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Abstract—Static code analysis has evolved to be a standard
technique in the development process of safety-critical software.
It can be applied to show compliance to coding guidelines,
and to demonstrate the absence of critical programming errors,
including runtime errors and data races. In recent years, security
concerns have become more and more relevant for safety-critical
systems, not least due to the increasing importance of highly-
automated driving and pervasive connectivity. While in the
past, sound static analyzers have been primarily applied to
demonstrate classical safety properties they are well suited also
to address data safety, and to discover security vulnerabilities.
This article gives an overview and discusses practical experience.

Keywords–static analysis; abstract interpretation; runtime er-
rors; security vulnerabilities; functional safety; cybersecurity.

I. INTRODUCTION

Some years ago, static analysis meant manual review
of programs. Nowadays, automatic static analysis tools are
gaining popularity in software development as they offer a
tremendous increase in productivity by automatically checking
the code under a wide range of criteria [1]. Many software
development projects are developed according to coding guide-
lines, such as MISRA C [2], SEI CERT C [3], or CWE (Com-
mon Weakness Enumeration) [4], aiming at a programming
style that improves clarity and reduces the risk of introducing
bugs. Compliance checking by static analysis tools has become
common practice.

In safety-critical systems, static analysis plays a particularly
important role. A failure of a safety-critical system may
cause high costs or even endanger human beings. With the
growing size of software-implemented functionality, prevent-
ing software-induced system failures becomes an increasingly
important task. One particularly dangerous class of errors are
runtime errors, which include faulty pointer manipulations,
numerical errors such as arithmetic overflows and division
by zero, data races, and synchronization errors in concurrent
software. Such errors can cause software crashes, invalidate
separation mechanisms in mixed-criticality software, and are
a frequent cause of errors in concurrent and multi-core appli-
cations. At the same time, these defects are also at the root
of many security vulnerabilities, including exploits based on
buffer overflows, dangling pointers, or integer errors.

In safety-critical software projects, obeying coding guide-
lines such as MISRA C is strongly recommended by all current
safety standards, including DO-178C [5], IEC-61508 [6], ISO-
26262 [7], and EN-50128 [8]. In addition, all of them consider
demonstrating the absence of runtime errors explicitly as a ver-
ification goal. This is often formulated indirectly by addressing
runtime errors (e.g., division by zero, invalid pointer accesses,
arithmetic overflows) in general, and additionally consider-
ing corruption of content, synchronization mechanisms, and

freedom of interference in concurrent execution. Semantics-
based static analysis has become the predominant technology
to detect runtime errors and data races.

Abstract interpretation is a formal methodology for
semantics-based static program analysis [9]. It supports formal
soundness proofs (it can be proven that no error is missed) and
scales to real-life industry applications. Abstract interpretation-
based static analyzers provide full control and data coverage
and allow conclusions to be drawn that are valid for all
program runs with all inputs. Such conclusions may be that no
timing or space constraints are violated, or that runtime errors
or data races are absent: the absence of these errors can be
guaranteed [10]. Nowadays, abstract interpretation-based static
analyzers that can detect stack overflows and violations of tim-
ing constraints [11] and that can prove the absence of runtime
errors and data races [12][13], are widely used for developing
and verifying safety-critical software. From a methodological
point of view, abstract interpretation-based static analyses can
be seen as equivalent to testing with full data and control
coverage. They do not require access to the physical target
hardware, can be easily integrated in continuous verification
frameworks and model-based development environments [14],
and they allow developers to detect runtime errors as well as
timing and space bugs in early product stages.

In the past, security properties have mostly been rele-
vant for non-embedded and/or non-safety-critical programs.
Recently due to increasing connectivity requirements (cloud-
based services, car-to-car communication, over-the-air updates,
etc.), more and more security issues are rising in safety-critical
software as well. Security exploits like the Jeep Cherokee
hacks [15], which affect the safety of the system, are becoming
more and more frequent. In consequence, safety-critical soft-
ware development faces novel challenges, which previously
only have been addressed in other industry domains.

On the other hand, as outlined above, safety-critical soft-
ware is developed according to strict guidelines, which effec-
tively reduce the relevant subset of the programming language
used and improve software verifiability. As an example dy-
namic memory allocation and recursion often are forbidden or
used in a very limited way. In consequence, for safety-critical
software much stronger code properties can be shown than for
non-safety-critical software, so that also security vulnerabilities
can be addressed in a more powerful way.

The topic of this article is to show that some classes
of defects can be proven to be absent in the software so
that exploits based on such defects can be excluded. On
the other hand, additional syntactic checks and semantical
analyses become necessary to address security properties that
are orthogonal to safety requirements. Throughout the article
we will focus on software aspects only, without addressing
safety or security properties at the hardware level. While we
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focus on the programming language C, the basic analysis
techniques described in this article are applicable to other
programming languages as well.

The article is based on [1], amplifying some of the key
aspects and following up on ongoing work. It is structured
as follows: Section II discusses the relation between safety
and security requirements. After a brief summary of typi-
cal requirements and verification goals formulated in current
safety standards the role of coding standards is discussed in
Section II-B. A classification of security vulnerabilities is given
in Section II-C, and Section II-D focuses on the analysis
complexity of safety and security properties. Section III gives
an overview of abstract interpretation and its application to
runtime error analysis, using the sound analyzer Astrée as an
example. Section IV gives an overview of control and data flow
analysis with emphasis on two advanced analysis techniques:
program slicing (cf. Section IV-A) and taint analysis (cf.
Section IV-B). Section V concludes.

