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Abstract—We find that existing multicast protocols require
either the participation of hosts in group management or partial
address lists of the group members to be sent to end-points (hosts),
thus creating a privacy issue. Many services suitable for multicast
are transmitted via massive unicast for technical or management
reasons outside the sphere of influence of the sender. The large
amount of identical payload transmitted constitutes a significant
waste of network resources. We address these issues by presenting
MEADcast, a multicast protocol intended to support a smooth
transition from massive unicast to sender-centric multicast over
the Internet. Senders perform all group management while
receivers do not require explicit support for the protocol. The
protocol copes with varying degrees of support by routers in the
network and avoids the disclosure of end-point addresses to other
end-points. Performance evaluation shows a decrease of the total
traffic volume in the network of up to 1:5 as compared to unicast,
suggesting suitability for applications, such as Internet Protocol
Television (IP-TV), video conferences, online auctions and others.

Keywords—Privacy-Preserving Multicast; Agnostic Destination;
Explicit Multicast; Sender-Centric Multicast.

I. INTRODUCTION

Applications replacing traditional broadcast services (IP-
TV, IP-Radio), phone and video conferencing, and also tech-
nical services for software update or large-scale configuration
may profit from an n:m, multicast, distribution scheme. Today,
these applications still rely mostly on unicast transmission
despite multicast having been available for a long time. In this
text, we propose MEADcast (see also [1]), a multicast protocol
intended to allow the optional and gradual introduction of 1:n
communication between a sender and end-points into networks
with initially unknown support for our protocol.

A. Challenges to Multicast Adoption

Many applications have evolved into their present form
based on the technologies of the World Wide Web, including
a connection-oriented, TCP-based communication layer and
using the tacit design assumption that each service instance
induces a one-to-one relationship between a service provider
and a service user. The difficulty to roll out and maintain
specialised client software for a service, compounded with
the broad availability of a general-purpose, multimedia-capable
client – the web browser – and the lack of pressure on service
providers to conserve transmission capacity have led to the
unicast design of applications that clearly lend themselves to
multicast.
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Figure 1. Knowledge and management actions in unicast and multicast.

B. Technical background

Typical multicast schemes are based on managed groups
(e.g., [2], [3], [4]). End-points may join a multicast group and
the network forwards messages addressed to that group to all
its members, i.e., to all end-points that joined it. As a rule,
a multicast group is symmetric in allowing any participant to
address a message to all others. Unfortunately, it requires the
network manager to effect configuration reflecting that a given
application uses a different kind of network function, while the
user is responsible for configuring the application to use mul-
ticast. The setup for services being provided across networks
and thus across administrative domains always requires the
cooperation of each participant domain’s network managers.

Another important reason for the lack of multicast adoption
seems to lie in the difference of scope of the application and
the network function: the local scope of traditional multicast
is inherent in the need to apply network configuration (e.g.,
IGMP) to the access network routers, while the applications
are being provided from outside the local scope (i.e., the
Autonomous System) over the global Internet.

As illustrated in Figure 1, by requiring an end-point to
join and leave the multicast group that supports the desired
application, the use of multicast

1) requires network management to authorize a service ses-
sion and possibly setup (multicast routers),

2) requires the user to execute a network management action,
3) requires transfer of knowledge on group membership at

the application level to a multicast group managed within
the network layer and

4) introduces state to the otherwise state-less (from the view
of the end-point) IP communication.

A number of additional properties exacerbate the perceived
drawbacks to multicast use:
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5) If the network-level setup of multicast fails, there is no
automatic fall-back to unicast; instead, the application
must detect and handle the failure.

6) All participants in a service must have multicast support.
7) Re-configuration of the application group requires re-

configuration of the network.
8) Knowledge about the identities of the participants in a

service session is present in the network, possibly in
several administrative domains.

Applications seem therefore to prefer unicast even at the
expense of the higher transmission volume, or Application-
Layer Multicast (ALM) (e.g., [5], [6]) in spite of it being
application specific and requiring a network function within
the application’s code.

In essence, ALM reduces the n:m multicast pattern to the
asymmetric case of 1:n communication, where a single sender
addresses a group of receivers. In this case, it is sufficient for
the sender to hold knowledge about the group. Since the sender
necessarily implements the application layer of the service
being provided, group management may be transacted at the
application level. Such communication is easily implemented
over unicast transmissions. However, it requires receiver-side
configuration and does not profit from network support.

