
Seven Steps to a Forever-Safe Cipher

(An Introduction to Poly-Substitution Encryption)

Julián Murguía Hughes

Independent Researcher

Montevideo, Uruguay

email: jmurguia@montevideo.com.uy

Abstract—All cryptography currently in use is vulnerable to an

attacker with enough computational power and most of them

will become obsolete once quantum computing becomes widely

available. Continuing the current path seeking for more and

more complex algorithms cannot guarantee neither secrecy nor

unbreakability. Increasing the complexity while it keeps being

vulnerable does not seem to be the right approach. Thinking

outside the box is not enough. We need to start looking from a

different perspective for a different path to ensure data privacy

and secrecy. In this paper, we introduce Poly-Substitution

encryption and share advances in searching for unconditional

security instead of complexity and we try to light a path to a

whole different cryptography based on simplicity and resistant

not only to quantum attacks but also to what may come later,

including attackers with infinite computational power.

Keywords-cipher; poly-substitution; unconditional security;

perfect secrecy; inifinite computational power; quantum-

resistant; cryptography; secrecy; unbreakability; privacy;

encryption; quantum; computing; resistant; data.

I. INTRODUCTION

In this work in progress, we show current achievements in

the field of cryptography and present some future ideas in this

area and their potential. No final results or final data is

available at this time.

This work updates, continues and expands our paper

“Seven Steps to a Quantum-Resistant Cipher” presented at

SECURWARE 2016, The Tenth International Conference on

Emerging Security Information, Systems and Technologies;

held in Nice, France – July 24-28, 2016 [1].

Since the beginning, cryptography has worked the same

way; you take the original source of information (the

plaintext), a key and a fixed substitution and you apply the

substitution using the plaintext and the key as input to generate

the cryptogram or ciphertext as its output. Modern

cryptography keeps working in the exact same way.

A. Definitions

To set a common ground and avoid confusions and

misunderstandings, a minimum set of definitions is required

and listed here:

Symbol. A symbol is a representation of something. From

a single character in any given language like English or an

ideogram in Chinese to an abstract concept like π representing

the relation between a circumference and its diameter, which

is a numeric value with infinite decimal values never

repeating.

Alphabet. An alphabet is a finite set of symbols listed in

a given order.

Shifted alphabet. It is an alphabet where the symbols are

shifted place by a given number of positions from the original

order and the alphabet is considered circular for the shifting

process, where the first symbol follows the last one and the

last symbol precedes the first one.

Mixed or Permuted alphabet. It is an alphabet where the

order of the symbols is arbitrarily mixed or permuted from the

original order.

Word. A word is a finite sequence of symbols in an

arbitrary order where not all the symbols from the alphabet

need to be present and any symbol may appear more than

once. The meaning of a word does not depend on the order of

the symbols within the alphabet.

Phrase. A phrase is a finite sequence of separated words.

Text. A text is a finite sequence of separated phrases.

Dictionary. A dictionary is a text listing all valid words

and using phrases to define the meaning of each one.

Plaintext. The original unencrypted text or message.

Ciphertext. The result of encrypting the plaintext.

Unconditionally Secure System. We will use the

definition given by Whitfield Diffie and Martin E. Hellman

[2] as they stated that “a system that can resist any

cryptanalytic attack, no matter how much computation is

allowed, is called unconditionally secure”.

B. Caesar Cipher

Although the first known evidence of some form of

cryptography is almost four millennia old [3], one of the

oldest known forms of encryption is the Caesar’s cipher. It

was a substitution cipher where each character was replaced

for the one located three places later in alphabetic order and

considered the alphabet as a round circle as it is shown in

Figure 1, where ‘A’ follows ‘Z’ and so, ‘X’ would be

replaced by ‘A’, ‘Y’ would be replaced by ‘B’, ‘Z’ would be

replaced by ‘C’, ‘A’ would be replaced by ‘D’ and so on.

To encrypt or cipher a plaintext using Caesar’s cipher,

each character from the plaintext is replaced by the one

placed three positions moving clockwise. To decrypt or

decipher a ciphertext, each character from the ciphertext is

replaced by the one located three positions moving counter

clockwise.

1

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Circular positional alphabet and position values.

The Caesar’s algorithm was just a shift by places process

and the key used was just three, indicating the algorithm that

each character in the plaintext needed to be shifted by three

to generate the cryptogram. All shift by places encryption

algorithms are generically referred as Caesar ciphers. As in

this type of cipher each letter is replaced always by the same

letter, it is called a mono-alphabetic substitution cipher.

The Caesar’s cipher can be represented using modular

arithmetic. Modular arithmetic is a system of arithmetic for

integer numbers where values wrap around upon reaching a

maximum value.

To represent Caesar’s cipher using modular arithmetic,

we start by assigning a numeric value to each letter from the

alphabet according to their position within such alphabet. In

the classic English alphabet and its standard alphabetic order,

to the letter “A” corresponds the value 0 (zero), to the letter

“B” corresponds the value 1, and so up to the letter “Z” with

a value of 25. Figure 2 shows a traditional positional alphabet

and the numeric value associated to each letter of such

alphabet.

Figure 2. Positional Alphabet and Position Values.

As the maximum value is 25 and the value 26 wraps

around to zero, the modulus for the Caesar’s cipher will be

26.

The substitution of any letter (x) for the one located n

places to the right can be represented through the

mathematical formula:

En(x) = (x + n) mod 26 (1)

For the original Caesar’s cipher, the formula to cipher

would be:

E3(x) = (x + 3) mod 26 (2)

The reverse deciphering process can be represented

through the mathematical formula:

Dn(x) = (x - n) mod 26 (3)

For the original Caesar’s cipher, the formula would be:

D3(x) = (x - 3) mod 26 (4)

Although it is considered obsolete and today it can be

broken without the need of a computer, just with pencil, paper

and some spare time, it lasted for centuries.

C. Vigenère Cipher

In 1553, Italian cryptologyst Giovan Battista Belasso

described in his book [4] a new cipher later attributed to

Blaise de Vigenère and which is still known as the Vigenère

cipher.

This cipher, instead of using a single key value for the

substitution, uses a sequence of letters so that instead of

performing a mono-alphabetic substitution, performs what is

called a variable or poly alphabetic substitution, where each

letter may produce a different result.

Vigenère’s encryption is functionally based on the use of

the tabula recta, invented by German monk Johannes

Trithemius in 1508, which is a square table of alphabets

where each row is made by shifting the row above one

position to the left.

To cipher, the plaintext character to be encrypted is

looked into the table’s first row, the character from the key to

be used is looked into the table’s first column and the

ciphertext character will be the one located at the intersection

of the column corresponding to the plaintext character with

the row corresponding to the key character. To decipher, the

key character is looked into the first column and then that row

is looked for the position of the ciphertext character. Once

found, the character at the top of this column will be the

plaintext character.

Figure 3 shows the Tabula Recta created by Johannes

Trithemius, which is also called the Vigenère table.

Figure 3. Vigenère Table.

2

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Vigenère cipher can also be represented using

modular arithmetic, assigning a value to each letter, the same

way we did with the Caesar’s cipher in Figure 1 and also in

Figure 2.

To cipher, for each letter in the plaintext message and the

corresponding key letter, the alphabet position values are

added using modular addition module 26 and the resulting

value will indicate the position of the ciphertext letter

corresponding to the result.

Being x the letter in position n within the plaintext message

we want to cipher and k the corresponding letter from the key

to be used, the cipher process can be represented using the

following formula:

E (xn) = (xn + kn) mod 26 (5)

To decipher, the formula would be:

D (xn) = (xn - kn) mod 26 (6)

The Vigenère cipher is known for being easy to be

understood and implemented and hard to break. It lasted for

almost four centuries, as we will see when we address its

vulnerability in Section II.

D. Vernam Cipher

About a century ago, Gilbert Vernam invented an

encryption technique [5] (Patent US 1310719 [6]) that thirty-

something years later Claude Shannon proved [7] it offered

Perfect Secrecy and properly used will remain impervious to

any attack no matter how powerful the attacker may be,

including quantum computing and even an attacker with

infinite computational power. It is not used because it requires

the key to have the same length as the plaintext, to be truly

random and not to be reused. Those constraints were

considered and are still considered strong enough to prevent

its usage.

As today’s information is always measured in bytes or

multiples of byte sizes (Kilobytes, Megabytes, Gigabytes,

Terabytes, etc.) for all the explanations and examples here, the

byte as the basic unit of information will be used. Considering

the byte as just a group of eight bits, being a bit a binary digit

that can either have a value of zero (0) or one (1).

A single byte can represent 256 different values, from 0 to

255 in decimal notation, from 00 to FF in hexadecimal

notation and from 00000000 to 11111111 in binary format

representation.

For a byte, the Vernam cipher will perform exactly the

same way as for a single bit, it will use the XOR function

between the plaintext byte and the key byte. The behavior of

the function is simple, it will compare each bit within the byte

from the plaintext to the bit in the same position in the byte

from the key and will generate a bit with a value of zero if both

bits have the same value and one if they are different. This

XOR function will return the cryptogram or ciphertext byte as

its result. For a specific plaintext byte value, each of the 256

possible values of the key byte will produce a different

ciphertext byte value.

If you get the cryptogram or ciphertext byte and do not

know the value of the key byte, every single possible value of

the key byte has the exact same probability of being the right

one and you have no way to decide which one of them is the

right one and thus, which of the 256 possible values of the

plaintext byte is the right one.

There is no possible cryptanalysis of this process and a

brute force attack will end up with the plaintext mixed with a

huge number of false positives (apparently valid results that

are not the original plaintext) with no way to tell which one is

the original one.

Shannon proved that even knowing that the plaintext is

just text, any possible text with the same length has the exact

same probability of being the original plaintext [8].

Since then, algorithms have grown in complexity looking

to enhance the security of the process and to make harder to

recover the plaintext without knowing the key.

But what has not changed is the logic, i.e., the way it is

done. Cryptography is still using an algorithm with a fixed set

of instructions that will use the plaintext and the key as input

to produce the ciphertext. The same plaintext and the same

key will always produce the same cryptogram.

There are two main attacks to try to get the plaintext

without knowing the key: Cryptanalysis (analyze the process

trying to find weaknesses or shortcuts that may allow to

retrieve the original information without having the key) and

Brute Force (try all possible keys).

Modern cryptography is not unbreakable and bases its

security on two premises:

1) Cryptanalysis is not possible or too complex to be

achieved.

2) Brute Force attacks require too much time and

computational power.

In this paper, we will prove that Caesar and Vernam

ciphers are just reduced or limited versions of the Vigenère

cipher; we will introduce our proposed poly-substitution

encryption technique and the seven steps to build

cryptographic algorithms based on it and also prove that the

Vigenère cipher is a mono substitution cipher and a reduced

or limited version of our proposed encryption.

The rest of this paper is organized as follows. Section II

will analyze the Vigenère cipher and prove Caesar and

Vernam ciphers are just limited or reduced versions of it and

will also explain why we consider the Vigenère cipher as a

poly alphabetic mono substitution cipher. Section III

describes data persistence, cryptography state of the art and

their vulnerability to quantum attacks. Section IV introduces

poly-substitution encryption, its theory, basis, definitions and

how it works. Section V describes each of the seven steps we

defined to build a poly-substitution cipher based on our

proposed encryption technique. Section VI analyzes a cipher

constructed using our proposed encryption and presents an

example of it and its results. Section VII compares this sample

3

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cipher against Vigenère, Vernam and other current standards.

Section VIII analyzes all possible attacks to our proposed

encryption. Section IX describes how partial data universes

are handled by symmetric and public key cryptography and

their limitations to offer Format Preserving Encryption (FPE);

it will also show how our proposed technique handles them

better. Section X describes how our proposed poly-

substitution encryption can offer and provide unconditional

security. Section XI addresses practical applicability. In

Section XII we address key and message distribution taking

advantage of the use of internet. Section XIII describes the

conclusions and Section XIV describes the future work and

goals.

II. THEY ARE ALL VIGENÈRE

A. Caesar is Vigenère

It is trivial to prove that any generic Caesar cipher is a

reduced or limited version of the Vigenère cipher, where the

key is just one symbol or character long.

B. Vernam is Vigenère

At the level of one bit, modular addition module 2,

modular subtraction module 2 and XOR, all behave the same

way and are in fact the exact same operation as it is shown in

Figure 4.

Figure 4. One-Bit Binary Operations.

Based on that, it is trivial to prove that the Vernam cipher

is a reduced or limited version of the Vigenère cipher, where

the alphabet has only two different symbols or characters.

C. Vulnerability of the Vigenère Cipher

In 1863, Friedrich Wilhelm Kasiski published a book about

cryptography [9], where he described a method for

cryptanalysis or cryptographic attack based on the existence

of repeated sequences within the ciphertext. He assumed

those repetitions were caused by a key shorter than the

message and that they represented repeated sequences within

the plaintext encrypted using the same portion of the key.

The Kasiski method argued that the distance between

repeated sequences was a multiple of the length of the key.