II. SECURITY IN SAFETY-CRITICAL SYSTEMS

Functional safety and security are aspects of dependability,
in addition to reliability and availability. Functional safety is
usually defined as the absence of unreasonable risk to life and
property caused by malfunctioning behavior of the software.
The main goals of information security or cybersecurity (for
brevity denoted as “security” in this article) traditionally are
to preserve confidentiality (information must not be disclosed
to unauthorized entities), integrity (data must not be modified
in an unauthorized or undetected way), and availability (data
must be accessible and usable upon demand).

In safety-critical systems, safety and security properties are
intertwined. A violation of security properties can endanger
the functional safety of the system: an information leak could
provide the basis for a successful attack on the system, and
a malicious data corruption or denial-of-service attack may
cause the system to malfunction. Vice versa, a violation of
safety goals can compromise security: buffer overflows belong
to the class of critical runtime errors whose absence have to
be demonstrated in safety-critical systems. At the same time,
an undetected buffer overflow is one of the main security
vulnerabilities, which can be exploited to read unauthorized
information, to inject code, or to cause the system to crash [16].
To emphasize this, in a safety-critical system the definition of
functional safety can be adapted to define cybersecurity as
absence of unreasonable risk to life and property caused by
malicious misuse of the software.

The convergence of safety and security properties also
becomes apparent in the increasing role of data in safety-
critical systems. There are many well-documented incidents
where harm was caused by erroneous data, corrupted data,
or inappropriate use of data – examples include the Turkish
Airlines A330 incident (2015), the Mars Climate Orbiter
crash (1999), or the Cedars Sinai Medical Centre CT scanner
radiation overdose (2009) [17]. The reliance on data in safety-
critical systems has significantly grown in the past few years,
cf. e.g., data used for decision-support systems, data used in
sensor fusion for highly automatic driving, or data provided
by car-to-car communication or downloaded from a cloud. As
a consequence of this there are ongoing activities to provide
specific guidance for handling data in safety-critical systems

[17]. At the same time, these data also represent safety-relevant
targets for security attacks.

In this section we will first give an overview of typical
verification goals and requirements of contemporary safety
norms, followed by a brief discussion of relevant coding guide-
lines. With this background we will present a classification
of security vulnerabilities and discuss their relationship with
respect to safety requirements. The section concludes with a
discussion of algorithmic complexity of safety and security
requirements.

A. The Safety Standards’ Perspective
Safety standards like ISO-26262 [7], DO-178B [18], DO-

178C [5], IEC-61508 [6], and EN-50128 [8] require to identify
functional and non-functional hazards and to demonstrate that
the software does not violate the relevant safety goals. Some
non-functional safety hazards can be critical for the correct
functioning of the system: violations of timing constraints in
real-time software and software defects like runtime errors
or stack overflows. Depending on the criticality level of the
software the absence of safety hazards has to be demonstrated
by formal methods or testing with sufficient coverage. In this
section we will focus on the non-functional aspects at the
programming language level, and use the avionics standard
DO178C and the automotive standard ISO-26262 as examples.

1) DO-178C: Published in 2011, the DO-178C [5] (“Soft-
ware Considerations in Airborne Systems and Equipment Cer-
tification”), is the primary document by which certification au-
thorities such as EASA or FAA approve commercial software-
based aerospace systems. In general, the DO-178C aims at
providing “guidance for determining, in a consistent manner
and with an acceptable level of confidence, that the software
aspects of airborne systems and equipment comply with air-
worthiness requirements.” The Formal Methods Supplement
DO-333 [19] gives an overview of formal methods, such as
Abstract Interpretation (cf. Section III-A), and their application
in the software development and verification process.

In the software development process, Software Design
Standards and Software Code Standards have to be taken
into account to “disallow the use of constructs or methods
that produce outputs that cannot be verified or that are not
compatible with safety-related requirements”. The Software
Design Standards (cf. Section 11.7 of [5]) are defined to focus
on algorithmic constraints like exclusion of recursion, dynamic
objects, or data aliases. They should also include complexity
restrictions like maximum level of nested calls. The Software
Code Standards focus on the programming language. They
identify the programming language to be used and should
define a safety-oriented language subset (cf. Section 11.8a
of [5]). Coding guidelines enforcing compliance with the
Software Design Standard and the Software Code Standards
have to be applied.

One objective of the software verification activities is the
accuracy and consistency verification goal, which aims at de-
termining “the correctness and consistency of the source code,
including stack usage, memory usage, fixed point arithmetic
overflow and resolution, [...], worst-case execution timing,
exception handling, use of uninitialized variables, [...] and data
corruption due to task or interrupt conflicts”. In particular, this
includes runtime errors caused by undefined or unspecified
behavior of the programming language. Runtime errors also
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have to be addressed when verifying the software component
integration, implying, e.g., detecting incorrect initialization of
variables, parameter passing errors, and data corruption. All
these requirements can be checked using formal analysis (cf.
Section FM.6.3.4 of [19]). Furthermore, data and control flow
analysis is required at the software architectural level and the
source code level to ensure implementation consistency.

2) ISO-26262: In this section we focus on Part 6 of the
ISO-26262 standard [20], which specifies the requirements
for product development at the software level for automotive
applications.

Supporting real-time software and runtime error handling
is considered a basic requirement for selecting a suitable
modeling or programming language (cf. Section 5.4.6 of [20]).
It also states that “criteria that are not sufficiently addressed
by the language itself shall be covered by the corresponding
guidelines or by the development environment” (cf. Section
5.4.7 of [20]). Coding guidelines have to be applied to support
the correctness of the design and implementation. For the
programming language C the MISRA C and MISRA AC AGC
standards are suggested. The goals to be addressed include
”the use of language subsets to exclude language constructs
which could result in unhandled runtime errors”. The absence
of runtime errors has to be ensured by appropriate tools as a
part of the development environment.

