsic simplicity, all these substitutions are 

really fast and an algorithm using them and complying with 

the technique we presented here, can be easily implemented 

within existing systems without the need of massive 

investments in computational power or data structures 

modification. 

X. UNCONDITIONAL SECURITY 

The plaintext is finite and it is never random, which is a 

fact. Whatever needs to be encrypted has a measurable length 

and it is not random. It does not matter whether it is a text, an 

image, an audio, a video, a blueprint, a spreadsheet or 

whatever it may be; it is something that can be 

comprehended. Because if it cannot be comprehended, there 

is no need to encrypt it. 

Our encryption technique does not make any 

computational assumption and so it does not depend for its 

effectiveness on any computational hardness. 

Vigenère’s and Vernam’s cipher constraints and 

requirements for perfect secrecy are due to the use of a single 

encryption substitution (Modular Addition and XOR, 

respectively). Given the ciphertext, the only thing that is not 
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known is the key. The encryption substitution order of the 

Vigenère and the Vernam ciphers are publicly known, it is 

Modular Addition after Modular Addition and XOR after 

XOR respectively, repeated as many times as the length of the 

plaintext. 

What happens with the Vigenère and the Vernam ciphers 

if the key is not random and shorter than the plaintext? 

If the key is a sequence of equal characters, it will convert 

both the Vigenère and the Vernam ciphers into a Caesar cipher 

that can be easily broken. 

If the key is a sequence of alphabetic characters, it will turn 

Vernam cipher into a running key or Vigenère cipher, which 

can also be easily broken. 

How can we guarantee a cipher based on our technique 

and complying with the seven steps will offer perfect secrecy? 

A sequence of substitutions to be applied to the plaintext 

and the key can be generated from the third parameter, the 

substitution pool, the initial substitution order and the length 

of the key, and this sequence can be generated as long required 

to match the plaintext length and having no repetitions. That 

sequence of substitutions will also depend on the plaintext, so 

a different plaintext will generate a different substitution 

sequence for the exact same remaining parameters. 

So far, we can say that for any single byte, the ciphertext 

value will depend on the plaintext value, the key value and the 

specific substitution used.  

Being: 

 p the plaintext value 

 k the key value 

 a() the initial substitution order array 

 s the third parameter value 

 a(s) the value stored in the sth element of the array 

 fa(s) the encryption substitution triggered by a(s) 

 c the ciphertext value 
Equation (21) represents the encryption as:  

 

 c = fa(s)(p,k) 

 

Equation (22) represents the decryption as: 

 

 p = f’a(s)(c,k) 

 

Considering substitution f’a(s) to be the reverse of 

substitution fa(s). 

What happens if the key is shorter than the plaintext and it 

is not random? 

It does not affect the unconditional security because the 

key does not have a direct impact on the ciphertext that can be 

inferred in any way. Even if the attacker manages to know the 

substitution pool, it offers no information about its usage. 

The unconditional security is guaranteed based on that for 

the attacker: 

 The key is unknown. 

 The key length is unknown. 

 The third parameter is unknown. 

 The third parameter length is unknown. 

 The initial substitution order is unknown. 

 The processing block size or sizes is unknown. 

 Which ciphertext byte corresponds to which 

plaintext byte is also unknown. 

Even if the attacker knows the substitution pool and has 

infinite computational power and is able to try all possible 

keys and all possible substitutions for each byte and every 

permutation of the results and can purge all the invalid results 

in just a fraction of a second, the plaintext will still remain 

hidden at plain sight in a sea of false positives and the attacker 

will still be unable to decide which elephant on the beach is 

the right one because every possibly valid plaintext with the 

same length or shorter has the exact same probability of being 

the original plaintext without any indication of which one is 

the right one. Any original text may be padded adding spaces 

at the end without affecting the text but generating a longer 

plaintext. Once decrypted, those extra spaces at the end has no 

impact at all in the text content and meaning.  

XI. PRACTICAL APPLICABILITY 

Modern complexity-based cryptography requires to have 

a large amount of resources available, specifically 

computational power, processing speed and memory and as 

the complexity increases resource requirements also increase. 