Starting from that, searched for multiple repeated sequences,

measured the distances between repetitions and calculated

the greatest common divisor to find a value that will be the

length of the key or a multiple of it. Once the length of the

key is obtained, the ciphertext is divided into blocks of that

size and sub-cryptograms are formed by taking the first

character of each block, then the second one and so on. Each

one of those sub-cryptograms will have been encrypted using

the same symbol or letter and so each one of them will be a

mono-alphabetic substitution and so we would be able to

perform a simple statistical frequency analysis attack.

The Kasiski statistical frequency analysis attack is based

on two pillars:

 The known statistical distribution of the letters in

a regular text.

 The known distance between the letters from the

alphabet.

The most common letters in English are letter “E”, letter

“T” and letter “A”, in that order; and is known that letter “E”

is the fifth letter of the alphabet and its value is 4, the letter

“T” is in position 19, 15 positions to the right of letter “E”,

and letter “A” is in position 0, 7 positions to the right of letter

“T”.

The Kasiski statistical frequency analysis attack will search

in each sub-cryptogram the frequency distribution of the

encrypted letters, focusing on those with highest frequencies

(those who should correspond to the letters “E”, “T” and “A”)

and that also comply with the alphabet structure and the

distance between the most common letters within the

alphabet. As letter “E” is in position 4, the following formula

is true:

Key = cipher letter – E = cipher letter - 4 (7)

So, the relative position of letter “E” on each sub-

cryptogram will form the key ciphered through a substitution

cipher like Caesar’s with a displacement of 4 positions to the

right. From it, the key could be retrieved by a simple Caesar

decryption using a displacement value of 4.

Statistical analysis is also used to search for repeated n-

grams (known sequences of letters, “e.g.”, bigrams “TH”,

“HE”, “IN”; trigrams “THE”, “AND”, and so on).

The use of a mixed or permuted alphabet only adds some

extra work but it is still vulnerable.

Christopher Swenson, on his book [10], explains the

Index of Coincidence (IC) defined by William F. Friedman

as a measure of how evenly distributed the character

sequences are within the frequency distribution table.

He considered "The Complete Works of William

Shakespeare" as an adequate representation of the English

language and calculated its IC to be approximately 0.0639.

He defines theoretically perfect IC as if all characters

occurred the exact same number of times so that none was

more likely than any other to be repeated, so, for an alphabet

of 26 characters, he calculated it to be 1/26, which is

approximately 0.03846.

IC can also be used with bigrams (sets of two characters)

and trigrams (sets of three characters) to measure how evenly

distributed they are within their corresponding distribution

tables.

The theoretically perfect IC for bigrams is approximately

0.0015 (1/26*26) and for trigrams is approximately 0.00006

(1/26*26*26).

4

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In English, a maximum of 676 bigrams and 17,576

trigrams can exist, although not every one of them may be

valid.

The three most common bigrams HE, TH and IN have an

IC of about 0.035, 0.034 and 0.0189 respectively. The most

common trigram THE, has an IC of about 0.022.

William F. Friedman [11] presents a practical example

using IC to break a poly alphabetic mono substitution

encryption when the key has been reused.

The conditions set by Shannon to the Vernam cipher for

it to offer unconditional security (The key should be as long

as the plaintext, it should be random and it should not be used

again) makes it a One-Time-Pad and the same applies to the

Vigenère cipher. A plaintext encrypted using the Vigenère

cipher using a random key with the same length as the

plaintext that is not used again offers the same unconditional

security defined by Shannon.

D. Mono Substitution

Although being the Vigenère cipher a poly alphabetic one

and considering it can be used in reverse and use the

decryption process to encrypt and the encryption process to

retrieve the original plaintext, the substitution used along the

encryption or decryption processes is always the same on

each instance.

Each symbol or character is processed using the exact same

substitution, modular addition for the encryption and modular

subtraction for the decryption.

That is the reason why we call the Vigenère cipher a poly

alphabetic mono substitution cipher using mono substitution

encryption.

III. STATE OF THE ART

A. Information and Data Persistance

Something that is not directly related to cryptography but

needs to be considered together because it has a direct impact

on the information life cycle is the persistence of any data or

information digitally transmitted or stored. Any information

digitally transmitted or stored, persists.

Transmitted data leaves traces and copies between the

source and the destination. Even encrypted information,

transmitted through secure connections travels from router to

router, from server to server from the point of origin to the

destination point, and it can be copied in travel without being

noticed.

Stored data also leaves copies behind. To totally delete

specific data is very but very hard and cannot be assured nor

guaranteed. Computer forensic tools are capable of retrieving

information believed to have been deleted.

Automatic backups, storage cache, redundant storage and

the cloud also help to the persistence of the information.

Two simple and clear examples of information persistence

are:

 A picture uploaded into a social network remains

there even after the uploaders believe they deleted them.

 Data from no longer available internet servers or

storages can still be found in web search engines’ caches.

B. Cryptography

According to the European Telecommunications Standards

Institute (ETSI), “Without quantum-safe encryption,

everything that has been transmitted, or will ever be

transmitted, over a network is vulnerable to eavesdropping

and public disclosure” [12].

But the privacy concerns go beyond that, once a hacker

breaches the security of a system or organization, the

information stored there is usually not encrypted. Wikileaks,

the Panama Papers, the NSA breach and the World Anti-

Doping Agency (WADA) medical records disclosure are

clear examples of that.

Encrypting sensitive information within a database is not

an easy or low cost task and once a hacker has gone beyond

the system security, everything there is at hand and readable.

We will come back this topic later when we address Format

Preserving Encryption related to partial data universes in

Section IX.

Discussion and comparison between symmetric and public

key cryptography currently in use becomes irrelevant once

one understands that none of them is unbreakable and that

anything encrypted with any of them can be read if the

attacker has enough computational power. Something that

will happen sooner than later.

Public key algorithms such as RSA (Rivest, Shamir and

Adleman), ECC (Elliptic Curve Cryptography), Diffie-

Hellman and DSA (Digital Signature Algorithm) will be

easily broken by quantum computers using Shor’s algorithms

[13] and so, they are deemed to be insecure to quantum

computing.

Symmetric algorithms as AES (Advanced Encryption

Standard) [14] or Blowfish [15] are believed (but not proven)

to be resilient against quantum attacks by doubling the key

length.

Cecilia Boschini, from IBM’s Zurich Research

Laboratory, was overwhelming during her presentation in

IBM’s annual conference Think 2018, when she emphatically

affirmed that “The security our current cryptography is based,

are solvable with a quantum computer”.

During his talk at RSA 2018 Conference held in San

Francisco, CA, USA, Konstantinos Karagiannis, CTO of

Security Consulting, BT Americas, estimated that symmetric

algorithms (DES, AES) with 512-bit key lengths will fall

first, when the number of qubits surpasses 100.

According to Sergey Lurye from Kaspersky's Lab blog

[16], "We may forecast that symmetric encryption with 512-

bit keys might finally get breached by a hypothetical 144-

qubit Bristlecone (Google’s latest quantum processor)

descendant sometime in late 2019."

Even theoretical Quantum Key Distribution (QKD) has

been proved vulnerable to eavesdropping.

Any cipher that bases its strength on its complexity and in

the assumption of the unavailability of the computational

5

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

power required for an attack, will eventually be broken and

persisting on this way will only provide a false sense of

security that will last briefly.

C. Post-Quantum Cryptography

Post-Quantum Cryptography is still theoretical and far

from being available.

Johannes A. Buchmann, Denis Butin, Florian Göpfert and

Albrecht Petzoldt from the Technische Universität Darmstadt

in their paper “Post-Quantum Cryptography: State of the Art”

[17] ask and answer the question. How far is post-quantum

cryptography? Their answer; “There are many promising

proposals some of which are rather close to becoming

practical”.

Some theoretical and practical advances in Quantum

Cryptography had already been proved to be vulnerable even

to current non-quantum computers.

D. Vulnerability

By definition, all the cryptography in use nowadays is

vulnerable to an attacker with enough computational power.

The matter is not if they can be broken but when will this

happen.

Cryptography and cryptographers have been racing the Red

Queen’s race for a very long time. Like Alice in Lewis

Carrol’s “Through the Looking-Glass” [18], cryptographers

have been taking all the running they can do, just to keep in

the same place.

All used encryption algorithms are just temporary

solutions that will eventually be rendered obsolete. A clear

example of this is the Data Encryption Standard (DES) [19],

it became a standard in 1977 and was broken by brute force

in 1999. The Advanced Encryption Standard (AES) became

a standard in 2001 and is already 17 years old.

All this because, with the only exception of the Vigenère

and Vernam ciphers properly used, none of the currently used

encryption solutions can answer yes to the simple question:

Can this cipher resist an attacker with infinite computational

power?

It is not sure whether any of the new ciphers and

algorithms being developed, including those considered to be

post-quantum ones, can answer yes to that same question or

not.

Cryptographers will continue running the Red Queen’s

race as far as they continue to design complex but breakable

algorithms offering only conditional and temporary security

that will eventually be rendered obsolete.

E. Quantum Computingy

Quantum Computing is computing using quantum

mechanics and is a field that was initiated by the work of Paul

Benioff [20] and Yuri Manin [21] in 1980, Richard

Feynmann [22] in 1982 and David Deutsch [23] in 1985.

Current digital computers use data encoded into binary digits

or bits, which can have only one value or state (0 or 1). A

Quantum Bit or Qubit can have a value of 0, or 1 or 0 and 1,

all at the same time.

In May 2016, International Business Machines (IBM)

publicly announced they will grant access through their cloud

to one of their 5 qubit quantum computers for everyone to run

programs or just play with it, as a way to motivate, encourage

and accelerate innovation.

In October 2017, Edwin Pednault, John A. Gunnels,

Giacomo Nannicini, Lior Horesh, Thomas Magerlein, Edgar

Solomonik, and Robert Wisnieff presented their paper

“Breaking the 49-Qubit Barrier in the Simulation of Quantum

Circuits” [24]. There they present calculations that were

previously thought to be impossible due to impracticable

memory requirements.

In November 2017, the MIT Technology Review informed

and commented IBM’s announcement of a 50-qubit

commercial quantum computer [25].

In March 2018, Google introduced their new Bristlecone

quantum processor with 72 qubits.

They are not the only ones on the field. Most governments

and cutting edge technological companies and universities

around the world, are dedicating time and effort in researching

and investing in the development, design and manufacturing

of quantum computers.

On May 2016, the European Commission announced €1

billion quantum technologies flagship project for the next ten

years with the objective to reinforce European scientific

leadership in quantum research and in quantum technologies.

Canadian company D-Wave [26] is already manufacturing

quantum computers with two thousand qubit processors (the

D-Wave 2000QTM System) and they continue improving,

growing and expanding their processors.

According to CBC News, big names in the worlds of big

brains and cutting edge technology like Google, NASA,

Lockheed Martin and Los Alamos National Laboratory,

among others, are investing big money into this company.

The Los Alamos National Laboratory’s magazine 1663, on

its July 2016 edition [27], published a very interesting article

titled “Not Magic… Quantum”, telling about a nascent

commercial quantum computer that arrived to their facilities

and may solve certain problems with such astonishing speed

that it would be like pulling answers out of a hat.

Bjoern Lekitsch, Sebastian Weidt, Austin G. Fowler,

Klaus Mølmer, Simon J. Devitt, Christof Wunderlich and

Winfried K. Hensinger published the blueprint for a

microwave trapped ion quantum computer in Science

Advances magazine in February 2017 [28].

What we hope to achieve is to provide a technique to create

ciphers offering perfect unconditional security against

eavesdroppers no matter how arbitrarily powerful they may

be or become in the future and without the constraints the

Vigenère and Vernam ciphers have.

We want to provide a technique to create ciphers with

perfect unconditional security against arbitrarily powerful

eavesdroppers even if they have infinite computational

power.

Something none of the currently in use standards and

solutions can offer.

6

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. POLY-SUBSTITUTION ENCRYPTION

A. Multiple Substitutions as Part of the Encryption

In mono substitution encryption, the ciphertext is usually
referred as the result of applying the key to the plaintext and
this is not exact, which leads us to our first definition:

Definition 1. In substitution encryption, each ciphertext
character is the result of applying the defined substitution and
the corresponding key character’s positional value to the
plaintext character.

Based on that, we define the ciphertext as follows:
Definition 2. The ciphertext is the result of applying a

sequence of pairs formed by the substitution and the key value
to each symbol or character from the plaintext until the
plaintext is exhausted.

It is crucial to understand that the ciphertext is not just the
result of applying the key to the plaintext but the result of
applying the sequence of pairs formed by each substitution
and each key value used.

When the key is shorter than the plaintext, it wraps up at
the end starts to repeat. In fact, in mono substitution
encryption what starts to repeat is the same sequence of pairs
formed by the substitution and the key value.

B. Multiple substitutions

Vigenère used modular addition as the substitution for
encrypting and modular subtraction as the substitution for
decrypting and those two substitutions are different, as the
following example shows:

(17 + 23) mod 26 ≠ (17 – 23) mod 26 (8)

(17 + 23) mod 26 = 14 (9)

 (17 – 23) mod 26 = 20 (10)

We used module 26 because Vigenère used an alphabet

with 26 different symbols or characters, but an alphabet may
include any number of symbols or characters with a minimum
of two.