Among the verification goals of the software design and
implementation stage are correctness of data flow and control
flow between and within the software units, consistency of
the interfaces, and robustness. The standard lists some exam-
ples for robustness properties, including implausible values,
execution errors, division by zero, and errors in the data and
control flow. Furthermore, the compatibility of the software
unit implementation with the target hardware has to be ensured.

The software integration phase considers functional depen-
dencies and the dependencies between software integration
and hardware-software integration, including non-functional
software properties. Again robustness properties have to be
taken into account, and it has to be ensured that sufficient
resources are available.

The methods for verification of software unit and design
and the methods for software verification of software integra-
tion include static analysis in general and abstract interpreta-
tion (cf. [21]).

B. Coding Guidelines
The MISRA C standard [2] has originally been developed

with a focus on automotive industry but is now widely rec-
ognized as a coding guideline for safety-critical systems in
general. Its aim is to avoid programming errors and enforce
a programming style that enables the safest possible use of
C. A particular focus is on dealing with undefined/unspecified
behavior of C and on preventing runtime errors. As a conse-
quence, it is also directly applicable to security-relevant code.

The most prominent coding guidelines targeting security
aspects are the ISO/IEC TS 17961 [22], the SEI CERT C
Coding Standard [3], and the MITRE Common Weakness
Enumeration CWE [4].

The ISO/IEC TS 17961 C Secure Coding Rules [22]
specifies rules for secure coding in C. It does not primarily
address developers but rather aims at establishing requirements

for compilers and static analyzers. MISRA C:2012 Addendum
2 [23] compares the ISO/IEC TS 17961 rule set with MISRA
C:2012. Only 4 of the C Secure rules are not covered by the
first edition of MISRA C:2012 [2], however, with Amendment
1 to MISRA C:2012 [24] all of them are covered as well. This
illustrates the strong overlap between the safety- and security-
oriented coding guidelines.

The SEI CERT C Coding Standard belongs to the CERT
Secure Coding Standards [25]. While emphasizing the security
aspect CERT C [3] also targets safety-critical systems: it
aims at “developing safe, reliable and secure systems”. CERT
distinguishes between rules and recommendations where rules
are meant to provide normative requirements and recommenda-
tions are meant to provide general guidance; the book version
[3] describes the rules only. A particular focus is on eliminating
undefined behaviors that can lead to exploitable vulnerabilities.
In fact, almost half of the CERT rules (43 of 99 rules)
are targeting undefined behaviors according to the C norm.
Addendum 3 to MISRA C:2012 [26] provides an in-depth
analysis of the coverage of MISRA C:2012 against CERT C
[3].

The Common Weakness Enumeration CWE is a software
community project [4] that aims at creating a catalog of soft-
ware weaknesses and vulnerabilities. The goal of the project is
to better understand flaws in software and to create automated
tools that can be used to identify, fix, and prevent those
flaws. There are several catalogues for different programming
languages, including C. In the latter one, once again, many
rules are associated with undefined or unspecified behaviors.

C. Vulnerability Classification
Many rules are shared between the different coding guide-

lines, but there is no common structuring of security vul-
nerabilities. The CERT Secure C roughly structures its rules
according to language elements, whereas ISO/IEC TS 17961
and CWE are structured as a flat list of vulnerabilities. In the
following we list some of the most prominent vulnerabilities,
which are addressed in all coding guidelines and which belong
to the most critical ones at the C programming level. The
presentation follows the overview given in [16].

1) Stack-based Buffer Overflows: An array declared as
local variable in C is stored on the runtime stack. A C program
may write beyond the end of the array due to index values
being too large or negative, or due to invalid increments of
pointers pointing into the array. A runtime error then has
occurred whose behavior is undefined according to the C
semantics. As a consequence the program might crash with
bus error or segmentation fault, but typically adjacent memory
regions will be overwritten. An attacker can exploit this by
manipulating the return address or the frame pointer both
of which are stored on the stack, or by indirect pointer
overwriting, and thereby gaining control over the execution
flow of the program. In the first case the program will jump
to code injected by the attacker into the overwritten buffer
instead of executing an intended function return. In case
of overflows on array read accesses confidential information
stored on the stack (e.g., through temporary local variables)
might be leaked. An example of such an exploit is the well-
known W32.Blaster.Worm [27].

In the following we will illustrate this vulnerability and its
implications for safety and security with a small toy example.

151

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Consider the following C code fragment:

struct {
char buf[4096];
unsigned int len;

} msg;

int f1(void) {
char LBuf [1024];
unsigned int i;
GetMsg();
for (i=0; i<msg.len; i++)

LBuf[i]=msg.buf[i];
}

void f0(void) {
...
f1(a,b);
...

}

Function f0 calls function f1, which has two local vari-
ables, a char array LBuf of size 1024 bytes, and an integer i.
Let’s assume the function GetMsg updates the global variable
msg from the environment or a user input. The code expects
msg to contain a valid string in field buf, and the length of
this string in field len.

There is no explicit check that the value of len is not
greater than 1024. If len>1024 a buffer overwrite will occur,
and contents of the runtime stack will be overwritten.

A possible stack layout before executing the loop in
function f1 is shown in Figure 1. We assume that the stack
grows downwards. The stack frame of f0 starts with its return
address, the previous value of the frame pointer, space for
local variables and possibly spilled registers. It is followed by
the stack frame of f1. Its return address is the instruction
following the call instruction in the code of f0 from which
f1 was invoked. The next cell points to the previous frame
pointer, then there are 1024 bytes for the local array LBuf,
and 4 bytes for the local variable i.

