
201

International Journal on Advances in Security, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Survey on Microservice Security–Trends in Architecture, Privacy and 

Standardization on Cloud Computing Environments 

 

Luciano de Aguiar Monteiro¹, Washington Henrique Carvalho Almeida¹, Raphael Rodrigues Hazin¹, Anderson 

Cavalcanti de Lima¹, Sahra Karolina Gomes e Silva² and Felipe Silva Ferraz¹ 
¹Center of Advanced Studies and Systems of Recife 

Recife, Brazil 

²Nassau Mauritius College 

Teresina, Brazil 

E-mail: {lucianoaguiarthe, washington.hc.almeida, raphaelhazin, andclima, sahrask}@gmail.com  

E-mail: fsf@cesar.org.br

 
Abstract — Microservices have been adopted as a natural 

solution for the replacement of monolithic systems. Some 

technologies and standards have been adopted for the 

development of microservices in the cloud environment. 

Application Programming Interface and Representational State 

Transfer were used on a large scale for the implementation. The 

purpose of the present work is to carry out a bibliographic 

survey on the microservice security trends focusing mainly on 

architecture, privacy and standardization aspects in Cloud 

Computing environments. This paper presents a bundle of 

elements that must be considered for the construction of 

solutions based on microservices. 

Keywords- Microservice; Security; Cloud; Architecture; API; 

Monolithic 

I. INTRODUCTION 

Migration of the monolithic architecture to the cloud has 

been a major problem. In this paper a research was carried 

out on the topic of microservices that have been adopted as a 

natural solution in the replacement of monolithic systems. 

The main question lies in how its architecture has been used 

and issues of security and privacy keys on a Cloud 

Computing environment. Cloud Computing provides a 

centralized pool of configurable computing resources and 

computing outsourcing mechanisms that enable different 

computing services to different people in a way similar to 

utility-based systems such as electricity, water, and sewage. 

The motivation for this collection was the fact that more 

and more microservices have been found as a solution for 

cloud applications. This paper analysis in further details 

aspects related to Survey on Microservice Architecture [1]. 

Due to its architecture, a concern about security issues is 

fundamental, unlike a monolithic architecture where security 

is implemented in physical barriers and limiting access to 

resources, the microservice architecture has its main 

characteristic in interoperability, reuse and scalability. The 

purpose of this paper is to compile security issues in 

microservices, as shown in the following sections. 

For the recent advances of Cloud Computing 

technologies, the use of microservices on applications has 

been more widely addressed due to the rich set of features in 

such architecture. These are cloud-based applications that 

make users use it at low cost, threshold, and risk. Therefore, 

their practical use in business can be expected as a trend for 

the next generation of business applications [2].  

Scaling monolithic applications is a challenge because 

they commonly offer a lot of services. Some of them are more 

popular than others. If popular services need to be scaled 

because they are highly demanded, the whole set of services 

will also be scaled at the same time, which implies that 

unpopular services will consume a large amount of server 

resources even when they are not going to be used [3]. 

The microservice-based architecture has emerged to 

simplify this reality and is a natural evolution to application 

models. 

Microservices are a software oriented entity, which have 

the following features [4]: 
Isolation from other microservices, as well as from the 

execution environment based on a virtualized container; 
Autonomy – microservices can be deployed, destroyed, 

moved or duplicated independently. Thus, microservices 
cannot be bound to any local resource because microservice 
environment can create more than one instance of the same 
microservice; 

Open and standardized interface that describes all 
specific goals with effectiveness, efficiency and available 
communication methods (either Application Programming 
Interface (API) or Graphical User Interface (GUI)); 

Microservice is fine-grained – each microservice should 
handle its own task. 

Microservice architecture does not make an application 
any simpler, it only distributes the application logic into 
multiple smaller components, resulting in a much more 
complex network interaction model between components. 
When a real-world application is decomposed, it can easily 
create hundreds of microservices [5]. For this reason, this 
paper presents basic principles for the implementation of 
microservices aimed at classic security aspects for 
commercial applications. Organization of applications based 
on these standards mitigates common security issues. 

The microservice architecture is a cloud application design 
pattern that implies that the application be divided into a 
number of small independent services, each of which is 
responsible for implementing a certain feature, as noted in 
Figure 1. 



202

International Journal on Advances in Security, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 
Figure 1. Microservice system architecture [4]. 

 

Microservices can be considered meta-processes in a Meta 
Operating System; they are independent, they can 
communicate with each other using messages and they can be 
duplicated, suspended or moved to any computational 
resource and so on [4]. Meta-modeling process is a type of 
modeling for analysis and modeling applicable to some 
known problems. Meta process modeling supports the effort 
of creating flexible process models. 

The adopted methodology for this paper included a 
research in IEEE Xplore Digital Library, ACM Digital 

Library and Web of Science sources to provide all necessary 
information through published works. The strings 
Microservice AND security; Microservice AND Privacy; 
Microservice AND Cloud Computing was used to identify 
these works. 

The remainder of this article is structured as follows: 
Section II is an overview of microservice in research topics; 
Section III presents security in Cloud Computing environment 
and Section IV shows the privacy model adopted in cloud 
applications for microservices and we present the standards of 
cloud environment and then conclude and summarize all  
results of that exercise in Section V.  

II. MICROSERVICE  

A. State of the Art 

The microservice architecture was first approached in 

May 2011 at the workshop of software architecture [6], and 

since then it has been evolving and being adopted and 

implemented in Cloud Computing servers like Amazon 

AWS, Google Cloud and Azure. 

From the technological perspective, early microservice 

applications were strongly influenced by a new generation of 

software development, deployment, and management tools 

[6]. Figure 2 show timeline with the technologies that drove 

the microservice architecture. The use of Linux Containers 

(LXC) was the first widely used container technique. It uses 

kernel namespaces to provide resource isolation [7], until the 

service mesh which build on sidecar technologies to provide 

a fully integrated service-to-service communication 

monitoring [6]. 

 
Figure 2. A microservice technologies timeline [6]. 



203

International Journal on Advances in Security, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

State of the art in microservices focuses its searches on 

the question of architecture analysis, performance, 

maintenance and security [5]. With the migration to 

continuous delivery culture, the organization of companies 

has changed from long processes which sometimes went 

through different areas to smaller teams, where each is 

responsible for developing their own microservice and for 

providing an API that will be used by other teams. On this 

point, the DevOps culture ends up being the most commonly 

used. 

Information security according to ISO/IEC 27001 

standards is based on three principles of confidentiality, 

integrity and availability. The microservices implementation 

is heavily bogged down in the irrevocability guarantee of 

these principles, for that reason some measures must be taken 

due to its complexity, the architecture proposed in this work 

treats numerous benefits for the guarantee of information 

security. 
The development of solutions based on microservices has 

naturally used Cloud Computing environments so as to make 
the most of the best characteristics and functionalities 
provided by various solutions in the market. In this study we 
identified 3 relevant topics: the question of granularity, the 
deployment process and the resulting patterns. 