From now on, we will consider a generic alphabet called
A that contains a number equal to a of different symbols or
characters, being a ≥ 2.

Formulas (5) and (6) will be generically expressed as:

E (xn) = (xn + kn) mod a (11)

D (xn) = (xn - kn) mod a (12)

Being v and v’ two integer variables with values from 0 to

a–1, the following formulas are always true:

(xn + kn + v) mod a = (xn + kn + v’) mod a, for v = v’ (13)

(xn + kn + v) mod a ≠ (xn + kn + v’) mod a, for v ≠ v’ (14)
We will represent Vigenère’s encryption through the

mathematical formula:

E (xn) = (xn + kn + v) mod a (15)

Vigenère’s decryption through the mathematical formula:

D (xn) = (xn - kn - v) mod a (16)

So far, we have as many different encryption and

decryption substitutions as symbols or characters are present
in the alphabet, and as any decryption substitution can be used
for encryption, we have in fact twice as many substitutions as
symbols or characters in the alphabet.

If we take into consideration another mono substitution
cipher as it is the Beaufort cipher, created by Sir Francis
Beaufort, we can get another set of substitutions.

The Beaufort cipher, created by Sir Francis Beaufort, is a
variation of the Vigenère cipher where, plaintext is subtracted
from the key in order to obtain the ciphertext.

The logic is similar, only a different substitution is used,
as it is shown in the following formula:

 E (xn) = (kn - xn) mod a (17)

Applying what we have seen, such formula will become

the following one:

 E (xn) = (kn - xn + v) mod a (18)

The main difference here is that while in the Beaufort

cipher the encryption and decryption substitution is the same
(the plaintext is subtracted from the key to obtain the
ciphertext and the ciphertext is subtracted from the key to
recover the original plaintext), for v ≠ 0, the formula for the
decryption substitution will be:

 D (xn) = (kn - xn - v) mod a (19)

For v = 0, the encryption and decryption substitutions are

both the same.
This proves the existence of far more available encryption

substitutions than symbols or characters in any given alphabet.

C. Multiple Alphabets

The use of more than one alphabet is possible, each with
its own set of substitutions and the substitution to be used
selected according to the alphabet the plaintext belongs to.

Suppose there are two alphabets, one with the letters A…Z
and another one with the numbers 0…9, that way the
encryption process may allow to encrypt letters into letters and
numbers into numbers in a single pass.

We will come back to this later in Section IX.

D. Fixed Substitution Sequences

Arbitrary Sequences of substitutions can be built up with
any given length, using any available substitution and placing
them in any order. Each substitution may be used more than
once and not all of them require to be used.

7

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As with the key, the substitution sequence wraps up at the
end when the plaintext is longer than the sequence.

If the key and the substitution sequence have the same
length, then the same sequence of pairs formed by the
substitution and the key value will repeat and that will make
the whole encryption process vulnerable to a statistical
analysis attack.

But, if the key and the substitution sequence have different
lengths, when the key starts to repeat, the substitution
sequence will not be the same and so there will be no sequence
pair of substitution and key value at least until a position is
reached within the plaintext equal to the less common multiple
of the lengths of the sequence and the key.

If the less common multiple of the lengths of the
substitution sequence and the key is larger than the length of
the plaintext, unconditional security will be achieved, but only
on such case.

E. Variable Substitution Sequences

The best and simplest way to get a variable substitution
sequence is to get a fixed one and make it variable.

When hardware is constructed or software is written, the
substitutions to be used are listed and located in a given order.

A list of n items can be ordered into n! (n! = 1x2x…xn)
different orders and two different orders will produce two
different ciphers.

Once the list is built up, the order they are listed in will not
change, so, to make it variable we need an additional
parameter.

There are two types of parameters we may use for that.

 External Substitution Sequence
Instead of hardcoding the substitution sequence
within the encryption process, it can be an
external parameter. Doing that will allow the
encryption process to use a different substitution
sequence on each run. Each item on this
substitution sequence will indicate which
substitution will be used on each instance.

 Order Changing Parameter
Suppose there are n different substitutions used
and listed in a given order and they are numbered
from 0 to n-1. That means there are n! different
possible orders of the numbers from 0 to n-1. One
of those permutations is loaded into an array and
used as an external parameter. Each element of
such array will point to a specific substitution
from the list.

Using the same external substitution sequence with a
different order changing parameter will produce a different
substitution sequence to be used.

If every time the key and/or the substitution sequence is
exhausted a new order changing parameter is used, it may be
guaranteed that there will be no sequence pairs of substitution
and key value repetition no matter how long the plaintext may
be. We will come back to this later.

F. Variable Processing Blocks

With the substitutions we have seen so far, what any
attacker will know for sure is that the first character in the

ciphertext corresponds to the first character in the plaintext
and so on up to the last character.

This can be avoided in a simple and elegant way. Another
external parameter is used to specify a block size used to
process the plaintext. As a mode of example, the block size
parameter is used to define how many symbols or characters
will be read at once from the plaintext and then processed in
reverse order, from the last symbol or character to the first
within the defined block. If the remainder of the plaintext is
shorter than the last block, the block size is adjusted
accordingly.

This external parameter can be a single block size or a list
of different block sizes to be used along the encryption
process.

Even if an attacker gets the encryption process, it provides
no information about the external parameters used and so
there is no way to match the plaintext symbol or character
order with the ciphertext symbol or character order.

G. Poly Substitution Encryption

Now we can define what we understand for poly
substitution encryption and decryption:

Definition 3. Poly Substitution Encryption is encrypting
in such a way two or more different substitutions are used in
sequence among the key to produce a ciphertext from the
plaintext.

Definition 4. Poly Substitution Decryption is decrypting
in such a way two or more different substitutions are used in
sequence among the key to retrieve the original plaintext form
the ciphertext.

V. THE SEVEN STEPS

We defined the process to build up ciphers based on our

technique as a step by step process comprised of 7 steps.

A. Step One (Use Multiple Encryption Substitutions)

While Vigenère used modular addition module 26 as the
substitution and Vernam used a single function (XOR) as the
substitution. Our approach will use many of them. Each
substitution will take a plaintext character and a key character
and will return a ciphertext character and for each of the
possible key character values will return a different ciphertext
character.

Using multiple substitutions provides additional security
because, if an attacker has a cryptogram or ciphertext
character or symbol, not only the key character used is
unknown, but also the substitution used.

For a given plaintext byte character, any valid substitution
should return different results for each possible value of the
key character.

When the plaintext’s length is larger than one character we
can use one substitution to process the first byte, the same or
a different one to process the second character and so on. That
leads us to the following step.

B. Step Two (Use a Third Parameter)

The first two parameters will be the plaintext and the key.
A third parameter will be used to indicate which

substitution to use on each instance.

8

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A value from this third parameter will indicate which one
of the many available substitutions will be used to process a
character or symbol from the plaintext and one from the key.

Let us say we decide to use the same number of different
substitutions from all that can be created as the number of
symbols or characters in the used alphabet. In such case, we
will only need one character from this third parameter to
indicate which of those substitutions will be used for these
specific plaintext and key characters. So far, the third
parameter character value x will trigger substitution z. How
do we know which of the available substitutions is substitution
z, is explained in the next step.

C. Step Three (Order of the Substitutions)

When we have many different substitutions, we need to
identify them somehow and make a list of them.

This list is what will be used to decide which substitution
will be triggered by which value from the third parameter.

As previously indicated, this list is not unique and a
different substitution order will produce a different ciphertext
for the same plaintext and key.

Now, an attacker not only needs to try every possible key,
also needs to try every possible third parameter and guess
which substitution is triggered by each possible value of the
third parameter, assuming the selected substitution order is
hardcoded within the process.

So far, parameter byte value x will always trigger
substitution z, unless we can make parameter value x trigger
substitution w in a different run.

The order of the substitutions can be changed, as explained
in the next step.

D. Step Four (Changing the Order of the Substitutions)

How do we make third parameter byte value x to trigger

a substitution different from substitution z?

The solution is both simple and elegant.

We add a fourth parameter. One of those n! possible

orders of the numbers from 0 to n-1 is loaded into a n element

array, and value x is used to point to the array’s element

whose value will be used to trigger the substitution.

A different fourth parameter will provide a different

substitution order.

Now, third parameter character value x will trigger a

substitution depending on the xth element of the fourth

parameter.

So far, any attacker would know that the first byte from

the ciphertext corresponds to the first byte of the plaintext,

the second byte from the ciphertext corresponds to the second

byte of the plaintext, and so on.

The next step will show how to change that.

E. Step Five (Block Processing)

Let us take a block of characters of a given length from

the plaintext and process it in reverse order, starting from the

last symbol or character in the block, processing it and saving

it as the first character in the ciphertext block. Then the

previous to the last to be the second character in the ciphertext

block and so on, until we end processing the block by

processing its first character and then continue with the next

block.

The last block may be shorter but it is equally processed

from last character to first one as any other block without any

need of any padding or additional dummy information to be

added.

Now, unless the attacker knows the exact length of the

block used, there is no way to know from where to start to

retrieve from the ciphertext to obtain the original plaintext in

the original order.

F. Step Six (Key Length and Key Repetitions)

So far, no mention has been made of the key length.

When encrypting, the process uses two items with the

plaintext: the key and the encryption substitution. So, for each

portion of the plaintext, a key-substitution pair is used. This

is usually ignored due to the encryption substitution being

always the same.

Vigenère’s and Vernam’s ciphers require the key to have

at least the same length as the plaintext for them to offer

unconditional security. If the key is shorter, the process starts

to repeat the same key-substitution pair sequence and this

weakens its security and makes a statistical distribution

analysis attack feasible.

If we use a key shorter than the plaintext it will wrap up

at the end, but unless the key and the third parameter both

have the exact same length, there will be no same key-

substitution pair sequence repetitions until we reach a

position within the plaintext equal to the least common

multiple of the lengths of both the key and the third

parameter. As it may eventually happen the whole process

would be vulnerable unless we find a way to avoid

repetitions.

The solution is, once again, simple and elegant. When the

end of the key is reached (or the end of the third parameter or

the less common multiple of both lengths, or at any point

between them), before starting to repeat it, the process

changes the substitution order by modifying the elements in

the array explained in step four.

One way to do it is to use the last used substitution and

last used plaintext or ciphertext symbol or character and

apply that transformation to each element of the array using

the element’s content and the plaintext character as input and

replacing the content of the element with the result, thus

obtaining a different permutation of the array elements.

Each time this happens, the change process behaves

differently and a different permutation is obtained. Now,

even if the key and the third parameter have the exact same

length and they start to repeat in the exact same order, the

sequence of key-substitution pairs triggered will not be the

same and so no repetitions will occur. The same third

parameter value will point to the same array element but a

different substitution will then be triggered because the

content of the array element will have changed and so the

second parameter-substitution pair sequence will be totally

different.

9

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

G. Step Seven (Make Lengths Variable)

Current encryption standards use fixed length blocks and

fixed length keys (they may offer different key sizes but with

very limited pre-defined fixed sizes).

Our solution allows for user selected lengths for the key,

the third parameter and the processing block (or blocks). Two

successive encryptions may use not only different keys but

also the lengths of both keys may be different. The same

applies to the third parameter and also the processing block

size may be different. The key length may go from a single

character to any length, even the same length of the plaintext

or longer. The third parameter may go from a single character

to any length, even the same length of the plaintext or longer.

The processing block size may go from a single character to

any length up to the length of the plaintext and is limited only

by the maximum size allowed by the system where the

encryption is implemented. It is also possible to process

consecutive blocks of different sizes by using a sequence of

values instead of a fixed one, indicating the individual size

for each individual block to be processed. When the last

processing size list element is exhausted, it wraps up and

starts over from the beginning. When building up an

application, different groups and number of substitutions may

be used to create personalized non-standard versions.

VI. BUILDING UP A POLY SUBSTITUTION CIPHER

A. A cipher complying with these seven steps

In order to be able to make comparisons with known
standards, we decided to use a standard alphabet of 26 letters
(A…Z).

We built up a cipher accordingly and complying with these
seven steps and it uses five parameters:

 The plaintext to encrypt
The plaintext is just a sequence of characters of
any length.

 The key to be used.
This key is just a sequence of characters of any
length and can be longer, equal in length or
shorter than the plaintext.

 A third parameter defining which substitution to
use on each instance.
This third parameter is a sequence of characters
of any length and there is no required relation
between its length and the lengths of the plaintext
or the key.

 An initial substitution order.
This is a sequence of values that will be used to
define an initial order for the encryption
substitutions to be used.

 A processing block size.
This will define the number of characters to be
read at once from the plaintext and processed in
reverse order (from the last character to the first
one) to generate the ciphertext. A value of 1 (one)
will make the plaintext to be processed straight
from the first character to the last one.

This can be a fixed value to process same size
blocks (all but maybe the last one) or a sequence
of values to indicate the size of each individual
block to be processed.