Figure 1. Stack frame before start of loop in f1

The loop in f1 overwrites all elements of the LBuf array,
starting with index 0. When a buffer overflow happens, the
overwriting does not stop in the cell of LBuf[1023], instead

the entries of the stack above it will be overwritten, starting
with the previous frame pointer, the return address, etc. The
expected consequence will be that the program will behave
erratically or crash, when trying to continue execution at a
wrong (overwritten) return address.

When the situation is exploited in a malicious way, the
return address is intentionally overwritten with a carefully
selected address. The stack frame of such a code injection
attack is shown in Figure 2.

Figure 2. Stack frame after code injection attack

The assumption in that case is that the attacker has gained
control to influence the value of the fields in msg. The first
step is to fill a part of the entries of the source buffer with
bytes representing feasible machine code. The len parameter
is chosen such that the two stack cells above LBuf are
overwritten. In the second step, the attacker makes sure that
the entries in the msg.buf array, which will be written in the
return address field of the stack, contain the address within
LBuf where the injected code begins. Then function f1 will
continue normally, but instead of returning to its caller, it will
execute the injected code.

2) Heap-based Buffer Overflows: Heap memory is dy-
namically allocated at runtime, e.g., by calling malloc()
or calloc() implementations provided by dynamic memory
allocation libraries. There may be read or write operations
to dynamically allocated arrays that access beyond the array
boundaries, similarly to stack-allocated arrays. In case of a
read access information stored on the heap might be leaked
– a prominent example is the Heartbleed bug in OpenSSL
(cf. CERT vulnerability 720951 [28]). Via write operations
attackers may inject code and gain control over program
execution, e.g., by overwriting management information of
the dynamic memory allocator stored in the accessed memory
chunk.

3) General Invalid Pointer Accesses: Buffer overflows are
special cases of invalid pointer accesses, which are listed
here as separate points due to the large number of attacks
based on them. However, any invalid pointer access in general
is a security vulnerability – other examples are null pointer
accesses or dangling pointer accesses. Accessing such a pointer
is undefined behavior, which can cause the program to crash,
or behave erratically. A dangling pointer points to a memory
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location that has been deallocated either implicitly (e.g., data
stored in the stack frame of a function after its return) or ex-
plicitly by the programmer. A concrete example of a dangling
pointer access is the double free vulnerability where already
freed memory is freed a second time. This can be exploited
by an attacker to overwrite arbitrary memory locations and
execute injected code [16].

4) Uninitialized Memory Accesses: Automatic variables
and dynamically allocated memory have indeterminate values
when not explicitly initialized. Accessing them is undefined
behavior. Uninitialized variables can also be used for security
attacks, e.g., in CVE-2009-1888 [29] potentially uninitialized
variables passed to a function were exploited to bypass the
access control list and gain access to protected files [3].

5) Integer Errors: Integer errors are not exploitable vulner-
abilities by themselves, but they can be the cause of critical
vulnerabilities like stack- or heap-based buffer overflows.
Examples of integer errors are arithmetic overflows, or invalid
cast operations. If, e.g., a negative signed value is used as an
argument to a memcpy() call, it will be interpreted as a large
unsigned value, potentially resulting in a buffer overflow.

6) Format String Vulnerabilities : A format string is copied
to the output stream with occurrences of %-commands repre-
senting arguments to be popped from the stack and expanded
into the stream. A format string vulnerability occurs, if attack-
ers can supply the format string because it enables them to
manipulate the stack, once again making the program write to
arbitrary memory locations.

7) Concurrency Defects: Concurrency errors may lead to
concurrency attacks, which allow attackers to violate confi-
dentiality, integrity and availability of systems [30]. In a race
condition the program behavior depends on the timing of
thread executions. A special case is a write-write or read-
write data race where the same shared variable is accessed
by concurrent threads without proper synchronization. In a
Time-of-Check-to-Time-of-Use (TOCTOU) race condition the
checking of a condition and its use are not protected by a
critical section. This can be exploited by an attacker, e.g., by
changing the file handle between the accessibility check and
the actual file access. In general, attacks can be run either by
creating a data race due to missing lock-/unlock protections,
or by exploiting existing data races, e.g., by triggering thread
invocations.

Most of the vulnerabilities described above are based on
undefined behaviors, and among them buffer overflows seem
to play the most prominent role for real-live attacks. Most
of them can be used for denial-of-service attacks by crashing
the program or causing erroneous behavior. They can also be
exploited to inject code and cause the program to execute it,
and to extract confidential data from the system. It is worth
noticing that from the perspective of a static analyzer most
exploits are based on potential runtime errors: when using an
unchecked value as an index in an array the error will only
occur if the attacker manages to provide an invalid index value.
The obvious conclusion is that safely eliminating all potential
runtime errors due to undefined behaviors in the program
significantly reduces the risk for security vulnerabilities.

D. Analysis Complexity
While semantics-based static program analysis is widely

used for safety properties, there is practically no such ana-

lyzer dedicated to specific security properties. This is mostly
explained by the difference in complexity between safety and
security properties. From a semantical point of view, a safety
property can always be expressed as a trace property. This
means that to find all safety issues, it is enough to look at
each trace of execution in isolation.