While symmetric ciphers like AES plans to use 512 bit 

keys and public key ciphers like RSA plan to use 4,096 bit 

keys in an attempt to resist a quantum attack, as the number 

of qubits keeps growing so will do their key length 

requirements. Soon Megabit-long keys will be used and 

expanded to Gigabit-long keys to later be expanded to 

Terabit-long keys, and so on, and the same will happen with 

the computational power and processing speed requirements. 

On the other hand, our proposed encryption does not need 

neither long keys nor high processing speed and will not need 

to expand key lengths or processing speed requirements as 

the number of qubits in quantum processors keeps growing. 

It can be used even with pen and paper and some spare time. 

A. Performance Requirements 

Although more complex substitutions can be built up, 

increasing the total number of substitutions available, our 

example has shown how using basic mathematical operations 

like modular addition and modular subtraction suffice to 

provide unconditional security. It is not even required to use 
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slightly more elaborated mathematical operations like 

multiplication or division, less to use more complex or 

advanced math. 

Less processing power required means simpler, smaller 

processors emitting less heat and requiring less electrical 

power consumption. Most hardware controllers from the 

simplest to the most complex ones already have built-in basic 

math operations like addition and subtraction embedded 

making it very simple to add encryption to them without 

increasing their power requirements. 

Considering the computational power required by AES or 

RSA, what is required for elliptic curve and what may be 

required for lattices encryption, it becomes obvious that our 

proposed encryption have much less computational power 

requirements. 

The use of such simple math guarantees true and absolute 

cross platform encryption/decryption. 

These low power requirements allow for this encryption 

to be easily added to any device either through a hardware, 

software or mixed implementation at a very low cost without 

jeopardizing its security. 

B. Memory Requirements  

In our examples, we have shown how the plaintext, the 

key, the third parameter and the ciphertext can be processed 

just one byte at a time, when we use a single processing block 

size of one byte, only the fourth parameter requires a 

maximum of 256 bytes (2,048 bits) of memory to store the 

substitution order array when the alphabet used contains all 

possible byte values. 

The minimum memory requirements for a cipher based 

on our technique will depend on how it is implemented, the 

substitutions used, the maximum processing block size 

allowed and the reading and writing buffer sizes. 

We have seen that the plaintext can be anything, as far it 

is a finite sequence of bytes and the same applies to the key 

and the third parameters, and so the ciphertext will also be a 

finite sequence of bytes. 

C. Applications  

The list of possible applications is endless, so we will 

provide just a few of them we are currently working on. 

 Encrypt Data at Rest 

We tried our encryption test software in 

Microsoft Windows encrypting files of different 

sizes having encrypted and decrypted files up to 

1 TB (one Terabyte) without any kind of hassle 

and with zero errors. 

 Encrypt Data in Transit 

Our encryption test software is capable of 

reading a local file and remotely writing the 

encrypted file without sending any unencrypted 

data. 

 Encrypted Remote Control 

We are currently testing remote controlling a 

drone using encrypted control packets and 

making the drone to identify and ignore any 

invalid packet making its control hacking-proof.  

This is a work in progress and there is still a lot of work 
ahead before it could be considered complete. 

D. Pros and Cons  

The pros can be resumed in the fact that our proposed 

encryption is light, fast and unconditionally secure. Other 

pros are that it also allows for multiple different ciphers to be 

built up based on it. Its low memory and processing power 

requirements makes it an ideal solution to add encryption to 

the Internet of Things (IoT) and all the smart devices it is 

bringing up. Its Format Preserving Encryption capabilities 

makes it an ideal tool to develop database encryption 

solutions that would not require to modify the existing data 

structures. The best pro is that anything encrypted using a 

cipher based on it will remain impervious to any quantum 

attack, no matter how many qubits the quantum processor 

may have, or whatever may come later. 

Due to its simplicity, low requirements and 

implementation ease, it has no cons, no drawbacks and no 

special requirements of any kind. 

XII. KEY AND MESSAGE DISTRIBUTION 

Safe message and key distribution have been an issue 

since the very origin of cryptography and have played a major 

role in the development of the field, but the advent of internet 

has changed everything. A message of any size can be 

accurately sent from one point to another through cyberspace, 

the availability of cloud storage and file repositories has made 

internet the home of trillions of files of every possible type. 

Now, there is no need to even send the encrypted file or 

the key to the addressee, the address from where they can be 

downloaded will suffice. The internet address of a file can be 

much shorter than the file itself. With all the cloud and data 

files storage providers available around the world, how could 

a single file be located without knowing its exact name and 

location? 