Depending on how the cipher is programmed and

implemented, it can allow the user to manually type every

parameter or to select or chose them.

The encryption process will work as follows:

1. The user may select or enter the plaintext to

process, the key, the third parameter, the initial

substitution order and the processing block size

or sizes.

2. The process loads the initial substitution order

into an array with the same number of elements

as substitutions to be used.

3. If the remaining of the plaintext is shorter than

the processing block, the processing block size

is adjusted accordingly.

4. The process reads a processing block from the

plaintext. If the plaintext has been exhausted,

the process ends.

5. The process takes the last character from the

processing block.

6. The process takes a character from the key.

If the key has been exhausted, reorder the initial

substitution order array elements and read the

first key byte again.

7. The process takes a character from the third

parameter.

If the third parameter has been exhausted, start

over from its first character.

8. The process uses the character from the third

parameter to point to an element from the

substitution order array and uses its value to

trigger an encryption substitution passing the

plaintext and key characters as parameters.

9. The substitution triggered returns a ciphertext

character that is written to the ciphertext output.

10. The process takes the previous character from

the processing block.

If the processing block has been exhausted,

jump to step 3.

11. Jump to step 5.

The decryption process will work the exact same way,

using the ciphertext instead of the plaintext and reversing the
encryption process, using the same key, and same remaining
parameters, using the reverse substitution on each instance.

B. Typical Distribution of Letters in English Language

There is not an unique and generic distribution of letters in
the English language and the use of field-related jargons may
impact the results. (i.e., a statistical analysis of medical books
may provide a different result from financial or sports books).
Despite those small differences, the results are mostly similar
on which are the most common letters. Figure 5 shows the
relative frequencies of letters in the English language based

10

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

on “Letter Frequencies in English”, published by The Oxford
Math Center [29] from Oxford College of Emory University.

Letter Frequency (in %)

A 8.167%

B 1.492%

C 2.782%

D 4.253%

E 12.702%

F 2.228%

G 2.015%

H 6.094%

I 6.966%

J 0.153%

K 0.772%

L 4.025%

M 2.406%

N 6.749%

O 7.507%

P 1.929%

Q 0.095%

R 5.987%

S 6.327%

T 9.056%

U 2.758%

V 0.978%

W 2.360%

X 0.150%

Y 1.974%

Z 0.074%

Figure 5. Relative Frequencies of Letters in English.

These letter frequency values can also be graphically

represented as it is shown in Figure 6, which is very similar

to the one published by Wikipedia [30].

Figure 6. English Letters Frequency Graph.

C. Our Test

We took a text file from Project Gutemberg containing the
Complete Works from Winston Churchill (the American

Winston Churchill, not the British one) [31]. A simple text file
9,540,229 characters long from which we removed all non-
alphabetic characters and obtained a 7,221,951 character long
alphabetic only text.

We selected the 13 character long non-random key
“WHENIWASYOUNG” and the 15 character long non-
random value “WEONLYJUSTBEGUN” as the third
parameter and used a fixed block size of 1 byte to keep the
character sequence between the plaintext and the ciphertext.

From all 26 that form the English alphabet, the key uses
only 11 different letters (A, E, G, H, I, N, O, S, U, W and Y)
while the third parameters uses only 12 different letters (B, E,
G, J, L, N, O, S, T, U, W, and Y). Both parameters share 8
letters in common (E, G, N, O, S, U, W and Y).

The less common multiple of the lengths of the key and
the third parameter is 195. The same sequence pair of third
parameter character and key character repeats over 37,035
times to match the plaintext file length.

We performed a frequency distribution analysis of the
source file and the results are listed in Figure 7.

Letter Frequency (in %) Frequency

A 8.0788% 583,448
B 1.4146% 102,161
C 2.4972% 180,350
D 4.5871% 331,279
E 12.6098% 910,672
F 2.1128% 152,585
G 2.0429% 147,538
H 6.6493% 480,210
I 6.9210% 499,830
J 0.1486% 10,732
K 0.8086% 58,399
L 3.8873% 280,738
M 2.6948% 194,620
N 6.9766% 503,850
O 7.5462% 544,985
P 1.6051% 115,918
Q 0.0815% 5,884
R 5.8154% 419,982
S 6.1690% 445,519
T 9.0004% 650,006
U 2.7707% 200,100
V 0.9488% 68,521
W 2.4342% 175,795
X 0.1404% 10,140
Y 1.9878% 143,558
Z 0.0710% 5,131

Figure 7. Plaintext File English Letter Frequency in numbers.

The result is not an exact match but the differences are
minimal and the order of the four most common letters (E, T,
A and O), is the same. Based on those results, we generated a
graphical representation, which is presented in Figure 8 and
matches the standard graphical distribution from Figure 6.

11

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Plaintext File Statistical Letter Frequency Graph.

There are 7,221,950 bigrams formed by two consecutive

letters in the plaintext and 7,221,949 trigrams formed by three

consecutive letters. Figure 9 shows the results for the 30 most

common bigrams found in the source file (those that are

repeated more times along the plaintext).

Order Bigram Frequency in % Frequency

 1 TH 3.0676% 221,539

 2 HE 3.0159% 217,807

 3 IN 1.7960% 129,709

 4 ER 1.7902% 129,286

 5 AN 1.6384% 118,326

 6 RE 1.3856% 100,070

 7 ED 1.3314% 96,154

 8 HA 1.2584% 90,882

 9 ES 1.2079% 87,233

10 TO 1.2042% 86,970

11 ND 1.1985% 86,552

12 EN 1.1590% 83,704

13 OU 1.1378% 82,169

14 NT 1.1341% 81,903

15 ON 1.1195% 80,850

16 AT 1.0931% 78,943

17 ST 1.0649% 76,909

18 EA 0.9474% 68,424

19 HI 0.9456% 68,293

20 IT 0.9145% 66,047

21 AS 0.8947% 64,612

22 ET 0.8520% 61,530

23 OR 0.8452% 61,039

24 NG 0.8423% 60,833

25 IS 0.8241% 59,517

26 TE 0.7945% 57,378

27 AR 0.7714% 55,710

28 TI 0.7699% 55,600

29 OF 0.7433% 53,678

30 SE 0.7316% 52,837

Figure 9. Source File Bigram Frequency.

On the other extreme of the listing, from all 676 possible

bigrams, there are 97 that are repeated 10 times or less within

the plaintext. From them, 49 of them are not present at all, 11

are present only once, 9 appear twice, 4 appear three times, 4

appear four times and 4 appear five times. The results from

the plaintext will be compared with the results from the

ciphertext.

Figure 10 shows the results for the 30 most common

trigrams found in the source file.

Order Trigram Frequency in % Frequency

 1 THE 1.8690% 134,980

 2 AND 0.8596% 62,080

 3 ING 0.6603% 47,687

 4 HER 0.6143% 44,362

 5 THA 0.4724% 34,118

 6 ERE 0.4350% 31,419

 7 HAT 0.4128% 29,811

 8 YOU 0.3814% 27,542

 9 NTH 0.3670% 26,504

10 ENT 0.3650% 26,363

11 WAS 0.3440% 24,845

12 SHE 0.3425% 24,733

13 HIS 0.3362% 24,278

14 ETH 0.3251% 23,478

15 HES 0.3168% 22,876

16 DTH 0.3046% 21,999

17 THI 0.2988% 21,577

18 INT 0.2934% 21,190

19 FOR 0.2912% 21,030

20 ITH 0.2707% 19,548

21 HAD 0.2693% 19,450

22 TTH 0.2476% 17,880

23 TER 0.2392% 17,272

24 ION 0.2372% 17,128

25 OFT 0.2360% 17,047

26 FTH 0.2351% 16,981

27 EST 0.2327% 16,807

28 OTH 0.2315% 16,716

29 EDT 0.2286% 16,507

30 WIT 0.2232% 16,119

Figure 10. Source File Trigram Frequency.

On the other extreme of the listing, from all 17,576

possible trigrams, 8642 are not present at all, meaning that

almost half of all possible trigrams (49.17%) are not present

in the plaintext.

After encrypting the file, we performed the same

frequency distribution analysis on the encrypted file as we

did on the original source text file. Figure 11 shows the

encrypted file letter frequencies graphical distribution

(showing frequency distribution as a percentage of the total

number of characters).

12

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Ciphertext File Statistical Letter Frequency Graph.

The letter frequency of the encrypted file is homogeneous

and almost flat making impossible a statistical distribution

analysis attack based on the statistical distribution of the

letters in the English language. There is no way to match the

letters from the encrypted file with those from the source file.

Figure 12 shows the letter frequency from the ciphertext.

Letter Frequency (in %) Frequency

A 3.7686% 272,167
B 3.8798% 280,198
C 3.5510% 256,452
D 4.2553% 307,314
E 3.7649% 271,896
F 3.6380% 262,733
G 3.3720% 243,523
H 4.4154% 318,879
I 3.5593% 257,049
J 4.6710% 337,340
K 3.7397% 270,079
L 3.7402% 270,112
M 4.5380% 327,730
N 3.4808% 251,384
O 4.1863% 302,336
P 3.8112% 275,244
Q 4.0089% 289,520
R 3.7138% 268,209
S 3.7167% 268,416
T 3.7002% 267,229
U 4.1338% 298,538
V 3.6556% 264,003
W 3.7597% 271,523
X 3.4586% 249,776
Y 3.7073% 267,740
Z 3.7741% 272,561

Figure 12. Ciphertext File Letter Frequency.

When we order the letters from the plaintext and the

ciphertext sorting them down in decreasing order of the

statistical distribution of the letters within them, we get the

graphical representation displayed in Figure 13.

Figure 13. Statistical Letter Distribution Comparison.

We analyzed the frequency distribution of bigrams and

trigrams within our encrypted text file and Figure 14 shows

the results for the 30 most common bigrams in the ciphertext.

Order Bigram Frequency in % Frequency

 1 JJ 0.2181% 15,750

 2 JM 0.2118% 15,299

 3 MJ 0.2096% 15,136

 4 JH 0.2055% 14,843

 5 HJ 0.2040% 14,734

 6 MM 0.2022% 14,603

 7 MH 0.2021% 14,596

 8 JD 0.2007% 14,492

 9 JO 0.1997% 14,422

10 HM 0.1995% 14,411

11 MD 0.1968% 14,211

12 DJ 0.1962% 14,168

13 OJ 0.1957% 14,130

14 HH 0.1955% 14,116

15 JU 0.1944% 14,036

16 UJ 0.1940% 14,008

17 DM 0.1938% 13,999

18 MU 0.1904% 13,753

19 QJ 0.1897% 13,701

20 JQ 0.1888% 13,632

21 MO 0.1883% 13,602

22 OM 0.1878% 13,565

23 UM 0.1868% 13,494

24 DH 0.1864% 13,461

25 OH 0.1857% 13,412

26 HU 0.1853% 13,384

27 HO 0.1851% 13,369

28 QM 0.1843% 13,310

29 HD 0.1836% 13,257

30 MQ 0.1826% 13,185

Figure 14. Encrypted File Bigram Frequency.

The first finding analyzing bigrams was that all possible

676 bigrams are present in the ciphertext, the most repeated

one appears 15,750 times and the least repeated one appears

13

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

8,223 times in it. The bigram distribution for the encrypted

file is almost flat and homogeneous and there is no way to

match the bigrams from the encrypted file with those from

the source file as Figure 15 shows.

Figure 15. Bigram Statistical Frequency Comparison.

Figure 16 shows the results for the 30 most common

trigrams found in the encrypted file.

Order Trigram Frequency in % Frequency

1 MMJ 0.0106% 763

2 HJJ 0.0105% 759

3 MJJ 0.0105% 755

4 JJM 0.0102% 739

5 JMJ 0.0101% 733

6 MJH 0.0101% 727

7 JJH 0.0101% 726

8 MDM 0.0100% 722

9 JJJ 0.0099% 718

10 JJD 0.0098% 710

11 MHJ 0.0098% 710

12 HJM 0.0098% 709

13 JHM 0.0098% 707

14 MMM 0.0097% 704

15 JMM 0.0097% 701

16 JMD 0.0097% 698

17 JDM 0.0097% 697

18 MHH 0.0096% 695

19 JHH 0.0096% 694

20 JJU 0.0096% 691

21 MJO 0.0096% 691

22 JEJ 0.0095% 688

23 HMJ 0.0095% 687

24 UJO 0.0095% 687

25 JOJ 0.0095% 684

26 JOH 0.0095% 683

27 DJJ 0.0094% 681

28 MPJ 0.0094% 681

29 YJJ 0.0093% 675

30 HHJ 0.0093% 673

Figure 16. Encrypted File Trigram Frequency.

The first finding analyzing trigrams was that all possible

17,576 trigrams are present in the ciphertext, the most

repeated once appears 763 times and 260 times the least

repeated one. The most repeated bigram (MMJ) repeats less

than three times the least repeated one (GGV) and the flatness

of the distribution makes unfeasible any statistical analysis

attack to retrieve the original plaintext from the ciphertext

based on the distribution of trigrams.