This is not possible any more for security properties. Most
of them can only be expressed as set of traces properties, or
hyperproperties [31]. A typical example is non-interference
[32]: to express that the final value of a variable x can only
be affected by the initial value of y and no other variable, one
must consider each pair of possible execution traces with the
same initial value for y, and check that the final value of x
is the same for both executions. It was proven in [31] that
any other definition (tracking assignments, etc.) considering
only one execution trace at a time would miss some cases or
add false dependencies. This additional level of sets has direct
consequences on the difficulty to track security properties
soundly.

Other examples of hyperproperties are secure information
flow policies, service level agreements (which describe accept-
able availability of resources in term of mean response time or
percentage uptime), observational determinism (whether a sys-
tem appears deterministic to a low-level user), or quantitative
information flow.

Finding expressive and efficient abstractions for such prop-
erties is a young research field (see [33]), which is the reason
why no sound analysis of such properties appear in industrial
static analyzers yet. The best solution using the current state
of the art consists of using dedicated safety properties as an
approximation of the security property in question, such as the
taint propagation described in Section IV-B.

III. PROVING THE ABSENCE OF DEFECTS

In safety-critical systems, the use of dynamic memory
allocation and recursions typically is forbidden or only used
in limited ways. This simplifies the task of static analysis
such that for safety-critical embedded systems it is possible
to formally prove the absence of runtime errors, or report all
potential runtime errors which still exist in the program. Such
analyzers are based on the theory of abstract interpretation [9],
a mathematically rigorous formalism providing a semantics-
based methodology for static program analysis.

A. Abstract Interpretation
The semantics of a programming language is a formal

description of the behavior of programs. The most precise se-
mantics is the so-called concrete semantics, describing closely
the actual execution of the program on all possible inputs. Yet
in general, the concrete semantics is not computable. Even
under the assumption that the program terminates, it is too
detailed to allow for efficient computations. The solution is to
introduce an abstract semantics that approximates the concrete
semantics of the program and is efficiently computable. This
abstract semantics can be chosen as the basis for a static
analysis. Compared to an analysis of the concrete semantics,
the analysis result may be less precise but the computation
may be significantly faster.

A static analyzer is called sound if the computed results
hold for any possible program execution. Abstract interpreta-
tion supports formal correctness proofs: it can be proved that
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an analysis will terminate and that it is sound, i.e., that it
computes an over-approximation of the concrete semantics.
Imprecision can occur, but it can be shown that they will
always occur on the safe side. In runtime error analysis, sound-
ness means that the analyzer never omits to signal an error that
can appear in some execution environment. If no potential error
is signaled, definitely no runtime error can occur: there are no
false negatives. If a potential error is reported, the analyzer
cannot exclude that there is a concrete program execution
triggering the error. If there is no such execution, this is a
false alarm (false positive). This imprecision is on the safe
side: it can never happen that there is a runtime error which
is not reported.

The difference between syntactical, unsound semantical
and sound semantical analysis can be illustrated at the example
of division by 0. In the expression x/0 the division by zero can
be detected syntactically, but not in the expression a/b. When
an unsound analyzer does not report a division by zero in a/b
it might still happen in scenarios not taken into account by the
analyzer. When a sound analyzer does not report a division by
zero in a/b, this is a proof that b can never be 0.

B. Astrée
In the following we will concentrate on the sound static

runtime error analyzer Astrée [13][34]. It reports program
defects caused by unspecified and undefined behaviors ac-
cording to the C norm (ISO/IEC 9899:1999 (E)), program
defects caused by invalid concurrent behavior, violations of
user-specified programming guidelines, and computes program
properties relevant for functional safety. Users are notified
about: integer/floating-point division by zero, out-of-bounds
array indexing, erroneous pointer manipulation and derefer-
encing (buffer overflows, null pointer dereferencing, dangling
pointers, etc.), data races, lock/unlock problems, deadlocks,
integer and floating-point arithmetic overflows, read accesses
to uninitialized variables, unreachable code, non-terminating
loops, violations of optional user-defined static assertions,
violations of coding rules (MISRA C, ISO/IEC TS 17961,
CERT, CWE) and code metric thresholds. In particular, this
includes all error categories mentioned in Section II-C as
principle security vulnerabilities.

Figure 3. Astrée GUI with alarm overview

Astrée computes data and control flow reports containing
a detailed listing of accesses to global and static variables
sorted by functions, variables, and processes and containing a

summary of caller/called relationships between functions. The
analyzer can also report each effectively shared variable, the
list of processes accessing it, and the types of the accesses
(read, write, read/write).

The C99 standard does not fully specify data type sizes,
endianness nor alignment, which can vary with different targets
or compilers. Astrée is informed about these target ABI
settings by a dedicated configuration file in XML format and
takes the specified properties into account.

The design of the analyzer aims at reaching the zero false
alarm objective, which was accomplished for the first time
on large industrial applications at the end of November 2003.
For keeping the initial number of false alarms low, a high
analysis precision is mandatory. To achieve high precision
Astrée provides a variety of predefined abstract domains, e.g.,
the interval domain approximates variable values by intervals,
the octagon domain [35] covers relations of the form x±y ≤ c
for variables x and y and constants c. The memory domain em-
powers Astrée to exactly analyze pointer arithmetic and union
manipulations. It also supports a type-safe analysis of absolute
memory addresses. With the filter domain digital filters can
be precisely approximated. Floating-point computations are
precisely modeled while keeping track of possible rounding
errors.

To deal with concurrency defects, Astrée implements a
sound low-level concurrent semantics [36], which provides
a scalable sound abstraction covering all possible thread
interleavings. The interleaving semantics enables Astrée, in
addition to the classes of runtime errors found in sequential
programs, to report data races, and lock/unlock problems, i.e.,
inconsistent synchronization. The set of shared variables does
not need to be specified by the user: Astrée assumes that every
global variable can be shared, and discovers which ones are
effectively shared, and on which ones there is a data race. After
a data race, the analysis continues by considering the values
stemming from all interleavings. Since Astrée is aware of all
locks held for every program point in each concurrent thread,
Astrée can also report all potential deadlocks.