A Microservice Architecture is a way of architecting 
software applications as independently deployable services. 
Based on Fowler, microservices can be characterized by a 
number of principles [8]: 

• organization around business capability 

• evolutionary design 

• deployment / infrastructure automation 

• intelligence in the endpoints 

• heterogeneity and decentralized control 

• decentralized control of data 

• design for failure 

The aforementioned principles are fundamental in the 

architecture that will be better described in the next section. 

The implementation of microservices is based on trade-offs 

between security and performance. This research found that 

the implementation of microservices uses the most advanced 

resources from Cloud Computing. The main characteristics 

of Cloud Computing can be summarized in the following 

points [9]:  

• Multi-Tenancy 

Refers to having more than one occupant of the cloud 

living and sharing with other occupants of the provider’s 

infrastructures, including computational resources, storage, 

services, and applications. Through multi-tenancy, clouds 

provide simultaneous, secure hosting of services for various 

customers using the same cloud infrastructure resources. It is 

an exclusive characteristic to resource sharing on clouds. 

• Elasticity 

Another important aspect of Cloud Computing implies 

that the user is able to scale up or down resources assigned to 

services or resources based on the current demand. For 

providers, scaling up and down of a tenant’s resources gives 

a prospect to other tenants to use the tenant’s previously 

assigned resources.  

• Availability of Information 

Service Level Agreement (SLA) is a trust bond between 

cloud provider and customer. It defines a maximum time for 

which the network resources or applications may not be 

available for use by the customer. Due to the complex nature 

of customer demands, a simple measure and trigger process 

may not work for SLA enforcement.  

• Multiple Stakeholders 

In a Cloud Computing model, there are different 

stakeholders involved: cloud provider (an entity that delivers 

infrastructures to the cloud’s customers), service provider (an 

entity that uses the cloud infrastructure to deliver 

applications/services to end users), and customer (an entity 

that uses services hosted on the cloud infrastructure). 

Another important characteristic is the deployment of 

microservices. A cloud deployment model signifies a specific 

type of Cloud Computing environment, renowned by 

ownership, size, and access. There are three common cloud 

deployment models, namely private cloud, public cloud, and 

hybrid cloud [9]. 

Figure 3 shows differences between two architectures and 

demonstrates the microservices implantation. Their 

independence and granularity can be provided in several 

infrastructures. 

 
Figure 3. Software deployment in a cloud platform using (a) conventional 

and (b) microservice-based software [10]. 

Microservices are relatively small and autonomous 
services deployed independently, with a single and clearly-
defined purpose. Because of their independent deployment, 
they have a lot of advantages. They can be developed in 
different programming languages, they can scale 
independently from other services and they can be deployed 
in the hardware that best suits their needs [10].  



204

International Journal on Advances in Security, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Moreover, because of their size, they are easier to 

maintain and more fault tolerant since the failure of one 

service will not break the whole system the way it could 

happen in a monolithic system [10].  

Another characteristic of microservices is cloud native 

applications, the support of the IDEAL properties: Isolation 

of state, Distribution, Elasticity, Automated management and 

Loose Coupling. Microservices propose to vertically 

decompose the applications into a subset of business-driven 

services. Every service can be developed, deployed and 

tested independently by different development teams, and by 

means of different technology stacks. The responsibility of 

the development of a microservice belongs only to one team, 

who is in charge of the whole development process, including 

deploying, operating and upgrading the service when needed 

[10]. Figure 4 shows the complexity related. 

 
Figure 4. Architectural complexity of (a) monolithic and (b) microservice- 

based software [10]. 

Decoupling applications in this manner yields several 

benefits: it simplifies scaling (each service can be scaled 

independently), provides greater flexibility in resource 

allocation and scheduling, allows greater code reuse, enables 

new fault tolerant mechanisms, provides better modularity, 

and allows application developers to take advantage of 

services from other provides e.g., Amazon S3. As a result, 

this architecture has been widely adopted by both startups and 

large established companies (e.g., Uber and Netflix), and is 

being deployed at significant scale (e.g., Uber’s application 

is composed of over 1000 microservices) [12]. 
The use of microservices can reduce the operational costs, 

as shown in the study [10]. The comparison was made in a 
cloud and monolithic solutions environment. 

1) Cost comparison 
In the study carried out in paper [13], it is shown a cost 

comparison in the various commercially used architectures of 
software development. In summary, use of microservices 
brings lower infrastructure spending by allowing scalability as 
well as scalability since the measurement of operating cost is 
done by use. In the old monolithic architecture many resources 
end up being loaded to memory even without being used, this 
is one of the great differences for the strong diffusion of this 
new architecture in software industry. 

Given that each architecture was deployed in different 
infrastructures, we defined and calculated the metric Cost per 
Million of Requests (CMR) for each architecture in the three 
scenarios, in order to easily compare their execution costs. For 
each scenario and architecture, this metric was calculated by 
dividing the monthly infrastructure costs by the number of 
requests supported per month, which is calculated by 
multiplying the number of requests supported per minute by 
43,200 —the number of minutes per month (60*24*30)—. 
We assumed a constant throughput per minute during a month 
[13]. The CMR metric for each architecture is shown in Figure 
5. 

 
Figure 5. Cost Comparison of The Three Architectures per Million of 

Requests [13]. 

2) Granularity 
Microservices can be declared with varying levels of 

capability, and the size of this functionality is typically 
referred to as its granularity, that is, the functional complexity 
coded in a service or number of use cases implemented by a 
microservice. Since microservices are discrete and must be 
composed into greater functional entities to support business 
workflows, it follows that message passing between 
microservices (as a result of method invocation) increases as 
the microservices become finer-grained.  

The ‘building-block’ approach to service composition is 
attractive from an architectural perspective; arguments for 
service reuse can be made, and the gap between application 
design and the user requirements documentation can be 
reduced. However, the increase in communication between 
services (manifesting as out-of-process calls and the number 
of service calls made) also increases the response time of an 
application, particularly when many small increases in latency 
are compounded together [7]. 

Container-based technologies, and in particular its best 
known implementation Docker, made deployment of our new 
application possible through several characteristics [12]: 



205

International Journal on Advances in Security, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• A Docker image contains all of its dependencies, 

which means a given service can be treated as a 

black box, only exposing its API in exchange for 

resources. 

• The containers are by default sealed from one to 

another, which results in guaranteed low coupling, 

without the high cost associated with virtual 

machines. 

• Docker Compose made it possible to easily deploy 

any number of services, by composing in a text file 

an application made of several services. 