Comparing the statistical distribution of the 30 most

common trigrams from the plaintext and the ciphertext,

Figure 17 shows the differences that make unfeasible a

statistical analysis attack based on the distribution of

trigrams.

Figure 17. Trigram Statistical Frequency Comparison.

Going one step further and considering tetragrams (sets

of four consecutive letters), there are 456,976 possible

tetragrams and from them 378,431 are not present in the

plaintext. Only 17.188% from all possible tetragrams appear

in the plaintext being THAT with a 0.3171% (22,898

repetitions) and THER with 0.3089% (22,305 repetitions) the

two most common of them. From all 456,976 possible

tetragrams, only two are not present within the ciphertext

(HXYA and NGXC), being HJMJ with a 0.00071% (51

repetitions) and HHJJ with 0.00068% (49 repetitions) the two

most common of them.

Figure 18 compares the statistical distribution of the 26

most common tetragrams from the plaintext and the

ciphertext.

Figure 18. Tetragram Statistical Frequency Comparison.

14

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Results of Our Test

Although the key used was very short (only 13 characters
long) and not random, the third parameter was also very short
(only 15 characters long) and also not random, and the source
file was pretty big (over 7 Megabytes long), the use of poly
substitution encryption provided a level of confusion and
diffusion that makes any cryptanalysis or statistical
distribution analysis attack totally unfeasible, as will be
proved in Section VIII.

When the gross frequency (the number of times each item
is repeated as a number, not as a percentage) of letters,
bigrams, trigrams and tetragrams are compared between the
plaintext and the ciphertext, the flatness of the results gets
visually clear.

In the distribution of letters within the plaintext
(alphabetically ordered from A to Z), as shown in Figure 19,
the most common letters E, T, A and O are clearly
distinguishable.

Figure 19. Plaintext Letter Distribution.

A ciphertext obtained from a Vigenère encryption of the
plaintext using the same key, would have produced the exact
same graph. The graphic of the letter distribution within the
ciphertext displayed in Figure 20, shows not only the flatness
of the distribution obtained through the use of a cipher based
on our proposed encryption, but the small variation among the
letters.

Figure 20. Ciphertext Letter Distribution.

In the distribution of bigrams within the plaintext (ordered
from AA to ZZ), as shown in Figure 21, the most common
bigrams TH and HE are clearly distinguishable.

Figure 21. Plaintext Bigram Distribution.

The distribution of bigrams within the ciphertext also
shows the flatness of the result and the low variation between
the different bigrams, as shown in Figure 22.

Figure 22. Ciphertext Bigram Distribution.

Although some bigrams are not present in the plaintext, all
possible bigrams are present in the ciphertext.

In the distribution of trigrams within the plaintext (from
AAA to ZZZ), as it is shown in Figure 23, the most common
values THE, AND, ING and HER, are clearly distinguishable.

Figure 23. Plaintext Trigram Distribution.

But the distribution of trigrams within the ciphertext (from
AAA to ZZZ), as it is shown in Figure 24, tells a totally
different story. Once again, the graphic of the trigram

15

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

distribution within the ciphertext displayed in Figure 24,
shows not only the flatness of the distribution obtained
through the use of a cipher based on our proposed encryption,
but the small variation among the different trigrams.

Figure 24. Ciphertext Trigram Distribution.

The graphical representation of the ciphertext trigram
distribution resembles white noise. White noise is basically
pure random noise that has all the frequencies in the audio
spectrum. It is a random signal having equal intensity at
different frequencies, giving it a constant power spectral
density. Different sounds and musical notes are produced by
a combination of different frequencies, the same way as words
and phrases are formed by a combination of different letters
from an alphabet. Some random number generators are based
on white noise like the one used by Random.org, whom uses
a system of atmospheric antennae to generate random digit
patterns from white noise. White noise sounds pretty close to
static from your old television set or radio when no station was
tuned or a whooshing sound. Additive white Gaussian noise
(AWGN) is a basic noise model used in information theory
(originally proposed by Claude E. Shannon in 1948 in his
landmark paper [7]) to mimic the effect of many random
processes that occur in nature.

This shows how the distribution of trigrams within the
ciphertext cannot be distinguished from being totally random.
Considering that the same occurs with the distribution of
bigrams and single letters within the ciphertext, that proves
that any statistical analysis attack on the ciphertext will not
succeed as we will prove in Section VIII.

VII. ANALYSIS

A. Comparing this cipher with Vigenère’s and Vernam’s

It is trivial to prove that the Vigenère cipher is a limited or
restricted version of our proposed encryption where the
processing block size is one character and only one
substitution is used (modular addition with v = 0), which
means the third and fourth parameters need to be built in a way
that ensure the same substitution will always be triggered.

It has already been proved that the Vernam cipher is a
restricted or limited version of the Vigenère cipher, where the
alphabet used has only two characters or symbols).

A text message properly ciphered through the Vigenère or
Vernam Ciphers (using a random one-time key as long as the

plaintext) gives absolutely no clue on the key used or the
original plaintext and a brute force attack will end up with a
huge number of false positives.

A brute force attack will return some invalid or unreadable
results but will also return any possible message with the exact
same length and there is no way to decide which one is the
true original one.

Vigenère and Vernam ciphers are not used because they
have the same three requirements that need to be fulfilled to
comply with Shannon’s definition for Perfect Secrecy:

1) The key needs to have the same length as the

plaintext.

2) The key must be random.

3) The key must not be reused.

These three requirements are mandatory because Vigenère
and Vernam used a single encryption substitution (Modular
Addition and XOR) in the process.

With the Vernam cipher, for any given ciphertext byte, the
attacker needs to try every possible key byte value and will
end up with 256 different results, each one with the exact same
probability of being the plaintext byte value.

With the Vigenère cipher, for any given ciphertext
symbol, the attacker needs to try every possible key symbol
and will end up with every possible symbol in the alphabet,
each one with the exact same probability of being the plaintext
symbol.

With our proposed encryption technique and even
assuming the attacker knows the exact processing block size
used for this specific ciphe text, all the encryption
substitutions used and can match each ciphertext byte with the
corresponding byte position in the plaintext; the attacker will
still need to try each of the 256 possible key byte values with
each of the encryption substitutions involved. So, if we used
256 different encryption substitutions, the attacker will end up
with 65,536 possible values for the plaintext byte, each one
repeated many times and no way to decide which value is the
original one.

If the attacker does not know the processing block size, it
multiplies the effort required as the first byte from the
plaintext may correspond to any of the bytes in the ciphertext,
the second one to any of the bytes except the last and so on,
doing the math it means there are n! possible orders for the
ciphertext to match the byte order of the plaintext, being n the
length in bytes of both the plaintext and the ciphertext.

Our proposed cipher does not have any constraints as
Vigenère and Vernam ones do, and we will prove that our
encryption overcomes those constraints that come from mono-
substitution encryption limitations.

As we can assure the same key value-encryption
substitution sequence will not be repeated, the length of the
key becomes irrelevant, it may have any length and it does not
matter if it is shorter than the plaintext.

So far, we have been able to overcome the first of
Vigenère’s and Vernam’s constraints and now the key can be
shorter than the plaintext without impacting the safety of the
process.

As we use some additional parameters, does the key truly
need to be random?

16

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Leaving aside any discussion about what is truly random
and what is not, anything can be used as a key; a text, a web
page, a file from the Internet. As far as the key is kept secret,
it really does not matter whether it is truly random or not.

In the example we provided the key used was extremely
short compared to the length of the plaintext (the plaintext
length was about half a million times the length of the key)
and it was not random at all and despite that, no statistical
analysis attack will succeed in retrieving the original plaintext
having only the ciphertext.

As the process does not use an unique encryption
substitution but a pool of them, the randomness of the key has
no impact on the outcome because the substitution sequence
order cannot be predicted.

Our test showed how using a short non-random key had
no impact on the security of the process.

So far, we have been able to overcome the second of
Vigenère’s and Vernam’s constraints and now the key does
not need to be random.

What if the key is reused?
As we consider the encryption process as the result from

applying a sequence of key value-encryption substitution
pairs, what we need to avoid is reusing that exact same
sequence.

It is clear that if any of the third parameter, the initial
substitution order or the block size (or sizes) is different, the
key value-encryption substitution pair sequence will be
different for the same key. If the same substitution order array
rearrangement used when the key is exhausted is used every
time a processing block is exhausted, it can be guaranteed that
the same key value-encryption substitution pair sequence will
not be repeated for a different plaintext even if the exact same
parameters are used and if the first processing block is just one
byte long, then no other key value-encryption substitution pair
sequence will be repeated beyond the first symbol even if the
same exact parameters are reused. This happens because the
probability that two different plaintexts or ciphertexts may
have matching characters in the exact same position every
time the key, the processing block or whatever trigger may be
used is exhausted, is just zero.

This overcomes the third of Vigenère’s and Vernam’s
constraints and now the key may be reused without
compromising the unconditional security.

As you see, an encryption algorithm based on our
proposed technique and complying with its seven steps can
guarantee unconditional security using non-random keys that
can be shorter than the plaintext and can be reused.

Also, two successive encryptions may exchange the key
with the third parameter using the third parameter as the new
key and the old key as a new third parameter keeping the
unconditional security.

As far as the key does not need to be random, selecting a
new different key is quite easy. There is no need of a random
or pseudo-random key generator as any possible file may be
used as a key (or third parameter). A web page from any site,
a file of any type or even portions of them can be used.

Been Vernam the only cipher mathematically proved to be
unbreakable if properly used, let us do a comparison between
a cipher based on our proposed poly-substitution encryption

and the Vernam cipher. Figure 25 shows a comparison
between Vernam’s cipher and our proposed one.

 VERNAM

Cipher based on

our Proposed

Technique

Sample plaintext length 140 140

Processing block size 1 Variable

Key size 140 Variable

Key and plaintext length
must match

Yes No

Key must be true random Yes No

Key must not be reused Yes No

No. of substitutions 1 256

No. of possible results

per substitution
256 256

No. of possible results

per Byte
256 65,536

Ciphertext to plaintext
match

1 140!

No. of possible results

per Byte from brute force

attack

256 65,536 x 140!

No. of possible results

per Byte from brute force

attack as power of 2

2^(8) 2^(809)

Probability of being the

plaintext byte
0,39% 0,39%

Rounds 1 1

False Positives Yes Yes

Figure 25. Comparing Vernam’s cipher to our proposal.

An encryption algorithm based on our technique and
complying with the seven steps will offer the same
unconditional security offered by the Vernam cipher without
the constraints it has.

A plaintext encrypted with such algorithm will remain
impervious to any attack, no matter how powerful the attacker
may be or may become, even if the attacker has infinite
computational power.

B. Comparing this cipher with currently used ciphers

Due to their extreme complexity, none of the current
encryption standards will produce a false positive when an
incorrect or wrong key is used.

All currently used encryption base their privacy and
security on the unavailability of enough computational power
required to try all possible keys in a short time and that is why
they will all fall under a quantum attack capable of trying
every possible key in very little time.

There is an old saying: “How do you hide an elephant on
a beach? By filling the beach with elephants”.

The strength of our proposed encryption technique relies
not on the computational power required to try every possible
key, third parameter, initial substitution order, substitution set
or block size or sizes; its strength relies on the fact that we
assume it can be done but the real original plaintext will be
hidden at plain sight within an immense sea of false positives

17

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with absolutely no indication on which one is the right one. It
is not that the attacker will not be able to get the original
plaintext, it is that the attacker will not be able to distinguish
the original plaintext from the false positives.

We assume the attacker will reach the beach and see all
that is there. There can also be palms and monkeys, and
seagulls and turtles, and crabs and people and of course sand
and water on that beach, but even if the attacker knows that
what is hidden there is only an elephant, still will have no clue
and no way to know which one of all the elephants there is the
right one. Even if the attacker is capable of knowing that what
is hidden there is an elephant and ignores all the palms and
monkeys and seagulls and turtles and crabs and people and
any other element that is not what is hidden there, even then,
there is absolutely no way and no clue to know which elephant
is the right one.

Symmetric key cryptography relies on very complex
processes where a brute force attack may need too much
computational power to succeed and no such power is yet
available. They do not say their ciphers cannot be broken with
enough computational power, they claim and hope for the
required computational power not to be available anytime
soon.

Besides the existence of some known partial attacks that
may succeed with more computational power like quantum
computers promise to deliver, the use of a fixed size
processing block and fixed size keys (they may offer different
key sizes but limited to very few pre-defined options. They do
not allow the user to freely choose any key size, less to select
the block size), make them vulnerable to brute force attacks
given the attacker has enough computational power.

While currently in use symmetric encryption standards use
block sizes of 64 or 128 bits and keys of 128 to 512 bits, our
encryption handles blocks of any size including successive
blocks of different sizes and keys of any length. Figure 26
shows a comparison between a cipher based on our proposed
technique and other symmetric ciphers.