From cloud storage providers to file storage providers, 

one single file hidden between trillions of files can be 

accessed only knowing how to reach it.  

Some storage providers and file address link shrinking 

services allow to shorten the full file name and address to just 

7 or 8 alphanumeric characters, each capable of identifying 

about 3 trillion different files. 

The sender and the addressee only need to agree on the 

storage or storages and exchange only those very short codes 
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already encrypted. A 10 GB file can be shared using an 

encrypted message containing only 7 or 8 characters that can 

be anywhere. As part of a comment on a news or blog page, 

as part of a tweet and an incredibly huge etcetera. 

XIII. CONCLUSIONS 

All cryptography in use is vulnerable to an attacker with 

enough computational power. Everything that has been 

digitally stored or transmitted or will ever be digitally stored 

or transmitted by any means (network, wireless, internet, etc.) 

may be publicly disclosed sooner than later. Unencrypted 

databases may be hacked and its content made public like 

what happened in August 2016 when the World Anti-Doping 

Agency (WADA) was hacked by Russian hackers and private 

health records from famous athletes were made public to 

distress and discredit them. 

The simplicity and ease of implementation of poly-

substitution encryption sheds a light for the development of 

true cross-platform encryption solutions and add-ons fully 

compatible across hardware and software platforms and 

operating systems. 

Poly-substitution encryption may be easily added to 

existing hardware, software and mixed solutions. Poly-

substitution encryption cannot prevent hacking or system 

intrusions but may make the effort fruitless and useless. 

A low cost and unconditionally secure format preserving 

encryption is urgently needed to preserve the privacy of 

sensitive but personal information. We want to help protect 

the privacy of personal information around the world. 

Assuming there is currently enough available 

computational power to try in a very short time every single 

key length and value, with every single processing block size 

and every single possible encryption substitution there will 

still not be possible to decide which one of the apparently 

valid results is the true original plaintext. 

Even knowing that the plaintext is just plain text, any 

possible text with the same length or shorter (just filled with 

spaces at the end, at the beginning, or within, in order to reach 

the same length) has the exact same possibility of being the 

original plaintext. That is the essence of unconditional 

security, something none of the currently in use encryption 

standards or solutions can offer. 

We have seen here that this poly-substitution encryption 

technique offers the same level of unconditional security 

guaranteed by the Vernam cipher without its constraints. 

With billions and billions of files available through the 

internet and the capability of using any of them as a key, as a 

third parameter and even as the original substitution order, 

nobody needs to remember long keys, just needs to remember 

which files were used and how to reach them. 

If one has enough computational power like quantum 

computing promises to offer when it becomes widely 

available, one may be able to break and read any file 

encrypted with any of the current standards, techniques and 

tools with two exceptions: 

 Anything protected through a One-Time-Pad (or a 

proper use of Vernam’s or Vigenère’s cipher) will 

remain secret. 

 Anything protected through the use of a cipher based 

on our proposed technique and complying with its 

seven steps will remain secret. 

XIV. FUTURE WORK 

As we stated before, this is a work in progress and there is 
still a lot of work ahead before it could be considered 
complete. 

We have already implemented an encryption solution 
complying with the seven steps defined here and used it for 
our tests. It is a Windows app programmed in Visual Basic 6.0 
that uses 256 different encryption substitutions and is capable 
of encrypting and decrypting any kind of files up to about 900 
TB (900,000,000,000,000 bytes long) and fast enough to 
cipher/decipher an 80 MB file in less than five seconds. There 
is plenty of room to enhance and improve the encryption speed 
by optimizing the code and using programming languages that 
may run faster.  

We do not have the resources to test up the maximum 
possible file size but already tested it on a 1 TB (one Terabyte) 
text file, encrypting and decrypting it without any issue or 
error. We will continue testing encrypting and decrypting 
larger files of different types, including databases, audio and 
video files, images and compressed files, etc. 

Future work will aim to validate the ideas presented in this 
paper by means of additional practical results, simulations, 
statistical analysis and practical performance comparisons 
with other ciphers.  

We are open to share our development with the 
cryptographic community to be fully analyzed, tested, 
improved and enhanced. 

Future work will also aim to develop and test practical 
solutions for low cost Format Preserving Encryption 
algorithms based on the technique presented here. 
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