In some situations data races may be intended behavior. As
an example a lock-free implementation where one process only
writes to a variable and another process only reads from it may
be correct, although there actually is a data race. However, a
prerequisite is that all variable accesses involved are atomic.
Astrée explicitly supports such lock-free implementations by
providing means to specify the atomicity of basic data type
accesses as a part of the target ABI specification. Data race
alarms explicitly distinguish between atomic and non-atomic
accesses.

Thread priorities are exploited to reduce the amount of
spurious interleavings considered in the abstraction and to
achieve a more precise analysis. A dedicated task priority
domain supports dynamic priorities, e.g., according to the
Priority Ceiling Protocol used in OSEK systems [37]. Astrée
includes a built-in notion of mutual exclusion locks, on top
of which actual synchronization mechanisms offered by op-
erating systems can be modeled (such as POSIX mutexes or
semaphores).

Programs to be analyzed are seldom run in isolation; they
interact with an environment. In order to soundly report all
runtime errors, Astrée must take the effect of the environment
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into account. In the simplest case the software runs directly
on the hardware, in which case the environment is limited to
a set of volatile variables, i.e., program variables that can be
modified by the environment concurrently, and for which a
range can be provided to Astrée by formal directives written
manually, or generated by a dedicated wrapper generator. More
often, the program is run on top of an operating system which
it can access through function calls to a system library. When
analyzing a program using a library, one possible solution is to
include the source code of the library with the program. This is
not always convenient (if the library is complex), nor possible,
if the library source is not available, or not fully written in C, or
ultimately relies on kernel services (e.g., for system libraries).
An alternative is to provide a stub implementation, i.e., to
write, for each library function, a specification of its possible
effect on the program. Astrée provides stub libraries for the
ARINC 653 standard, and the OSEK/AUTOSAR standards.
In case of OSEK systems, Astrée parses the OIL (OSEK
Implementation Language) configuration file and generates
the corresponding C implementation automatically; in case
of AUTOSAR projects the ARXML (AUTOSAR Extensible
Markup Language) configuration file is used as an input.

Practical experience on avionics and automotive industry
applications are given in [13][38]. They show that industry-
sized programs of millions of lines of code can be analyzed
in acceptable time with high precision for runtime errors and
data races.

IV. CONTROL AND DATA FLOW ANALYSIS

Safety standards such as DO-178C and ISO-26262 require
to perform control and data flow analysis as a part of software
unit or integration testing and in order to verify the software
architectural design. Investigating control and data flow is also
subject of the Data Safety guidance [17], and it is a prerequisite
for analyzing confidentiality and integrity properties as a part
of a security case. Technically, any semantics-based static
analysis is able to provide information about data and control
flow, since this is the basis of the actual program analysis.
However, data and control flow analysis has many aspects, and
for some of them, tailored analysis mechanisms are needed.

Global data and control flow analysis gives a summary of
variable accesses and function invocations throughout program
execution. In its standard data and control flow reports Astrée
computes the number of read/write accesses for every global or
static variable and lists the location of each access along with
the function from which the access is made and the thread in
which the function is executed. The control flow is described
by listing all callers and callees for every C function along
with the threads in which they can be run. Indirect variable
accesses via pointers as well as function pointer call targets
are fully taken into account. Astrée also provides a call graph
visualization enhanced by data flow information, which can be
interactively explored (cf. Figure 4). Edges denote function
calls, nodes in green represent functions free of alarms, nodes
colored red correspond to functions with alarms, and nodes
in yellow denote functions which call functions that cause
run-time errors but do not cause potential run-time errors by
themselves.

More sophisticated information can be provided by two
dedicated analysis methods: program slicing and taint analysis.
Program slicing [39] aims at identifying the part of the program

Figure 4. Astrée’s Call Graph Visualization.

that can influence a given set of variables at a given program
point. Applied to a result value, e.g., it shows which functions,
which statements, and which input variables contribute to its
computation. Figure 5 shows Astrée’s graphical visualization
of a slice at the call graph level; green nodes represent
functions which contain code which is part of the slice, gray
nodes represent functions not contained in the slice.

Figure 5. Astrée’s Program Slice Visualization.

Taint analysis tracks the propagation of specific data values
through program execution. It can be used, e.g., to determine
program parts affected by corrupted data from an insecure
source. In the following we give a more detailed overview
of both techniques.

A. Program Slicing
In this section we will first give a brief overview over

classic static slicing. Then, we will introduce a new approach
to slicing, which takes into account results from static program
analysis via abstract interpretation, and describe its practical
application based on an integration in Astrée. Finally, we
describe the relevance of these concepts for demonstrating
safety and security properties.

A slicing criterion of a program P is a tuple (s, V ) where
s is a statement and V is a set of variables in P . Intuitively, a
slice is a subprogram of P which has the same behavior than
P with respect to the slicing criterion (s, V ). Computing a
statement-minimal slice is an undecidable problem, but, using
static analysis, approximative slices can be computed. A well-
known algorithm for static slicing first computes a system
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dependence graph (SDG) and then solves a graph reachability
problem on this graph [40]. The system dependence graph is
an abstract description of the data- and control dependencies
of a computer program.