• Docker Swarm mode allows for complete 

decoupling of the containers and the machines 

supporting them. In its recent version 3, Docker 

Compose allows for Distributed Application 

Bundles, which define applications made of several 

services without any dependence other than the 

presence of a Docker host IP address and access 

credentials. 
Recommended patterns on how to compose microservices 

together [8]: 
1. Aggregator Microservice Design Pattern – e.g., a 

service invoking others to retrieve / process data. 

2. Proxy Microservice Design Pattern – a variation of 

the Aggregator with no aggregation. 

3. Chained Microservice Design Pattern – produces a 

single consolidated response to a request. 

4. Branch Microservice Design Pattern – extends the 

Aggregator and allows simultaneous response 

processing from possibly mutually exclusive chains 

of microservices. 

5. Shared Data Microservice Design Pattern – 

towards autonomy through full-stack services with 

control of all components. 

6. Asynchronous Messaging Microservice Design 

Pattern – use message queues instead of 

Representational State Transfer (REST) 

request/response pattern. 

Integration is another important feature. The architecture 

of microservices allows for better integration of corporations 

where there are areas that handle a number of business 

activities. As this pattern is based on the independence of 

technologies, the services made available can be developed 

without a change in technology, which is usually expensive. 

Throughout this study we present data that show how this 

pattern brought about significant improvements in the 

development of solutions for the software industry. 
B. Architecture 

Microservice architecture has become a dominant 
architectural style choice in the service-oriented software 
industry. Microservice is a style of architecture that puts the 
emphasis on dividing the system into small and lightweight 
services that are purposely built to perform a very cohesive 
business function, and is an evolution of the traditional 
service oriented architecture style [14], in which what is 
presents a scenario of microservice architecture (Figure 6) in 

which five services working independently provide requests 
of a mobile app through an API [15].  

 
Figure 6. Example scenario of a microservice system[15]. 

The idea of splitting an application into a set of smaller 
and interconnected services (microservice) is currently 
attracting the interest of many application developers and 
service providers (e.g., Amazon [16][17], Netflix 
[12][18][19] and eBay [20][5]).  

A Microservice based architecture has a pattern for 
development of distributed applications, where the 
application is composed of a number of smaller 
"independent" components; these components are small 
applications in themselves [21].  

A microservice normally comprises three layers as a 
typical 3-tiered application[22], consisting of an interface 
layer [23], a business logic layer [20] and a data persistence 
layer, but within a much smaller bounded context. This sets 
a broad scope of the technical capabilities that a microservice 
could possess. However, not every microservice provides all 
capabilities. This would vary depending on how the function 
provided is meant to be consumed. For example, a 
microservice used primarily by providers of APIs would have 
a communications interface layer, business logic and data 
persistence layers but not necessarily have user interfaces 
[21]. 

We are considering a reference architecture model of 
microservices, demonstrating the main components and 
elements of this standard [21]. Table I presents a comparison 
between monolithic architecture and microservice 
architecture. 

Table I. Comparing monolithic and microservice architecture [21]. 

Category 
Monolithic 

Architecture 

Microservice 

Architecture 

Code 

A single code 

base for the entire 

application. 

Multiple code bases. Each 

microservice has its own 

code base. 

Understandability 

Often confusing 

and hard to 

maintain. 

Much better readability 

and much easier to 

maintain. 

Deployment 

Complex 

deployments with 

maintenance 
windows and 

schedule 

downtimes.  

Simple deployment as each 

microservice can be 
deployed individually, with 

minimal or zero downtime. 



206

International Journal on Advances in Security, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Category 
Monolithic 

Architecture 

Microservice 

Architecture 

Language 

Typically, entirely 

developed in one 
programming 

language. 

Each microservice can be 

developed in a different 

programming language. 

Scaling 

Requires you to 

scale the entire 
application even 

though 

bottlenecks are 
localized. 

Enables you to scale bottle-
necked services without 

scaling the entire 

application. 

In this paper, we will cover the following main elements: 

1) API Proxy 
To "de-couple" the microservice from its consumers, this 

proxy pattern is applied at the microservice interface level, 
regardless of the "API proxy" component. Organizations will 
provide APIs to different consumers, some of whom are 
within and others outside of the enterprise. These 
microservices would differ in SLA, security requirements, 
access levels, etc. [21]. 

2) Enterprise API Registry  
The "discovery" requirements of the microservices are 

met through the use of the API registry service. Its purpose is 
to make the interfaces exposed by the microservice visible to 
consumers of the services both within and outside of the 
enterprise. An "Enterprise API registry" is a shared 
component across the enterprise, whose location must be well 
known and accessible. Its information content is published in 
a standard format, information should be in consistent and 
human readable format, and must have controlled access. It 
must have search and retrieval capabilities to allow users to 
look up details on available API specifications at design time 
[21]. 

3) Enterprise Microservice Repository 
The "enterprise microservice repository" would be a 

shared repository for storing information about 
microservices. It provides information such as microservice 
lifecycle status, versions, business and development 
ownership, detailed information like its purpose, how it 
achieves the purpose, tools, technologies, architecture, the 
service it provides, any APIs it consumes, data persisted and 
queried and any specific non-functional requirements. In the 
absence of well-defined repository standards, the enterprise 
must define its own standard specification artefacts for 
microservices [5]. 

These elements are fundamental to the organized 
implementation of microservices and have been considered 
in this survey. 
C. Microservice Standards and Solutions 

In the centralized structure, the standardization becomes 
almost a natural way, but in microservices implementation 
this philosophy changes. 

Traditional enterprise applications are divided into the 
front-end User Interface (UI), service-side logic components, 
and database. Front-end UI components run on user devices, 
such as web pages or mobile-side interfaces. Server-side 
logic components run on a server or in the cloud. The back-
end database hosts application data. Server-side components 

work in conjunction with the database to handle requests 
issued by users [24]. 

Teams building microservices prefer a different approach 
to standards too. Rather than using a set of defined standards, 
written down somewhere on paper, they prefer the idea of 
producing useful tools that other developers can use to solve 
problems similar to the ones they are facing. These tools are 
usually harvested from implementations and shared with a 
wider group, sometimes, but not exclusively. Using a git and 
github has become the de facto version control system of 
choice. Open source practices are becoming more and more 
common in-house [25]. 

A microservice is an application on its own to perform the 
functions required. It evolves independently and can choose 
its own architecture, technology, platform, and can be 
managed, deployed and scaled independently with its own 
release lifecycle and development methodology. This 
approach takes away the construct of the Service-Oriented 
Architecture (SOA) and Enterprise Service Bus (ESB)and the 
accompanying challenges by making "smart endpoints" and 
treating the intermediate layers as network resources whose 
function is that of data transfer [21]. 