 Block
Size

Key Size Rounds
False

Positives

DES 64 bit 56 bit 16 No

3DES [33] 64 bit 128 bit 48 No

AES 128 bit
128, 192,

256 bit
9, 11, 13 No

BLOWFISH

[34]
64 bit 32-448 bit 16 No

Cipher

based on our

Proposed

Technique

Variable Variable 1 Yes

Figure 26. Comparison between a cipher based on this technique and

current symmetric standards.

Public-key cryptography currently in use (including RSA
and ECC) relies on the assumption that some problems cannot
be solved or would will require an extremely long time to be
solved, and therefore, that it would take a very long time for
their secured data to be decrypted. But as quantum algorithms
can solve some of these problems with ease, that assumption

is fatally challenged. It is known that a quantum computer
running Shor’s algorithms can easily solve complex problems
like long integer factorization and discrete logarithms, which
are the foundation of public key cryptography.

VIII. ATTACKING A CIPHER BASED ON THIS TECHNIQUE

Trying to retrieve the plaintext from a ciphertext created
through an implementation of this technique without having
any additional information will be at least as difficult as trying
to retrieve the plaintext from a one-time pad created ciphertext
or one created through a proper use of Vigenère’s or Vernam’s
ciphers having only the ciphertext.

Any attack must take into consideration that all the
parameters are external to the process and they all may be
different from one encryption to the next and also the fact that
the process may be used in reverse order. Decryption can be
used to protect the plaintext and encryption with the same
parameters used to retrieve the original plaintext.

As cryptanalysis of our encryption is just not possible, any
possible attacker will need to face the following difficulties
when attempting a brute force attack to break an encryption
created with a cipher based on this technique and complying
with its seven steps:

 Which ciphertext byte corresponds to each
plaintext byte.

 Which encryption substitutions exist and which
of them were used.

 Which substitution was used on each instance.

 Which was the key used.

 Which processing block size or sizes were used.
Let us give the attacker the advantage of knowing all the

encryption substitutions involved, the specific set used to
create the ciphertext and the processing block size or sizes
used. In such situation, for each byte in the ciphertext, the
attacker needs to try every possible substitution for every
possible key byte value and so, instead of getting 256 possible
values as with Vigenère’s or Vernam’s ciphers, the result will
be 65,536 possible values having every single one the exact
same probability of being the plaintext byte value despite the
repetitions.

That is the best case scenario for the attacker.
If the processing block size or the sequence of block sizes

is not known, the attacker will need to try any possible fixed
or variable block size from a single byte to the length of the
ciphertext. While this adds time and difficulty to the attack,
every possible outcome still has the exact same probability of
being the original plaintext despite the repetitions.

The original plaintext will still be lost in a sea of false
positives with no way to decide which one is the right one.
The beach will remain full of elephants with no clue on which
one is the right one.

As Ronald Linn Rivest, Adi Shamir and Leonard Adleman
stated on their seminal paper [35], “Since no techniques exist
to prove that an encryption scheme is secure, the only test
available is to see whether anyone can think of a way to break
it.” Based on that, we will give a try to classical and modern
cryptanalysis attacks and try to show how and why they will
not succeed in breaking the encryption.

18

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Statistical Letter Distribution Attack

We have seen that single character distribution within the
ciphertext is practically flat, making impossible to identify the
original corresponding characters from the plaintext through a
statistical distribution attack.

B. Kasiski Statistical Analysis Attack

A Kasiski Statistical Analysis attack uses repeated
sequences from the ciphertext to try to narrow down the length
of the key.

First we analyzed the 10 most common bigrams (JJ, JM,
MJ, JH, HJ, MM, JD, JO and HM) and measured the distances
between consecutive occurrences of the same bigram across
the ciphertext and found out that for all of them, the minimum
distance between two occurrences of the same bigram is zero,
meaning that each bigram shows two times consecutively and
together, and this happens many times for each of them.
Figure 27 shows the ten most common bigrams and the
number of times they appear twice together within the
ciphertext.

Order Bigram Appears as Occurrences

1 JJ JJJJ 37

2 JM JMJM 36

3 MJ MJMJ 30

4 JH JHJH 23

5 HJ HJHJ 35

6 MM MMMM 26

7 MH MHMH 32

8 JD JDJD 23

9 JO JOJO 28

10 HM HMHM 33

Figure 27. Trigram distances between repetitions.

Being zero the minimum distance between occurrences of
the same repeated bigram and having the same happening for
all 10 most common bigrams across the ciphertext, allows us
to affirm that the distances between repeated occurrences of
bigrams gives absolutely no information about the length of
the key, making totally useless a Kasiski statistical analysis
attack based on the repetition of bigrams.

Second, we took the three most repeated trigrams, MMJ,
which repeats 763 times within the ciphertext, HJJ, which
repeats 759 times and MJJ, which repeats 755 times.

We built up a table listing the distances from each
appearance of each trigram to the next in one column and the
list of distances sorted out from the smallest distance to the
biggest and we did the same for each of the three trigrams.

For the first trigram (MMJ) only 58 out of the 763
repetitions are at a distance that is a multiple of the key length
of 13 characters and only 5 of them were a multiple of the less
common multiple of the lengths of the key and the second
parameter.

For the second trigram (HJJ) only 48 out of the 759
repetitions are at a distance that is a multiple of the key length
of 13 characters and only 2 of them were a multiple of the less

common multiple of the lengths of the key and the second
parameter.

For the third trigram (MJJ) only 49 out of the 755
repetitions are at a distance that is a multiple of the key length
of 13 characters and only 7 of them were a multiple of the less
common multiple of the lengths of the key and the second
parameter.

It is clear that the encryption generates a diffusion of the
results even using short keys, which makes any statistical
analysis attack unfeasible. No matter how you compare the
results of analyzing the most repeated trigrams, no
information about the key length can be obtained.

Figure 28 shows the first 24 results for each of the
trigrams.

 MMJ HJJ MJJ

 U/O O U/O O U/O O

1 11,339 5 771 4 5,020 7

2 6,817 11 487 15 11,054 11

3 8,828 12 19,573 38 4,003 13

4 1,944 15 8,517 55 6,997 20

5 6,598 22 1,248 58 5,062 32

6 11,538 45 854 69 4,700 44

7 9,032 46 13,103 80 19,637 53

8 2,079 66 2,111 82 7,679 58

9 33,580 75 2,507 91 6,878 66

10 638 106 692 109 1,784 66

11 1,164 121 20,869 113 36,239 74

12 11,664 124 5,634 133 8,294 77

13 12,180 130 1,390 139 6,008 99

14 1,687 156 6,226 144 6,341 152

15 13,358 171 12,450 160 7,704 163

16 4,925 183 287 227 2,888 190

17 2,659 187 1,323 228 6,840 216

18 2,018 192 5,049 239 22,798 233

19 1,394 199 26,270 241 26,708 242

20 26,814 209 42,915 243 2,959 266

21 4,457 216 11,013 246 7,174 268

22 3,385 242 797 260 5,527 269

23 10,621 259 5,021 267 10,530 270

24 2,411 265 5,061 267 9,970 284

Figure 28. Trigram distances between repetitions.

U/O stands for unordered, listing the distance from an
occurrence of the trigram to the next one, while O stands for
ordered, which is an ordered list of the distances between two
occurrences of the same trigram ordered in ascending order
from the shortest distance between two occurrences of the
same trigram to the longest one.

This table shows that it is not possible to find any relation
between the distances of the different trigram repetitions and
the key length. We grayed out and styled in bold and italic
those distances between two consecutive repetitions of the
same trigram that are in fact a prime number, meaning either
the key cannot be shorter or they are random repetitions.

19

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It is clear that a Kasiski statistical analysis attack will not
succeed even considering that the key is not random and
extremely short when compared to the length of the original
plaintext.

C. Friedman’s Index of Coincidence Attack

The formula to calculate the Index of Coincidence (IC) for
any given text is as follow:

𝐼𝑐 = ∑ (
𝑐𝑜𝑢𝑛𝑡(𝑐) × (𝑐𝑜𝑢𝑛𝑡(𝑐) − 1)

𝐿𝑒𝑛𝑔𝑡ℎ × (𝑙𝑒𝑛𝑔𝑡ℎ − 1)
)

𝑐 ∈𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡

 (20)

Theoretically perfect IC is defined as if all characters

occurred the exact same number of times so that none was
more likely than any other to be repeated, so, for an alphabet
of 26 characters, it was calculated to be 1/26, which is
approximately 0.03846. The closest the IC of a given
ciphertext is to the perfect IC, the more difficult it will be to
try to obtain the key length or the original plaintext.

The calculated IC of the original plaintext is 0.0659 and
the calculated IC for the ciphertext produced by our
encryption is 0.03874, a difference of 0.00028 from the
perfect IC.

Poly-substitution encryption generates a level of diffusion
that makes obtaining the key length through the IC an
impossible task.

D. Linear Cryptanalysis.

The discovery of linear cryptanalysis is credited to
Mitsuru Matsui [36], who first applied the technique to the
FEAL cipher in 1992. Later, he published an attack on the
Data Encryption Standard (DES) [37].

Linear cryptanalysis focuses on finding a linear
relationship between a subset of plaintext bits and a subset of
data bits that behaves in a non-random fashion. It is a known-
plaintext attack, meaning the attacker will have some sets of
plaintexts and associated ciphertexts, all encrypted with the
same key. It was first intended as a cryptanalysis attack to
DES, but proved to be useful for other multi-round fixed-
block ciphers. It requires to have some pairs of known-
plaintext/ciphertext pairs encrypted with the same key. The
first difficulty linear cryptanalysis will find is that the key does
not have a fixed length and also the processing block size or
sizes are also of not fixed length. The second difficulty is that
there are no s-boxes and the encryption is made in a single
round. Even if the attacker gets a huge number of known-
plaintext/ciphertext pairs all encrypted using the exact same
parameters, the length of the key and the length or lengths of
the processing block remain unknown and those pairs of
known-plaintext/ciphertext give no clue about them, making
unfeasible the use of linear cryptanalysis to attack poly
substitution encryption as it is defined in this paper.

E. Differential Cryptanalysis.

Differential cryptanalysis discovery is usually credited to
Adi Shamir and Eli Biham, who published a number of attacks
against several block ciphers in the late 1980s. Don
Coppersmith, a member of the original IBM DES team,

published a paper stating that differential cryptanalysis was
known to IBM as early as 1974 [38].

Linear cryptanalysis is based on exploiting linear
relationships between bits in the cipher, while differential
cryptanalysis uses differential relationships between various
bits in the cipher. Differential cryptanalysis is a chosen-
plaintext attack where the attacker is able to make a
cryptosystem encrypt data he chooses using the target key
which is unknown and remains secret. Analyzing the
ciphertext obtained (which is known), the attacker can obtain
the key used.

The standard differential cryptanalysis method is a
probabilistic chosen-plaintext attack. It is also oriented to
multi-round ciphers like AES with a fixed length key and a
fixed length processing block. There is no way the
cryptosystem may encrypt without providing all the
parameters, including the key and as we have seen in the linear
cryptanalysis attack, even having pairs of known-
plaintext/ciphertext gives no information about the lengths of
the key and the processing block or blocks used, making
unfeasible the use of differential linear cryptanalysis to attack
poly substitution encryption as it is defined in this paper.

F. Side-channel attacks..

A side-channel attack is an attack based on knowledge
gained from the implementation of a computer system instead
of weaknesses from the encryption algorithm itself. As the
encryption we propose is based in simple arithmetic
operations like addition and subtraction of byte values, timing
and power-analysis attacks will fail as well as other side-
channel attacks like Power-monitoring attacks,
electromagnetic attacks or differential fault analysis just
because none of them may distinguish an addition from a
subtraction or two different additions being performed.

G. Other Modern Cryptanalysis

Time-Space Trade-Offs like Diffie-Hellman’s meet-in-
the-middle attack, Hellman’s Time-Space Trade-off, or
Rivest’s Distinguished Endpoints just will not work, and we
will explain why.

Diffie-Hellman’s meet-in-the-middle attack is oriented to
break multiple-encryption algorithms repeating the same
encryption using different keys as in Double-DES and Triple-
DES and it is not the case with our single round poly
substitution encryption.

Hellman’s Time-Space Trade-off is based on pre-
computing sample plaintext/ciphertext pairs using random
keys and considering the mapping of key k to ciphertext c as
a random permutation function f over an N point space, being
N the total number of possible keys and also assumed to be
the total number of possible plaintexts and ciphertexts. The
first difficulty such approach will face is that there is not an
unique random permutation function f. For the same plaintext,
it will exist more than one key-substitution pair sequence that
will produce the exact same ciphertext. If we consider that we
are using an alphabet A with a characters or symbols and we
are using a third parameter with the same alphabet and using
a number a of different substitutions, for any given plaintext
symbol-ciphertext symbol pair and for each different

20

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

substitution, there will be a key value that will produce the
ciphertext symbol from the plaintext one using that
substitution and key values. The crucial issue Hellman’s
Time-Space Trade-off will find with poly-substitution
encryption is that if the number of possible plaintexts and
ciphertexts is N, and an alphabet with a symbols is used, the
number of possible keys will be in the order of aN, which for
a ≥ 2 is a lot bigger than N, making unfeasible to use this
attack.