The precision of this description directly influences the
precision of slices computed from the SDG. Computing pre-
cise system dependency graphs is a non-trivial task since
it requires deriving intricate program properties. These may
include points-to information for variable and function point-
ers, code reachability, context information or possible variable
values at certain program points. Astrée’s core analysis com-
putes invariants about such properties. We propose analysis-
enhanced slicing, an approach which feeds some of these
invariants to a program slicer contained in Astrée. This slicer
can produce sound and compact slices by exploiting points-to
and reachability information. A significant precision gain is
achieved by reducing the amount of vertices and the amount
of data- and control dependences in the system dependence
graph. For simple static slicing, over-approximating the set
of possible destinations of a pointer variable blows up the
size of the system dependence graph as it may add false
dependences to statements which contain variables that would
otherwise not be included in the slice. This may cause a drastic
transitive increase in the number of dependences and vertices.
In contrast, interpreting invariants from Astrée’s core analysis
yields a precise local dependency description of a pointer
dereference, which prevents the transitive blow up.

Astrée detects code which is guaranteed to be unreachable
for any possible program execution. Ignoring such unreachable
code fragments when constructing the system dependence
graph further decreases its size. A system dependence graph
computed by our approach is a sound abstraction of the
data- and control dependences of a computer program. This
follows from the soundness of the Astrée core analysis. As a
consequence, the resulting slices are also sound. The amount
of precision gain depends on the precision of the exported
invariants.

We conducted experiments on programs from automotive
and avionic industry in order to gauge the effectiveness of
analysis-enhanced slicing. In the following, for each run of
the analyzer and slicer we list the average execution time
and memory consumption of three separate runs. Table I
gives an overview of the programs under test. Exporting
the invariants to be fed to the slicer does not significantly
affect the performance of the analyzer. Run time and memory
consumption increase by around 1% on average.

TABLE I. Projects

Project #Lines Reached
Code

Analysis
Time

Avionic1 417,723 98% 1h 41m 59s
Avionic2 71,566 73% 20m 38s
Automotive1 447,188 87% 52m 25s
Automotive2 1,623,140 17% 1h 12m 39s
Automotive3 10,331 92% 4s
Automotive4 1,705 83% <1s

On these programs, the slicer has been executed in two
different modes. In one mode it takes into account exported
invariants (EXPORT) and in the other it does not (ALL).

In the latter mode it assumes that each pointer may point
to every variable of matching type. Table II and Table III
show the execution time and memory consumption of the
two slicer modes, respectively. For three programs the slicer
requires more than 32GB in ALL mode and was stopped.
In contrast, the slicer always terminates when considering
exported invariants (mode EXPORT). In this mode the run
time and memory consumption are much lower.

TABLE II. Slicing Efficiency - Run Time

Project ALL EXPORT
Avionic1 n/a 6s
Avionic2 23m 2s 1m 12s
Automotive1 n/a 1h 31m 20s
Automotive2 n/a 1h 13m 52s
Automotive3 2s <1s
Automotive4 <1s <1s

TABLE III. Slicing Efficiency - Memory

Project ALL EXPORT
Avionic1 >32,000 MB 691 MB
Avionic2 5015 MB 654 MB
Automotive1 >32,000 MB 5268 MB
Automotive2 >32,000 MB 1218 MB
Automotive3 87 MB <1 MB
Automotive4 <1 MB <1 MB

Finally, we show the number of lines of the computed
slices in Table IV. In general, analysis-enhanced slicing yields
significantly smaller slices.

TABLE IV. Slicing Precision

Project ALL EXPORT
Avionic1 n/a 661
Avionic3 70.817 67.134
Automotive1 n/a 48.380
Automotive2 n/a 39.507
Automotive3 4362 2868
Automotive5 415 176

So far the discussion of the Astrée slicer has been restricted
to its context-insensitive mode. In this mode it always takes
into account all contexts (call stack). While efficient, this con-
stitutes another source of imprecision, since not all considered
contexts describe actual execution paths. Therefore, the Astrée
slicer supports a notion of context-sensitivity. Here, too, it
relies on the precision of the Astrée core analysis. The call
contexts computed during this analysis can be exploited in two
different ways. Either all possible call contexts or a real subset
of call contexts can be taken into account. Both modes exclude
those function calls from the system dependence graph which
do not match any of the specified contexts.

Considering all possible call contexts yields a sound slice
with increased precision, when compared to the context-
insensitive case. In contrast, the slice computed by taking into
account a real subset of call contexts does not capture all
possible behaviors of the original program which influence the
slicing criterion. Instead, the behavior described by the slice is
restricted to execution paths which match one of the specified
call contexts. Depending on the choice of contexts, slices
computed with this approach may be significantly smaller.

Analysis-enhanced slicing can be extended to context-
sensitive slicing as well. Exploiting context-sensitive invariants
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in the same way as for context-insensitive slicing is sound and
yields an increase of precision. In addition, it is possible to
extend the framework by also exporting invariants separately
per context. This is especially useful when considering only a
small amount of contexts since in this case the invariants may
be much more precise. Again, the resulting slice is possibly
much smaller.

Another important advantage of analysis-enhanced slicing,
in comparison with standard static slicing, is its efficiency.
While computing sound slices with standard static slicing
requires lots of time and memory, those resources are signifi-
cantly lower for analysis-enhanced slicing. This is due to the
smaller size and smaller complexity of the computed system
dependence graphs. This efficiency improvement makes it pos-
sible to compute slices for very large programs in reasonable
time.

In this work we do not consider dynamic slicing since
a dynamic slice does not contain all statements potentially
affecting the slicing criterion, but only those relevant for a
specific subset of program executions, e.g., only those in which
an error value can result. This restriction makes dynamic
slicing unsuitable for proving program properties.