Unlike SOA, microservices do not have integration 
components responsible for service orchestration and prefer 
choreography. Business processes are embedded in services 
and there is no logic in the integration. Thus, Microservices 
themselves are responsible for the interaction with others. 
This gives limited flexibility to design or adjust business 
processes over the company’s IT. It is a payoff for 
microservice independent service management. However, 
Netflix considers even the option to orchestrate 
microservices, which is not a mainstream path [26]. 

The applications that expose interfaces that can be used 
by other applications to interact with are defined as API [5]. 
Microservice APIs which are built using internet 
communication protocols like HTTP adhere to open 
standards like REST [27][28] and SOAP [3] and use data 
exchange technologies like XML [29] and JavaScript Object 
Notation (JSON) [5]. 

Applications developed in a monolithic architecture 
perform multiple functions such as providing address 
validation, product catalogue, customer credit check, etc. 
When using the microservice based architecture pattern, 
applications are created for specific functions, such as 
address validation, customer credit check and online 
ordering; these applications are cobbled together to provide 
the entire capability for the proposed service. The approach 
to application development based on microservice 
architecture addresses the challenges of "monolithic" 
application and services [21]. 

In the research undertaken in this paper, the microservices 

are implemented and documented as follows [14]: 

1) Architectural views/diagrams 

• UML 

• Standard modeling languages, e.g., RAML and 
YAML.  

• Specifically designed modeling languages, e.g., 
CAMLE. 



207

International Journal on Advances in Security, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Standard specification languages, e.g., Javascript 
(Node.js), JSON and Ruby. 

• Specifically designed specification languages, e.g., 
Jolie.  

• Pseudocode for algorithms. 

2) REST 

Representational State Transfer (REST) consisting of a 

set of architectural principles that, when followed, allows a 

well-defined interface design to be created. Applications that 

use REST principles are called RESTFul. REST 

[5][29][28][30] is often applied to provide services to other 

services (web services) and to the same full use of messages. 

To better understand the architectural style, it is important to 

highlight three important concepts: (i) feature; (ii) operations 

and (iii) representations. Resource is any information that is 

made available to customers through a Unique Identifier 

(URI). We can also define resource as being the source of 

representations. The representations are a set of data that 

explains the state of the requested resource. URIs must have 

a notation pattern, be descriptive, and have a previously 

defined hierarchy. The same resource can be identified by 

one or more URIs, but a URI [31], [32] identifies only one 

resource. 

3) API 

API is a basic authentication, including API user 

registration with strong password protection, (b) modern 

security mechanisms such as message level security, web 

signature and web encryption, and (c) security mechanisms 

within API and its backend services as a third security factor 

such as token based API for backend authentication, public 

key infrastructure and transport layer handshake protocol 

[23]. 

REST APIs [18] are developed in many technologies and 

microservices developed using different types of 

programming languages (Java, .NET, PHP, Ruby, Phyton, 

Scala, NodeJs etc.) and persistent technologies (SQL, No-

SQL, etc.) [3][8][33]. They can be managed and exposed to 

web clients, who can then access the microservices and 

receive their responses through a “livequery” mechanism 

whereby updates to database data are instantly communicated 

to subscribing clients [29]. Figure 7 best presents categories 

of practices for designing REST-based web services. 

 
Figure 7. Categories of best practices for designing REST [34]. 

NoSQL databases are used in these implementations 
[29][35][36][37]. The NoSQL nature of the database is 
essential for providing the scaling, sharing and replication 
functionality expected from modern architectures, as well as 
to better support hierarchical data required for collaborative 
document editing [29]. 

The popularity of microservice-based architecture is 
evident from the report by the popular jobs portal indeed.com, 
in which the number of job openings on microservices-
related technologies such as JSON [5][38][32] and REST 
[3][29][28] has grown more than 100 times in the last six 
years, whereas jobs in similar technology areas like SOAP 
and XML have remained nearly identical [5]. 

Solutions for microservices seek to implement simple 
algorithms that meet specific needs with the elements 
presented in this section. security on Cloud Computing  

III. SECURITY ON CLOUD COMPUTING MICROSERVICES 

Switching from a monolithic or centralized architecture to 
a decentralized architecture requires some care. In the past, 
security was focused on a single point [15], responsible for 
receiving all service requests. In the microservice-based 
architecture, the resources are offered through several points 
of access that interconnect each other, forming a unique 
solution. 

Microservices combined with secure containers can 

facilitate new ways of building critical applications. These 

applications will benefit from tools and services built for less 

critical software. Secure containers and compiler extensions 

can help address more stringent requirements of critical 

applications. Although this approach is sufficient for 

implementing fail-stop applications, there are still several 

open research questions regarding whether and how it might 

support fail-operational applications [40]. 

Monolithic security services are relatively easier to 

implement than microservices. Monolithic services have a 

clear boundary and encapsulate their intercommunications. 

This will obscure security vulnerabilities [41][42] within the 

inner layers of the system. A microservice also encapsulates 

its communications. Both microservices and services are 

based upon clear requirements. 

In a microservice-based system a simple routine 

completion requires the microservices to communicate with 

each other over network, for example. This will expose more 

data and information (endpoints) about the system and thus it 

expands the attack surface [19]. Some care must be taken in 

the communication between other services in the same 

network, and this is one of the major challenges [23][43][29] 

in this approach. 

Monolithic applications, as previously explained, have a 

single and shared code base where all the developers work 

together. This development methodology has a few 

downsides, as it needs to struggle with handling cases in 

which the number of users exceeds the capacity of the server 

and it is hard to manage and maintain due to the lack of 

mechanisms aimed at modularization [26]. The evolution of 

the development of an application in monolithic architecture 



208

International Journal on Advances in Security, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

becomes quite complex, considering that in order to add new 

functionalities, one must change the source code, and still 

considering the same reasons, making the software hard to 

maintain. Monolithic architectures are typically difficult to 

deploy, difficult to upgrade and maintain and difficult to 

understand [27]. 

The deployment of monolithic architecture applications 

in Cloud Computing environments causes a very negative 

impact: services need to be scaled because they are highly 

demanding. The whole set of services will also be scale at the 

same time, which generates unpopular services that consume 

a large amount of server resources even when they are not 

going to be used [3]. 

The organization of teams for the development of a 

system based on microservices is generally subdivided into 

teams and services, and these teams are generally responsible 

for the implementation and delivery of services. For this type 

of implementation, the teams have to be aligned in the 

purposes of the microservices and the interconnection 

between them, thus also synchronizing the protocol [44] used 

to carry out the communication, thus respecting a standard 

for access protection or improper interception. Defining the 

way services are interconnected and interacting is the key 

point of security [38]. 

The security challenge brought by such network 

complexity is the ever-increasing difficulty in debugging, 

monitoring, auditing and forensic analysis of the entire 

application [45]. Since microservices are often deployed in a 

cloud that the application owners do not control, it is difficult 

for them to construct a global view of the entire application 

[5]. 