Rivest’s Distinguished Endpoints is an enhancement of
Hellman’s Time-Space Trade-off but will face the same
difficulties with poly-substitution encryption and will not
work for the same reasons.

IX. PARTIAL OR LIMITED DATA UNIVERSES

In certain situations, some byte values or sequences may

be considered restricted, invalid or not acceptable. As an

example, when transmitting data, the end-of-message value

cannot be part of the transmitted message and an encrypted

message cannot include the end-of-message within it. Also,

some structured messages require the information stored

within the message to comply with some structural lengths

and data types for specific parts of the message and to encrypt

such messages, the encryption must respect data structures

and formats, something none of the available encryption

solutions, either symmetric or public-key can provide.

A. Format Preserving Encryption

Format Preserving Encryption (FPE) refers to encrypting
in such a way that the output ciphertext is in the same format
as the input plaintext, including having the exact same length.
If the plaintext is just numbers, you get numbers, if it is
alphabetic characters you get alphabetic characters, etc.

For example: To encrypt a sixteen-digit credit card
number so that the ciphertext is another sixteen-digit number,
or, to encrypt a nine-digit social security number so that the
ciphertext is another nine-digit number, or to encrypt a
person’s name so the ciphertext is another alphabetic string
with the same length.

One reason to use FPE comes from the difficulty to
integrate encryption into existing applications with well-
defined data models like banking, industry, financial
technologies or medical records databases among others.

Adding encryption to such applications comes with high
costs associated to the field length limits, data type changes
and computational power required.

Recent scandals like de Panama papers, the NSA secrets
offered in auction or the World Anti-Doping Agency
(WADA) medical records disclosure are clear examples of the
need for format preserving encryption to protect sensitive
information within databases. In the Panama papers and the
WADA cases, if the fields containing sensitive information
would have been encrypted, the information stolen would
have been useless for the hackers despite the security breach
they achieved, precisely because the names of the persons
involved and other personally identifiable information (PII)
would have been encrypted.

B. Symmetric Key Format Preserving Encryption

Block ciphers cannot preserve the plaintext length without

additional work unless it exactly matches the block size used

or an exact multiple of it.

If you are trying to encrypt a nine-digit social security

number stored in a nine byte plaintext, by default a block

cipher like AES will return a 16 byte (128 bits) ciphertext that

cannot be guaranteed to be numeric.

John Black and Philip Rogaway [39] described three ways

to implement Format Preserving Encryption they proved as

secure as the block cipher used to construct each of them:

 FPE from a prefix cipher.

Assign a pseudorandom weight to each integer in the

range {0,…,N-1} and then sort by weight. The

weights are defined by applying a block cipher to each

integer and then sorting by the result ciphertext value.

A different key will result in a different weight order.

The size and number of entries required for the lookup

table and the number of encryptions that need to be

performed to initialize the table make this technique

impractical for large values of N.

 FPE from cycle walking.

If there is a limited set of valid values within the block

cipher permutation domain, a Format Preserving

Encryption algorithm can be created by repeatedly

applying the block cipher until the result is within the

valid ones. As the domain is finite and the

permutation is one-to-one, the cycle walking is

guaranteed to terminate, but it may end up with the

same original value.

The advantage of this technique is that the valid

values do not need to be mapped as a consecutive

sequence. The disadvantage is that too many cycles

may be required for each operation and the encryption

process stops being deterministic as it is impossible to

know in advance how much time will the encryption

process need.

 FPE from a Feistel network [40][41].

The output of the block cipher can be used as the

source of pseudo-random values for the sub-keys for

each round of the Feistel network; the resulting

construction is good if enough rounds are used.

It cannot be guaranteed that the Feistel network will

preserve the format, but it is possible to iterate it in

the same way as the cycle-walking technique to

ensure the format can be preserved.

The United States’ National Institute of Standards and

Technology (NIST) Special Publication 800-38G [42] defines

methods for Format-Preserving Encryption for Block Ciphers

that can be used for partial or limited data universes and not

limited to numeric values only. The core of the proposed

21

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

solutions is derived from an approved block cipher with 128-

bit blocks, mainly, the Advanced Encryption Standard (AES)

algorithm. Classic and currently used Symmetric key FPE

requires additional processing which implies more time and

computational power is required.

C. Public-Key Format Preserving Encryption

There are no developments in public key FPE because

based on the math used for the encryption, no secure Public-

Key encryption can preserve the length. Besides that, being

the key public and known to everybody, an attacker can just

try encrypting every possible plaintext to see if the result

matches the encrypted text.

If what was encrypted is a Social Security Number (SSN),

the attacker only has to try every possible nine-digit numeric

value, a mere billion tries that can be accomplished in short

time with currently available computational power.

To prevent this, the public key encryption algorithm must

not be deterministic and must include some randomness so

that a large set of possible ciphertexts may result from a given

plaintext using a given public key.

Using RSA as defined by PKCS#1 [43] pads the plaintext

with random bytes causing the ciphertext to be necessarily

larger than the plaintext.

We can conclude that Public key encryption is not suitable

for FPE.

D. Our Proposed Format Preserving Encryption

Continuing with our character or byte level data usage,

what we need is just an array containing all valid byte values

corresponding to the characters or symbols from the defined

alphabet, and this array can have at most 256 elements when

all possible byte values are valid. The number of elements in

the array will be the Module for all module based

substitutions.

What each of the valid values represents is irrelevant to the

process:

 If what we want to encrypt, preserving the format, is

a 16-digit credit card number or a 9-digit social security

number, the process needs to have an array with 10 elements

with different values, one for each of the decimal values from

0 to 9.

 If what we want to encrypt is a database field

corresponding to a person’s name and we want the valid

values to be all capital letters {A…Z}, all lower case letters

{a…z}, the apostrophe and the space, we will need to have an

array with 54 elements with different values.

 If what we want to encrypt is a database field

corresponding to an address and we want the valid values to

be all capital letters {A…Z}, all lower case letters {a…z}, all

ten decimal numbers {0…9}, the apostrophe, the comma, the

period and the space, we will need to have an array with 66

elements with different values.

Which are those values and how they are ordered is totally

irrelevant to the process because we are not using the byte

value for the character itself, but its position within the defined

alphabet.

E. A practical example

Let us suppose an organization wants to encrypt a specific

field within a database and the group of valid values for each

character in that field, expressed in decimal values are:

{32,39,44,48…57,65…90,97…122}

We can see they are 65 different values, and the group as

a whole is non-continuous.

The values can be stored into an array with 65 elements

and there can be 65! (8.24765 * 10^90) possible orders for

those values.

Please notice there is no mention to the field length. This

is because the field id and length are values that can be

obtained and used during the process and has no impact over

the encryption because everything is encrypted at a byte level.

In this particular example, the module M will be 65 and an
encryption algorithm using encryption substitutions like those
presented here and complying with the seven steps of our
technique will guarantee a very fast single-pass format
preserving encryption without the need of any cycle walking
or additional processing to obtain a valid result.

It preserves the unconditional security and also offers the
advantage that the encryption process timing can be
accurately estimated based on the size of the information to be
encrypted (or decrypted) independently of its content.

Due to their intrinsic simplicity, all these substitutions are

really fast and an algorithm using them and complying with

the technique we presented here, can be easily implemented

within existing systems without the need of massive

investments in computational power or data structures

modification.

X. UNCONDITIONAL SECURITY

The plaintext is finite and it is never random, which is a

fact. Whatever needs to be encrypted has a measurable length

and it is not random. It does not matter whether it is a text, an

image, an audio, a video, a blueprint, a spreadsheet or

whatever it may be; it is something that can be

comprehended. Because if it cannot be comprehended, there

is no need to encrypt it.

Our encryption technique does not make any

computational assumption and so it does not depend for its

effectiveness on any computational hardness.

Vigenère’s and Vernam’s cipher constraints and

requirements for perfect secrecy are due to the use of a single

encryption substitution (Modular Addition and XOR,

respectively). Given the ciphertext, the only thing that is not

22

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

known is the key. The encryption substitution order of the

Vigenère and the Vernam ciphers are publicly known, it is

Modular Addition after Modular Addition and XOR after

XOR respectively, repeated as many times as the length of the

plaintext.

What happens with the Vigenère and the Vernam ciphers

if the key is not random and shorter than the plaintext?

If the key is a sequence of equal characters, it will convert

both the Vigenère and the Vernam ciphers into a Caesar cipher

that can be easily broken.

If the key is a sequence of alphabetic characters, it will turn

Vernam cipher into a running key or Vigenère cipher, which

can also be easily broken.

How can we guarantee a cipher based on our technique

and complying with the seven steps will offer perfect secrecy?

A sequence of substitutions to be applied to the plaintext

and the key can be generated from the third parameter, the

substitution pool, the initial substitution order and the length

of the key, and this sequence can be generated as long required

to match the plaintext length and having no repetitions. That

sequence of substitutions will also depend on the plaintext, so

a different plaintext will generate a different substitution

sequence for the exact same remaining parameters.

So far, we can say that for any single byte, the ciphertext

value will depend on the plaintext value, the key value and the

specific substitution used.

Being:

 p the plaintext value

 k the key value

 a() the initial substitution order array

 s the third parameter value

 a(s) the value stored in the sth element of the array

 fa(s) the encryption substitution triggered by a(s)

 c the ciphertext value
Equation (21) represents the encryption as:

 c = fa(s)(p,k)

Equation (22) represents the decryption as:

 p = f’a(s)(c,k)

Considering substitution f’a(s) to be the reverse of

substitution fa(s).

What happens if the key is shorter than the plaintext and it

is not random?

It does not affect the unconditional security because the

key does not have a direct impact on the ciphertext that can be

inferred in any way. Even if the attacker manages to know the

substitution pool, it offers no information about its usage.

The unconditional security is guaranteed based on that for

the attacker:

 The key is unknown.

 The key length is unknown.

 The third parameter is unknown.

 The third parameter length is unknown.

 The initial substitution order is unknown.

 The processing block size or sizes is unknown.

 Which ciphertext byte corresponds to which

plaintext byte is also unknown.

Even if the attacker knows the substitution pool and has

infinite computational power and is able to try all possible

keys and all possible substitutions for each byte and every

permutation of the results and can purge all the invalid results

in just a fraction of a second, the plaintext will still remain

hidden at plain sight in a sea of false positives and the attacker

will still be unable to decide which elephant on the beach is

the right one because every possibly valid plaintext with the

same length or shorter has the exact same probability of being

the original plaintext without any indication of which one is

the right one. Any original text may be padded adding spaces

at the end without affecting the text but generating a longer

plaintext. Once decrypted, those extra spaces at the end has no

impact at all in the text content and meaning.

XI. PRACTICAL APPLICABILITY

Modern complexity-based cryptography requires to have

a large amount of resources available, specifically

computational power, processing speed and memory and as

the complexity increases resource requirements also increase.

While symmetric ciphers like AES plans to use 512 bit

keys and public key ciphers like RSA plan to use 4,096 bit

keys in an attempt to resist a quantum attack, as the number

of qubits keeps growing so will do their key length

requirements. Soon Megabit-long keys will be used and

expanded to Gigabit-long keys to later be expanded to

Terabit-long keys, and so on, and the same will happen with

the computational power and processing speed requirements.

On the other hand, our proposed encryption does not need

neither long keys nor high processing speed and will not need

to expand key lengths or processing speed requirements as

the number of qubits in quantum processors keeps growing.

It can be used even with pen and paper and some spare time.

A. Performance Requirements

Although more complex substitutions can be built up,

increasing the total number of substitutions available, our

example has shown how using basic mathematical operations

like modular addition and modular subtraction suffice to

provide unconditional security. It is not even required to use

23

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

slightly more elaborated mathematical operations like

multiplication or division, less to use more complex or

advanced math.

Less processing power required means simpler, smaller

processors emitting less heat and requiring less electrical

power consumption. Most hardware controllers from the

simplest to the most complex ones already have built-in basic

math operations like addition and subtraction embedded

making it very simple to add encryption to them without

increasing their power requirements.

Considering the computational power required by AES or

RSA, what is required for elliptic curve and what may be

required for lattices encryption, it becomes obvious that our

proposed encryption have much less computational power

requirements.

The use of such simple math guarantees true and absolute

cross platform encryption/decryption.

These low power requirements allow for this encryption

to be easily added to any device either through a hardware,

software or mixed implementation at a very low cost without

jeopardizing its security.

B. Memory Requirements

In our examples, we have shown how the plaintext, the

key, the third parameter and the ciphertext can be processed

just one byte at a time, when we use a single processing block

size of one byte, only the fourth parameter requires a

maximum of 256 bytes (2,048 bits) of memory to store the

substitution order array when the alphabet used contains all

possible byte values.

The minimum memory requirements for a cipher based

on our technique will depend on how it is implemented, the

substitutions used, the maximum processing block size

allowed and the reading and writing buffer sizes.

We have seen that the plaintext can be anything, as far it

is a finite sequence of bytes and the same applies to the key

and the third parameters, and so the ciphertext will also be a

finite sequence of bytes.