The different slicing modes presented in this section are rel-
evant for demonstrating safety and security properties. Sound
slices can be computed by context-sensitive analysis-enhanced
slicing, when taking into account all possible contexts, or by
context-insensitive analysis-enhanced slicing. With these slices
it is possible to show that certain parts of the code or certain
input variables might influence or cannot influence a program
section of interest. They yield a global overview of these
properties for the entire program.

In contrast to that, context-sensitive analysis-enhanced slic-
ing, which only considers a subset of possible contexts, is
more suitable for investigating the influence of a certain code
section, e.g. a function, or a module, on the program location
of the slicing criterion.

By considering exactly those contexts that pass through
the interesting section, it is possible to prove that the program
location of the slicing criterion may be influenced or cannot
be influenced by this section. As the slices computed with this
approach may be much smaller, this approach may yield much
preciser results than investigation using sound slices.

B. Taint Analysis
In literature, taint analysis is often mentioned in combina-

tion with unsound static analyzers, since it allows to efficiently
detect potential errors in the code, e.g., array-index-out-of-
bounds accesses, or infeasible library function parameters [3],
[22]. Inside a sound runtime error analyzer this is not needed
since typically more powerful abstract domains can track all
undefined or unspecified behaviors. Inside a sound analyzer,
taint analysis is primarily a technique for analyzing security
properties. Its advantage is that users can flexibly specify taints,
taint sources, and taint sinks, so that application-specific data
and control flow requirements can be modeled.

In order to be able to leverage this efficient family of
analyses in sound analyzers, one must formally define the
properties that may be checked using such techniques. Then it
is possible to prove that a given implementation is sound with
respect to that formal definition, leading to clean and well

defined analysis results. Taint analysis consists in discovering
data dependencies using the notion of taint propagation. Taint
propagation can be formalized using a non-standard semantics
of programs, where an imaginary taint is associated to some
input values. Considering a standard semantics using a suc-
cessor relation between program states, and considering that
a program state is a map from memory locations (variables,
program counter, etc.) to values in V , the tainted semantics
relates tainted states, which are maps from the same memory
locations to V × {taint, notaint}, and such that if we project
on V we get the same relation as with the standard semantics.

To define what happens to the taint part of the tainted value,
one must define a taint policy. The taint policy specifies:

Taint sources which are a subset of input values or variables
such that in any state, the values associated with that input
values or variables are always tainted.

Taint propagation describes how the tainting gets propa-
gated. Typical propagation is through assignment, but
more complex propagation can take more control flow
into account, and may not propagate the taint through all
arithmetic or pointer operations.

Taint cleaning is an alternative to taint propagation, describ-
ing all the operations that do not propagate the taint. In
this case, all assignments not containing the taint cleaning
will propagate the taint.

Taint sinks is an optional set of memory locations. This has
no semantical effect, except to specify conditions when
an alarm should be emitted when verifying a program (an
alarm must be emitted if a taint sink may become tainted
for a given execution of the program).

A sound taint analyzer will compute an over-approximation
of the memory locations that may be mapped to a tainted value
during program execution. The soundness requirement ensures
that no taint sink warning will be overlooked by the analyzer.

At first sight, it is easy to implement an efficient taint
analysis: keeping track of the taint only requires one bit
per variable. One bit means that iterating is fast, but when
considering the whole set of variables, a sound analysis will
require to compute fixpoints over bitvectors, meaning that
in the worst case, convergence may take as many iterations
as the number of variables in the program to analyze, each
iteration requiring to compare two bit-vectors (again a linear
cost). Fortunately, modern analyzers use advanced algorithmic
techniques to efficiently compute such fixpoints, and basic taint
analysis is way less complex than simple interval analysis.

A more precise taint analysis may be needed though: the
typical case being taint cleaning functions that may fail to
clean the tainting. In such cases, the function will usually
return a value describing whether the cleaning succeeded. In
order not to raise false alarms, it is then necessary to use a
relational abstraction, keeping track of the relation between the
taint bit, and the values of other variables. Doing so blindly
leads directly to unscalable analyzes. In order to preserve the
efficiency of the taint analysis, relations should only be kept
between some taint values and some variable values, and only
in a limited context. This leads to relational analysis through
packing, a technique already in use for relational numerical
domains, such as octagons or polyhedra, but which requires
some expertise to fine-tune the heuristics. Finding the right
packs depending on the parametric sources, cleaning and taint
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sinks is a research subject that will be our future work.
The tainted semantics can easily be extended to a mix of

different hues of tainting, corresponding to an extension of
the taint set associated with values. Then propagation can get
more complex, with tainting not just being propagated but also
changing hue depending on the instruction. This is needed not
only to carry different taint analysis in one go, but also as
a necessary semantic step to define some multi-level notions
security breach. Carefully implemented, such extensions lead
to a rather flexible and powerful data dependency analysis,
while remaining scalable.

V. CONCLUSION

In this article, we have given an overview of code-level
defects and vulnerabilities relevant for functional safety and
security. We have shown that many security attacks can be
traced back to behaviors undefined or unspecified according
to the C semantics. By applying sound static runtime error
analyzers, a high degree of security can be achieved for
safety-critical software since the absence of such defects
can be proven. In addition, security hyperproperties require
additional analyses to be performed, which, by nature, have
a high complexity. We have given two examples of scalable
dedicated analyses, program slicing and taint analysis. Applied
as extensions of sound static analyzers, they allow to further
increase confidence in the security of safety-critical embedded
systems.
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Proc. 14th International Static Analysis Symposium (SAS2007), ser.
LNCS, no. 4634, 2007, pp. 437–451.
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