In microservice architecture, an application is essentially 

a collection of workflows. These workflows can compose 

many levels of services, each processing and modifying the 

data before its final destination. What we need is a way to 

certify the metadata related to a data stream and manage its 

validity during time and re-elaboration [46]. 

Security is a major challenge that must be carefully 

thought of in microservices architecture. Services 

communicate with each other in various ways creating a trust 

relationship. For some systems, it is vital that a user is 

identified in all the chains of a service communication 

happening between microservices.  

Microservices predominant execution environments are 

containers, that remove dependencies on the underlying 

infrastructure services, which reduces the complexity of 

dealing with those platforms [47], microservices need high 

availability and scalability characteristics provided by 

providers of Cloud Computing, environment preferably used 

by the developers. In this architecture the four security 

aspects that should be considered are: containers, data, 

permission, and network [48], as noted in Figure 8. 

 

 
Figure 8. A taxonomy of security issues of Microservices [48] 

 



209

International Journal on Advances in Security, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Based on main security aspects of microservices 

discussed in Figure 6, the following main safety mechanisms 

will be presented to prevent safety deficiencies in 

microservices: 

• mutual authentication of Services Using Mutual 

Transport Layer Security - with a self-hosted Public 

Key Infrastructure as a method to protect all internal 

service-to-service communication [49];  

• host-authenticated TLS with in-band authentication 

are well-known solutions that are employed by 

designers to handle security challenges [14][15]; 

• principal propagation via Security Tokens: after a 

user has been authenticated by the gateway, the 

microservices behind it will be processing user’s 

requests, a security token is created on the server 

side upon the successful validation of the clients 

credentials and given to the client for subsequent use 

[49]. 

Although the microservices are independent and do not 

cause dependencies among the modules, the biggest 

challenge nowadays is to guarantee availability [50]. The 

DevOps movement (set of practices to integrate the software 

development to IT operations) is currently collaborating with 

cloud environments and microservice architecture, providing 

continuous integration from the code compilation to the 

availability of the test and production environment, making it 

a facilitator for systems implementation utilizing 

microservices. 

Ensuring the availability of services is presented as a 

security requirement facilitated by the use of the microservice 

architecture. This approach usually works by fragmenting the 

entire solution in smaller pieces [51].  Considering that these 

fragments are parts of the code with specific functions 

(microservices), in the event of a fragment failure, it would 

not result in the unavailability of all system resources. 

Availability has some critical points as they are bound to be 

observed, such as: implementing software versions, software 

crash recovery, invasions, unavailability of infra features 

beyond points. 

In a microservice architecture, it is typical for many 

instances of a particular service to be running at any one time 

and for these instances to stop and start over time [52]. The 

problem of service discovery is to enable service consumers 

to locate service providers in real time to facilitate 

communication [53]. Docker Containers have been gaining a 

lot of hard work because of their agility and ease of making 

new services available [50]. The containers allow the 

microservices to be packaged [54] and available next to their 

dependencies in a single image, thus facilitating the 

availability of the service in a timely manner, minimizing 

downtime. This mode is called code portability [33]. In the 

context of microservices, the use of Docker containers for 

service delivery has resulted in benefits under various aspects 

such as automation, independence, portability and security, 

especially when considering ease of management, creation 

and continuous integration of environments systems offered 

by the Docker platform. In Docker, each container consists of 

only the application and the dependencies that the application 

needs to run, ideally no more and no less [33]. 

Another security concern involves the trust among the 

distributed microservices. An individual microservice may 

be compromised and controlled by an adversary. For 

example, the adversary may exploit vulnerability in a public 

facing microservice and escalate privilege on the virtual 

machine that the microservice runs in. As another example, 

insiders may abuse their privileges to control some 

microservices. As a result, individual microservices may not 

be trustworthy  [5]. 

IV. PRIVACY ISSUES 

Privacy has been a barrier for the adoption of Cloud 
Computing [51][55]. The migration to microservices has 
helped overcome this obstacle due to the scale gains proposed 
in this architecture. 

In general, privacy refers to the condition or state of 
hiding the presence or view [56]. There is a need to attain this 
state in the places where confidential things are used such as 
data and files. In cloud data storage privacy is needed to attain 
the data, user identity and controls [57]. 

Trust is a crucial factor in Cloud Computing 
environments in current practice. It depends mostly on 
observation of characteristics, and self-evaluation of cloud 
service vendors. Existing trust mechanisms in the cloud are 
characteristics-based trust, SLA confirmation-based trust, 
Cloud transparency techniques, Trust as a service, Formal 
endorsement, audit and standards. In order to attain the 
service, it requires to be used in blend with social and 
technological mechanisms for providing persistent trust [58]. 

The exchange of sensitive data is intense in large-scale 
scenarios of Cloud Computing, with several federations, 
where multiple Identity Providers and Service Providers 
work together to provide services. Therefore, identity 
management should provide models and privacy mechanisms 
in order to manage the sensitive data of its users  [43]. 

For service provider’s standards in Cloud Computing 
environment, the contract is usually based on good deeds of 
that company, and hence the users need to pay attention to 
the security requirements, contract terms and other 
credentials. The users must have clear understanding in 
detailed terms and conditions of service providers and also 
the risk involved in signing the service provider’s contract 
before moving to cloud [58]. 

Cloud service provides various options to the business 
customers to choose the level of protection needed for their 
data. The most common of these approaches is encryption. 
The customer chooses the type of encryption that they prefer 
and store the encryption key in a safe place under their control 
[44]. 

To ensure privacy, a well referenced model is used. This 
model is presented in Figure 9. 



210

International Journal on Advances in Security, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 
Figure 9. Cloud security and privacy model [55]. 

According to the proposed model in [55], a secure and 

private cloud model is divided into five layers: Physical and 

Environmental Security, Cloud Infrastructure Security, 

Network Security, Data and Access Control and Privilege 

Management: 

A. Physical and Environmental Security 

Layer of policies adopted with the objective of protecting 

physical access to the cloud provider [16]. Another benefit of 

cloud service is the ability to meet the elasticity of demand. 

Business processes should consider the availability of open-

ended resources at an affordable cost. Use of services such as 

Software as Service (SaaS) enables the business to focus 

more on their core strengths. Since availability of computing 

resource is no longer a constraint, the business should take 

advantage of computing power to experiment with new ideas 

to serve the customers better. Since the cost is usage based, 

changing business processes to take advantage of newer 

technologies is advantageous to a business. Cloud service 

addresses an important business process for every business, 

namely backup and recovery. Many businesses do not pay 

enough attention to data backup and recovery because it is 

time consuming and does not provide immediate benefit until 

some disaster strikes, which is rare. With the cloud taking 

care of all the management aspects of data backup and 

recovery, businesses tend to focus on their strengths and a 

cloud provides the essential service of backup and recovery 

when needed. A common perception is that in order to 

provide security the user must have control over the devices. 