C. Applications

The list of possible applications is endless, so we will

provide just a few of them we are currently working on.

 Encrypt Data at Rest

We tried our encryption test software in

Microsoft Windows encrypting files of different

sizes having encrypted and decrypted files up to

1 TB (one Terabyte) without any kind of hassle

and with zero errors.

 Encrypt Data in Transit

Our encryption test software is capable of

reading a local file and remotely writing the

encrypted file without sending any unencrypted

data.

 Encrypted Remote Control

We are currently testing remote controlling a

drone using encrypted control packets and

making the drone to identify and ignore any

invalid packet making its control hacking-proof.

This is a work in progress and there is still a lot of work
ahead before it could be considered complete.

D. Pros and Cons

The pros can be resumed in the fact that our proposed

encryption is light, fast and unconditionally secure. Other

pros are that it also allows for multiple different ciphers to be

built up based on it. Its low memory and processing power

requirements makes it an ideal solution to add encryption to

the Internet of Things (IoT) and all the smart devices it is

bringing up. Its Format Preserving Encryption capabilities

makes it an ideal tool to develop database encryption

solutions that would not require to modify the existing data

structures. The best pro is that anything encrypted using a

cipher based on it will remain impervious to any quantum

attack, no matter how many qubits the quantum processor

may have, or whatever may come later.

Due to its simplicity, low requirements and

implementation ease, it has no cons, no drawbacks and no

special requirements of any kind.

XII. KEY AND MESSAGE DISTRIBUTION

Safe message and key distribution have been an issue

since the very origin of cryptography and have played a major

role in the development of the field, but the advent of internet

has changed everything. A message of any size can be

accurately sent from one point to another through cyberspace,

the availability of cloud storage and file repositories has made

internet the home of trillions of files of every possible type.

Now, there is no need to even send the encrypted file or

the key to the addressee, the address from where they can be

downloaded will suffice. The internet address of a file can be

much shorter than the file itself. With all the cloud and data

files storage providers available around the world, how could

a single file be located without knowing its exact name and

location?

From cloud storage providers to file storage providers,

one single file hidden between trillions of files can be

accessed only knowing how to reach it.

Some storage providers and file address link shrinking

services allow to shorten the full file name and address to just

7 or 8 alphanumeric characters, each capable of identifying

about 3 trillion different files.

The sender and the addressee only need to agree on the

storage or storages and exchange only those very short codes

24

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

already encrypted. A 10 GB file can be shared using an

encrypted message containing only 7 or 8 characters that can

be anywhere. As part of a comment on a news or blog page,

as part of a tweet and an incredibly huge etcetera.

XIII. CONCLUSIONS

All cryptography in use is vulnerable to an attacker with

enough computational power. Everything that has been

digitally stored or transmitted or will ever be digitally stored

or transmitted by any means (network, wireless, internet, etc.)

may be publicly disclosed sooner than later. Unencrypted

databases may be hacked and its content made public like

what happened in August 2016 when the World Anti-Doping

Agency (WADA) was hacked by Russian hackers and private

health records from famous athletes were made public to

distress and discredit them.

The simplicity and ease of implementation of poly-

substitution encryption sheds a light for the development of

true cross-platform encryption solutions and add-ons fully

compatible across hardware and software platforms and

operating systems.

Poly-substitution encryption may be easily added to

existing hardware, software and mixed solutions. Poly-

substitution encryption cannot prevent hacking or system

intrusions but may make the effort fruitless and useless.

A low cost and unconditionally secure format preserving

encryption is urgently needed to preserve the privacy of

sensitive but personal information. We want to help protect

the privacy of personal information around the world.

Assuming there is currently enough available

computational power to try in a very short time every single

key length and value, with every single processing block size

and every single possible encryption substitution there will

still not be possible to decide which one of the apparently

valid results is the true original plaintext.

Even knowing that the plaintext is just plain text, any

possible text with the same length or shorter (just filled with

spaces at the end, at the beginning, or within, in order to reach

the same length) has the exact same possibility of being the

original plaintext. That is the essence of unconditional

security, something none of the currently in use encryption

standards or solutions can offer.

We have seen here that this poly-substitution encryption

technique offers the same level of unconditional security

guaranteed by the Vernam cipher without its constraints.

With billions and billions of files available through the

internet and the capability of using any of them as a key, as a

third parameter and even as the original substitution order,

nobody needs to remember long keys, just needs to remember

which files were used and how to reach them.

If one has enough computational power like quantum

computing promises to offer when it becomes widely

available, one may be able to break and read any file

encrypted with any of the current standards, techniques and

tools with two exceptions:

 Anything protected through a One-Time-Pad (or a

proper use of Vernam’s or Vigenère’s cipher) will

remain secret.

 Anything protected through the use of a cipher based

on our proposed technique and complying with its

seven steps will remain secret.

XIV. FUTURE WORK

As we stated before, this is a work in progress and there is
still a lot of work ahead before it could be considered
complete.

We have already implemented an encryption solution
complying with the seven steps defined here and used it for
our tests. It is a Windows app programmed in Visual Basic 6.0
that uses 256 different encryption substitutions and is capable
of encrypting and decrypting any kind of files up to about 900
TB (900,000,000,000,000 bytes long) and fast enough to
cipher/decipher an 80 MB file in less than five seconds. There
is plenty of room to enhance and improve the encryption speed
by optimizing the code and using programming languages that
may run faster.

We do not have the resources to test up the maximum
possible file size but already tested it on a 1 TB (one Terabyte)
text file, encrypting and decrypting it without any issue or
error. We will continue testing encrypting and decrypting
larger files of different types, including databases, audio and
video files, images and compressed files, etc.

Future work will aim to validate the ideas presented in this
paper by means of additional practical results, simulations,
statistical analysis and practical performance comparisons
with other ciphers.

We are open to share our development with the
cryptographic community to be fully analyzed, tested,
improved and enhanced.

Future work will also aim to develop and test practical
solutions for low cost Format Preserving Encryption
algorithms based on the technique presented here.

REFERENCES

[1] J. Murguia Hughes, “Seven Steps to a Quantum-Resistant
Cipher”, SECURWARE 2016, The Tenth International
Conference on Emerging Security Information, Systems and
Technologies, pp. 247-253, ISSN 2162-2116, ISBN 978-1-
61208-493-0.

[2] W. Whitfield and M. E. Hellman, “New Directions in
Cryptography”, IEEE Transactions on Information Theory. 22
(6): 644–654.

[3] H. Sidhpurwala, “A Brief History of Cryptography” redhat
Security Blog, August 14th, 2013.

[4] G. B. Belasso, “La cifra del Sig. Giova Battista Belasso”, 1553.

[5] G. S. Vernam, “Cipher Printing Telegraph Systems for Secret
Wire and Radio Communications”, Journal of the IEEE 55:
109-115.

[6] G. S. Vernam, Patent 1,310,719. “Secret Signaling System”,
Patented July 22, 1919. United States Patent and Trademark
Office.

25

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] C. E. Shannon, “A Mathematical Theory of Communication”,
The Bell System Technical Journal, Vol. XXVII, No. 3, July
1948, pp. 379-423 and October 1948, pp. 623-656.

[8] C. E. Shannon, “Communication Theory of Secrecy Systems”,
The Bell System Technical Journal, Vol. XXVIII, No. 4, pp.
656-715.

[9] F. W. Kasiski, “Die Geheimschriften und die
Dechiffrierkunst”, 1863.

[10] Swenson, C: “Modern Cryptanalysis - Techniques for
Advanced Code Breaking”, John Wiley & Sons Inc. 2008.

[11] Friedman, W. F.: “The index of coincidence and its
applications in Cryptanalysis”, Cryptographic Series, 1922.

[12] ETSI, “Quantum Safe Cryptography and Security”, ETSI
Whitepaper No. 8, June 2015, ISBN No. 979-10-92620-03-0.

[13] P. W. Shor, "Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer", SIAM J. Comput. 26 (5): 1484–1509.

[14] “Announcing the ADVANCED ENCRYPTION STANDARD
(AES)”, FIPS PUB 197, United States National Institute of
Standards and Technology (NIST), November 26, 2001.

[15] B. Schneier, “Description of a New Variable-Length Key, 64-
Bit Block Cipher (Blowfish)”, Fast Software Encryption,
Cambridge Security Workshop Proceedings (Springer-
Verlag): 191-204, 1993.

[16] S. Lurye, “An uncertain path to quantum supremacy: Notes
from RSA”, Kaspersky Lab Daily, May 8, 2018,
https://www.kaspersky.com/blog/quantum-supremacy-
rsa/22339/. 2018.05.31

[17] J. A. Buchmann, D. Butin, F. Göpfert and A. Petzoldt, “Post-
Quantum Cryptography: State of the Art”, Springer LNCS,
volume 9100: 88–108.

[18] L. Carrol, “Through the Looking-Glass”, Macmillan, 1871.

[19] “Data Encryption Standard (DES)”, FIPS PUB 46, United
States National Institute of Standards and Technology (NIST),
January 15, 1977.

[20] P. Benioff, “The computer as a physical system: A microscopic
quantum mechanical Hamiltonian model of computers as
represented by Turing machines". Journal of statistical physics.
22 (5): 563–591. 1980.

[21] Y. I. Manin, “Vychislimoe i nevychislimoe [Computable and
Noncomputable]” (in Russian). Sov.Radio. pp. 13–15. 1980.

[22] R. P. Feynman, “Simulating physics with computers".
International Journal of Theoretical Physics. 21 (6): 467–488.
1982.

[23] D. Deutsch, “Quantum Theory, the Church-Turing Principle
and the Universal Quantum Computer". Proceedings of the
Royal Society of London A. 400 (1818): 97–117. 1985.

[24] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T.
Magerlein, E. Solomonik, and R. Wisnieff, “Breaking the 49-
Qubit Barrier in the Simulation of Quantum Circuits”,
arXiv:1710.05867 [quant-ph].

[25] W. Knight, “IBM Raises the Bar with a 50-Qubit Quantum
Computer”, MIT Technology Review, November 10, 2017,
https://www.technologyreview.com/s/609451/ibm-raises-the-
bar-with-a-50-qubit-quantum-computer/. 2018.05.16

[26] D-Wave Systems, The Quantum Computing Company.
http://www.dwavesys.com/. 2018.05.16.

[27] “Not Magic, Quantum”, 1663 - The Los Alamos Science and
Technology Magazine, July 2016, pp. 14-19.

[28] B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt,
C. Wunderlich and W. K. Hensinger, "Blueprint for a
microwave trapped ion quantum computer", Science
Advances, 01 Feb 2017,Vol. 3, no. 2, e1601540.

[29] The Oxford Math Center from Oxford College of Emory
University, ”Letter Frequencies in English”,
http://www.oxfordmathcenter.com/drupal7/node/353.
2018.06.07

[30] Wikipedia, “Frequency Analysis”,
https://en.wikipedia.org/wiki/Frequency_analysis. 2018.05.16.

[31] Project Gutemberg, “Project Gutenberg Complete Works of
Winston Churchill by Winston Churchill”,
https://www.gutenberg.org/ebooks/5400. 2018.05.16.

[32] CrypTool-Online, https://www.cryptool.org/en/, 2018.05.16.

[33] E. Barker and N. Mouha, "NIST Special Publication 800-67
Revision 2: Recommendation for the Triple Data Encryption
Algorithm (TDEA) Block Cipher", National Institute of
Standards and Technology (NIST).

[34] B. Schneier, “Description of a New Variable-Length Key, 64-
Bit Block Cipher (Blowfish)”, Fast Software Encryption,
Cambridge Security Workshop Proceedings (Springer-
Verlag): 191-204, 1993.

[35] Rl L. Rivest, A. Shamir and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems".
Communications of the ACM. 21 (2): 120–126. 1978. ISSN
0001-0782.

[36] M. Matsui and A. Yamagishi, “A new method for known
plaintext attack on FEAL cipher”, Advances in Cryptology –
EUROCRYPT 1992.

[37] M. Matsui, “The first experimental cryptanalysis of the Data
Encryption Standard”, Advances in Cryptology – CRYPTO
1994.

[38] D. Coppersmith, “The Data Encryption Standard (DES) and its
strength against attacks”, IBM Journal of Research and
Development. Vol38 No. 3 May 1994, pp. 243–250.

[39] J. Black and P. Rogaway, “Ciphers with Arbitrary Domains”,
Proceedings RSA-CT, 2002, pp. 114–130.

[40] H. Feistel, “Cryptography and Computer Privacy”, Scientific
American, Vol. 228, No. 5, 1973.

[41] A. J. Menezes and P. C. Oorschot and S. A. Vanstone,
“Handbook of Applied Cryptography (Fifth ed.)”, 2001, p. 251.

[42] M. Dworkin, “Recommendation for Block Cipher Modes of
Operation: Methods for Format-Preserving Encryption”, NIST
Special Publication 800-38G, United States National Institute
of Standards and Technology (NIST), March 2016.

[43] RSA Laboratories, “PKCS#1; RSA Cryptography Standard”,
RSA Laboratories.

26

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