This usually applies to physical security. Given the elastic 

nature of demand for service and the centralization of service, 

the cloud environment is in a better position to provide 

greater physical security to the hardware [44]. 

B. Cloud Infrastructure Security 

Addresses issues with cloud infrastructure security, but 

specifically with the virtualization environment [59]. Above 

this, the combination of software layers, the virtualization 

layer and the management layer allow for the effective 

management of servers. Virtualization is a critical element of 

cloud implementations and is used to provide the essential 

cloud characteristics of location independence, resource 

pooling and rapid elasticity. Differing from traditional 

network topologies such as client–server, Cloud Computing 

is able to offer robustness and alleviate traffic congestion 

issues. The management layer is able to monitor traffic and 

respond to peaks or drops with the creation of new servers or 

the destruction of unnecessary ones. The management layer 

has the additional ability of being able to implement security 

monitoring and rules throughout the cloud [60]. 

C. Network Security 

Specifies the medium to which the end user connects to 

the cloud, comprising browsers and their connection [20]. 

The client-server in the cloud is accomplished by a client 

sending a request to the server and waiting for the result, 

where the server performs the computational process. A 

connection medium between a client and cloud service 

provider is the Web browser which relates to the cloud 

system. As discussed before, a client sends a request and 

needs to validate it on its own to check the authority of the 

user on the cloud system. Client credentials are signed by 

using Extensible Markup Language signature to authenticate 

and Extensible Markup Language (XML) encryption to 

encrypt the Simple Object Access Protocol (SOAP) messages 

[58]. 

D. Data 

Layers cover data privacy, integrity, confidentiality, and 

geographic location [46]. To prevent data loss in cloud 

different security measures can be adopted. One of the most 

important measures is to maintain backup of all data in cloud 

which can be accessed in case of data loss. However, data 

backup must also be protected to maintain the security 

properties of data such as integrity and confidentiality. 

Different data loss prevention mechanisms have been 

proposed in research and academics for the prevention of data 

loss in network, processing, and storage. Many companies, 

including Symantec, McAfee, and Cisco, have also 

developed solutions to implement data loss prevention across 

storage systems, networks and end points [61]. 

E. Access Control and Privilege Management 

Policies and processes used by cloud services provider to 

ensure that only the users granted appropriate privileges can 

use or modify data. It includes identification, authentication 

[62] and authorization issues [55]. The access control and 

privilege management are policies and processes used by 

cloud providers to ensure that only the consumers granted 

appropriate privileges can accede, use or modify data. Lately, 

researchers have proposed many models (such as Attribute 

Based Encryption (ABE), Key Policy Attribute Based 

Encryption, Cipher Text Policy Attribute Based Encryption, 

etc.) that are useful to provider security and access control. 

The majority of these proposed models are the modified form 

of the classical ABE model [63]. 



211

International Journal on Advances in Security, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The implementation of the architecture proposed in this 

paper and the use of API brings some issues that must be 

identified to avoid problems. 
API is used by the developers which act as an interface 

between the cloud service providers and the client. It allows 
users to manage and get the information from service 
providers. API and the related software need to be highly 
secured as it is used by the cloud users to access their data. 
API is the public front door entry to the data and accessible 
externally, thus it incorporates many threats in it [61]. 

V. CONCLUSIONS AND FUTURE WORK 

Microservice-based architectures have become 
increasingly popular as an architectural style for software 
development. In this architectural style, the services provided 
by software solutions are divided into smaller parts and 
focused on the specific service of some functionalities. The 
approach of developing microservices with the construction 
of smaller software components has a number of advantages 
over the traditional monolithic architecture such as increasing 
the resilience of the software implemented as a microservice 
and the ease of scaling the solution implemented through the 
microservices. 

Security aspects are critical in this architecture because 
the widespread use of Cloud Computing services, as 
demonstrated by the complexity of implementation, requires 
care with the privacy and security of information that is 
handled by those services. 

The development of software using the microservice-
based architecture comprises important aspects that must be 
observed in order to obtain good results. The objective of this 
article was to present the elements that should be considered 
for the development of solutions based on microservices and 
describing how the microservice-based architecture is 
defined. In addition to identifying the elements related to 
their implementation in Cloud Computing environment and 
explaining the privacy model applicable and relating the 
elements that intergrade the standards and solutions linked to 
the microservice-based architecture.  

Future work will be developed to present case studies 
demonstrating the implementation of the microservice 
architecture in a Cloud Computing environment with the use 
of Docker containers for its construction and summarization 
of security troubles. 

REFERENCES 

[1] W. H. C. Almeida, L. D. A. Monteiro, R. R. Hazin, C. De Lima, 

and F. S. Ferraz, “Survey on Microservice Architecture - Security 
, Privacy and Standardization on Cloud Computing Environment,” 
ICSEA 2017, no. c, pp. 199–205, 2017. 

[2] S. H. Jyhjong Lin, Lendy Chaoyu, “Migrating Web Applications 

to Clouds with Microservices Arcitectures,” Int. Conf. Appl. Syst. 
Innov., pp. 1–4, 2016. 

[3] M. Villamizar and et al, “Evaluating the Monolithic and the 

Microservice Architecture Pattern to Deploy Web Applications in 
the Cloud Evaluando el Patrón de Arquitectura Monolítica y de 

Micro Servicios Para Desplegar Aplicaciones en la Nube,” 10th 
Comput. Colomb. Conf., pp. 583–590, 2015. 

[4] D. I. Savchenko, G. I. Radchenko, and O. Taipale, “Microservices 

validation: Mjolnirr platform case study,” 2015 38th Int. Conv. Inf. 

Commun. Technol. Electron. Microelectron. MIPRO 2015 - Proc., 
no. May, pp. 235–240, 2015. 

[5] Y. Sun, S. Nanda, and T. Jaeger, “Security-as-a-service for 
microservices-based cloud applications,” Proc. - IEEE 7th Int. 

Conf. Cloud Comput. Technol. Sci. CloudCom 2015, pp. 50–57, 
2016. 

[6] P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and S. Tilkov, 

“Microservices: The journey so far and challenges ahead,” IEEE 
Softw., vol. 35, no. 3, pp. 24–35, 2018. 

[7] Á. Kovács, “Comparison of different linux containers,” 2017 40th 
Int. Conf. Telecommun. Signal Process. TSP 2017, vol. 2017–
Janua, pp. 47–51, 2017. 

[8] C. Pahl and P. Jamshidi, “Microservices: A Systematic Mapping 

Study,” Proc. 6th Int. Conf. Cloud Comput. Serv. Sci., vol. 1, no. 
Closer, pp. 137–146, 2016. 

[9] H. Bennasar, M. Essaaidi, A. Bendahmane, and J. Ben-Othman, 

“State-of-The-Art of cloud computing cyber-security,” Proc. 2015 
IEEE World Conf. Complex Syst. WCCS 2015, 2016. 

[10] C. Esposito, “Challenges in Delivering Software in the Cloud as 
Microservices,” IEEE Cloud Comput., vol. 3, no. 5, pp. 10–14, 
2016. 

[11] D. Taibi, V. Lenarduzzi, C. Pahl, and A. Janes, “Microservices in 

agile software development: a workshop-based study into issues, 

advantages, and disadvantages,” Proc. XP2017 Sci. Work., p. 23, 
2017. 

[12] A. Panda, M. Sagiv, and S. Shenker, “Verification in the Age of 

Microservices,” Proc. 16th Work. Hot Top. Oper. Syst.  - HotOS 
’17, pp. 30–36, 2017. 

[13] M. Villamizar et al., “Infrastructure Cost Comparison of Running 

Web Applications in the Cloud Using AWS Lambda and 
Monolithic and Microservice Architectures,” Proc. - 2016 16th 

IEEE/ACM Int. Symp. Clust. Cloud, Grid Comput. CCGrid 2016, 
pp. 179–182, 2016. 

[14] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping 

study in microservice architecture,” Proc. - 2016 IEEE 9th Int. 
Conf. Serv. Comput. Appl. SOCA 2016, pp. 44–51, 2016. 

[15] K. Jander, L. Braubach, and A. Pokahr, “Defense-in-depth and 
Role Authentication for Microservice Systems,” Procedia 
Comput. Sci., vol. 130, pp. 456–463, 2018. 

[16] A. Krylovskiy, M. Jahn, and E. Patti, “Designing a Smart City 

Internet of Things Platform with Microservice Architecture,” 

Proc. - 2015 Int. Conf. Futur. Internet Things Cloud, FiCloud 
2015 2015 Int. Conf. Open Big Data, OBD 2015, pp. 25–30, 2015. 

[17] H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu, 
“Efficiency analysis of provisioning microservices,” Proc. Int. 
Conf. Cloud Comput. Technol. Sci. CloudCom, pp. 261–268, 2017. 

[18] R. Heinrich et al., “Performance Engineering for Microservices: 

Research Challenges and Directions,” Proc. 8th ACM/SPEC Int. 
Conf. Perform. Eng. Companion, pp. 223–226, 2017. 

[19] M. Ahmadvand and A. Ibrahim, “Requirements reconciliation for 

scalable and secure microservice (de)composition,” Proc. - 2016 
IEEE 24th Int. Requir. Eng. Conf. Work. REW 2016, pp. 68–73, 

2017. 

[20] T. Q. Thanh, S. Covaci, T. Magedanz, P. Gouvas, and A. 

Zafeiropoulos, “Embedding security and privacy into the 

development and operation of cloud applications and services,” 
2016 17th Int. Telecommun. Netw. Strateg. Plan. Symp., pp. 31–
36, 2016. 

[21] Yale Yu, H. Silveira, and M. Sundaram, “A microservice based 

reference architecture model in the context of enterprise 

architecture,” 2016 IEEE Adv. Inf. Manag. Commun. Electron. 
Autom. Control Conf., pp. 1856–1860, 2016. 

[22] J. Rufino, M. Alam, J. Ferreira, A. Rehman, and K. F. Tsang, 
“Orchestration of Containerized Microservices for IIoT using 
Docker,” pp. 1532–1536, 2017. 

[23] M. B. Mollah, M. A. K. Azad, and A. Vasilakos, “Security and 



212

International Journal on Advances in Security, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

privacy challenges in mobile cloud computing: Survey and way 

ahead,” J. Netw. Comput. Appl., vol. 84, pp. 38–54, 2017. 

[24] C. Y. Fan and S. P. Ma, “Migrating Monolithic Mobile 
Application to Microservice Architecture: An Experiment 

Report,” Proc. - 2017 IEEE 6th Int. Conf. AI Mob. Serv. AIMS 
2017, pp. 109–112, 2017. 

[25] J. Fowler, Marthin; Lewis, “Microservices: a definition of this new 

architectural term,” Microservices:a definition of this new 
architectural term, 2014. . 

[26] S. Systems, T. Cerny, and M. J. Donahoo, “Disambiguation and 
Comparison of SOA, Microservices and Self-Contained Systems,” 
pp. 228–235. 

[27] S. Yamamoto, S. Matsumoto, and M. Nakamura, “Using cloud 

technologies for large-scale house data in smart city,” CloudCom 

2012 - Proc. 2012 4th IEEE Int. Conf. Cloud Comput. Technol. 
Sci., pp. 141–148, 2012. 

[28] J. Bogner and A. Zimmermann, “Towards Integrating 
Microservices with Adaptable Enterprise Architecture,” Proc. - 

IEEE Int. Enterp. Distrib. Object Comput. Work. EDOCW, vol. 
2016–Septe, pp. 158–163, 2016. 

[29] C. Gadea, M. Trifan, D. Ionescu, and B. Ionescu, “A reference 

architecture for real-time microservice API consumption,” Proc. 
3rd Work. CrossCloud Infrastructures Platforms - CrossCloud 
’16, pp. 1–6, 2016. 

[30] D. Guo, W. Wang, G. Zeng, and Z. Wei, “Microservices 

architecture based cloudware deployment platform for service 
computing,” Proc. - 2016 IEEE Symp. Serv. Syst. Eng. SOSE 2016, 
pp. 358–364, 2016. 

[31] P. Marchetta, E. Natale, A. Pescape, A. Salvi, and S. Santini, “A 

map-based platform for smart mobility services,” Proc. - IEEE 
Symp. Comput. Commun., vol. 2016–Febru, pp. 19–24, 2016. 

[32] A. de Camargo, I. Salvadori, R. dos S. Mello, and F. Siqueira, “An 

architecture to automate performance tests on microservices,” 
Proc. 18th Int. Conf. Inf. Integr. Web-based Appl. Serv. - iiWAS 
’16, pp. 422–429, 2016. 

[33] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging 

microservices architecture by using Docker technology,” Conf. 
Proc. - IEEE SOUTHEASTCON, vol. 2016–July, pp. 0–4, 2016. 

[34] P. Giessler, R. Steinegger, S. Abeck, and M. Gebhart, “Checklist 

for the API Design of Web Services based on REST,” vol. 9, no. 
3, pp. 41–51, 2016. 

[35] A. Gueidi, H. Gharsellaoui, and S. Ben Ahmed, “A NoSQL-based 
Approach for Real-Time Managing of Embedded Data Bases,” 

Proc. - 2016 World Symp. Comput. Appl. Res. WSCAR 2016, pp. 
110–115, 2016. 

[36] T. I. Damaiyanti, A. Imawan, and J. Kwon, “Extracting trends of 

traffic congestion using a NoSQL database,” Proc. - 4th IEEE Int. 
Conf. Big Data Cloud Comput. BDCloud 2014 with 7th IEEE Int. 

Conf. Soc. Comput. Networking, Soc. 2014 4th Int. Conf. Sustain. 
Comput. C, pp. 209–213, 2015. 

[37] R. Simmonds, P. Watson, and J. Halliday, “Antares: A Scalable, 

Real-Time, Fault Tolerant Data Store for Spatial Analysis,” Proc. 
- 2015 IEEE World Congr. Serv. Serv. 2015, pp. 105–112, 2015. 

[38] A. Ciuffoletti, “Automated Deployment of a Microservice-based 
Monitoring Infrastructure,” Procedia Comput. Sci., vol. 68, pp. 
163–172, 2015. 

[39] T. Combe, T. Paris-tech, A. Martin, R. Di Pietro, and N. B. Labs, 

“To Docker or Not to Docker : A Security Perspective,” IEEE 
Cloud Comput., vol. 3, no. 5, pp. 54–62, 2016. 

[40] C. Fetzer, “Building critical applications using microservices,” 
IEEE Secur. Priv., vol. 14, no. 6, pp. 86–89, 2016. 

[41] I. Khalil, A. Khreishah, and M. Azeem, “Cloud Computing 
Security: A Survey,” Computers, vol. 3, no. 1, pp. 1–35, 2014. 

[42] C. Saravanakumar and C. Arun, “Survey on interoperability, 

security, trust, privacy standardization of cloud computing,” Proc. 
2014 Int. Conf. Contemp. Comput. Informatics, IC3I 2014, pp. 

977–982, 2014. 

[43] J. Werner, C. M. Westphall, and C. B. Westphall, “Cloud identity 

management: A survey on privacy strategies,” Comput. Networks, 
vol. 122, pp. 29–42, 2017. 

[44] S. Srinivasan, “Data privacy concerns involving cloud,” 2016 11th 
Int. Conf. Internet Technol. Secur. Trans. ICITST 2016, pp. 53–56, 
2017. 

[45] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari, 

“Open Issues in Scheduling Microservices in the Cloud,” IEEE 
Cloud Comput., vol. 3, no. 5, pp. 81–88, 2016. 

[46] F. Callegati, S. Giallorenzo, A. Melis, and M. Prandini, “Data 

security issues in MaaS-enabling platforms,” 2016 IEEE 2nd Int. 
Forum Res. Technol. Soc. Ind. Leveraging a Better Tomorrow, 
RTSI 2016, pp. 0–4, 2016. 

[47] D. S. Linthicum, “Practical Use of Microservices in Moving 

Workloads to the Cloud,” IEEE Cloud Comput., vol. 3, no. 5, pp. 
6–9, 2016. 

[48] D. Yu, Y. Jin, Y. Zhang, and X. Zheng, “A survey on security 

issues in services communication of Microservices-enabled fog 
applications,” Concurr. Comput., no. September 2017, pp. 1–19, 
2017. 

[49] T. Yarygina and A. H. Bagge, “Overcoming Security Challenges 

in Microservice Architectures,” Proc. - 12th IEEE Int. Symp. Serv. 

Syst. Eng. SOSE 2018 9th Int. Work. Jt. Cloud Comput. JCC 2018, 
pp. 11–20, 2018. 

[50] H. Kang, M. Le, and S. Tao, “Container and microservice driven 

design for cloud infrastructure DevOps,” Proc. - 2016 IEEE Int. 

Conf. Cloud Eng. IC2E 2016 Co-located with 1st IEEE Int. Conf. 
Internet-of-Things Des. Implementation, IoTDI 2016, pp. 202–
211, 2016. 

[51] K. Bao, I. Mauser, S. Kochanneck, H. Xu, and H. Schmeck, “A 

Microservice Architecture for the Intranet of Things and Energy in 

Smart Buildings,” Proc. 1st Int. Work. Mashups Things APIs  - 
MOTA ’16, pp. 1–6, 2016. 

[52] D. Escobar et al., “Towards the understanding and evolution of 

monolithic applications as microservices,” Proc. 2016 42nd Lat. 
Am. Comput. Conf. CLEI 2016, 2017. 

[53] J. Stubbs, W. Moreira, and R. Dooley, “Distributed Systems of 

Microservices Using Docker and Serfnode,” Proc. - 7th Int. Work. 
Sci. Gateways, IWSG 2015, pp. 34–39, 2015. 

[54] R. Roostaei and Z. Movahedi, “Mobility and Context-Aware 

Offloading in Mobile Cloud Computing,” Proc. - 13th IEEE Int. 
Conf. Ubiquitous Intell. Comput. 13th IEEE Int. Conf. Adv. Trust. 

Comput. 16th IEEE Int. Conf. Scalable Comput. Commun. IEEE 
Int., pp. 1144–1148, 2017. 

[55] K. El Makkaoui, A. Ezzati, A. Beni-Hssane, and C. Motamed, 

“Data confidentiality in the world of cloud,” J. Theor. Appl. Inf. 
Technol., vol. 84, no. 3, pp. 305–314, 2016. 

[56] C. Perra and S. Member, “A Framework for the Development of 
Sustainable Urban Mobility Applications,” 2016. 

[57] M. Thangavel, P. Varalakshmi, and S. Sridhar, “An analysis of 
privacy preservation schemes in cloud computing,” Proc. 2nd 

IEEE Int. Conf. Eng. Technol. ICETECH 2016, no. March, pp. 
146–151, 2016. 

[58] G. Shanmugasundaram and A. P. Cloud, “A COMPREHENSIVE 
REVIEW ON CLOUD COMPUTING SECURITY,” 2017. 

[59] H. Gebre-amlak, S. Lee, A. M. A. Jabbari, Y. Chen, and B. Choi, 
“MIST : Mobility-Inspired SofTware-Defined Fog System,” 2017. 

[60] D. Zissis and D. Lekkas, “Addressing cloud computing security 

issues,” Futur. Gener. Comput. Syst., vol. 28, no. 3, pp. 583–592, 
2012. 

[61] G. N. Dev, “A Survey on Security Threats in Cloud Computing 
Technology,” Int. J. Res., vol. 1, no. 8, pp. 1071–1081, 2014. 

[62] R. H. Steinegger, D. Deckers, P. Giessler, and S. Abeck, “Risk-
based authenticator for web applications,” Proc. 21st Eur. Conf. 

Pattern Lang. Programs  - Eur. ’16, no. February 2017, pp. 1–11, 



213

International Journal on Advances in Security, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2016. 

[63] K. E. Makkaoui*, A. Ezzati, A. Beni-Hssane, and C. Motamed, 

“Cloud Security and Privacy Model for Providing Secure Cloud 

Services,” 2016. 

 