1) Non-proliferation of multicast: Although technical
means to address inter-domain multicast continue to be de-
veloped (e.g., [7], [8], [9]), the adoption of multicast requires
an incentive to both the service provider and to the access
network operator. It requires the establishment of a cooperation
between them by setting up routers supporting the inter-domain
multicast scheme. What is more, it requires a mapping of
services onto the (limited) multicast address space, implying
a-priori knowledge about the services being used. Outside of
applications provisioned centrally in the domain of an access
network operator, this knowledge is generally not available:
the reception of broadcast services (e.g., IP-TV, Internet radio)
as well as the use of multi-party audio/video conferencing
with participants outside of the network operator’s domain is
typically initiated by end users. Even when a certain service
is provided locally, end users might still opt for an alternative
service provided from outside the domain, if the local one
requires a specific request or setup while the “foreign” one
does not.

C. Contribution

We propose to combine the benefits of multicast to agnostic
receivers with those of optional network support.

We introduce a protocol named Multicast to Explicit Ag-
nostic Destinations (MEADcast) to allow sender-based mul-
ticast of IPv6 over the Internet. The novelty of MEADcast
is that it protects receivers’ anonymity and allows a gradual,
pro-active and selective transition between multiple unicast
and network-supported multicast. As the protocol favours
conservative decisions, we present studies of the transmission
cost in the network performed by simulating randomized as
well as designed situations.

D. Technical overview

MEADcast implements a sender-centric multicast in that
all knowledge about the receiver group, the network topol-
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Figure 2. Multicast to agnostic receivers.

ogy and the availability of MEADcast-capable routers (called
MEADcast routers in this text) is gathered at and decided
upon by the sender. Given an initial list of receivers, the
sender commences to send data in unicast to each receiver
while simultaneously probing the network for the presence of
MEADcast routers and hence for the option to consolidate
some of the unicast streams into multicast. Multicast packet
headers reflect the MEADcast router responsible for translating
the multicast packets into (multiple) unicast packets. Receiving
end-points (called receivers in this text) always receive true
unicast packets either directly from the sender or generated by
a MEADcast router based on a multicast packet. Only unicast
addresses are used in the protocol.

Multicast packets begin with a standard IPv6 header ad-
dressed to one of the multicast receivers on a path, followed
by a Hop-by-Hop Routing Header with Router Alert. The
addresses of all multicast receivers on a path as well as the
MEADcast router(s) responsible for translation are encoded
into a multicast header. It is typically followed by a UDP
header. The addressing pattern is similar to the one in Internet
email, where one receiver is addressed directly (To:) while
all receivers are included in the carbon copy (CC:) list.
The protocol is designed to minimize packet duplication, and
receiver list re-writing in transit routers is eliminated.

Figure 2 shows an example where a sender S transmits to
three receivers Ei with the aid of three MEADcast routers Rj .
Note that the sender transmits unicast directly to E1, as it is the
only end-point on its subtree. It transmits one multicast packet
to E2 and E3, to be transformed into unicast by router R2.

None of the end-points can discern the identity of the oth-
ers, thus preserving privacy, or if the data has been multicasted.

E. Synopsis

In the following Section II, we analyse the challenges
to multicast adoption in dependency of the application being
used. After describing a typical application scenario, we char-
acterise applications with respect to their eligibility for multi-
cast and discuss two example applications. Section III reviews
different approaches to multicast, particularly Xcast [10],
which is technically most related to our work, and juxtaposes
their properties to those of our approach.

We continue by expounding the technical properties of
MEADcast in Section IV by describing the behaviour of
protocol entities, the structure of its protocol data unit and the
API offered to applications. The description is complemented
by a detailed example of the use of MEADcast. The study
of the protocol’s behaviour and performance, presented in
Section V, indicates that the reduction in total volume may
well be worth the effort for its introduction.
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Figure 3. Relationships within the scenario.

In Section VI, we discuss the properties of MEADcast that
address the challenges formulated in the Problem Analysis
(Section II). In addition, the discussion addresses the protocol’s
overhead and limitations, security considerations and opportu-
nities for optimization. Section VII summarizes our ideas and
findings and points out further directions of research.

II. PROBLEM ANALYSIS

We analyse the problem of multicast adoption by char-
acterising the applications that would benefit from it. The
challenges faced by content providers are illustrated by means
of a scenario. The analysis of applications’ properties that
influence their use of multicast are summarised in a problem
space, which is exemplified by two different applications,
one of them being the one from the scenario. The review in
Section VI of the challenges identified in this section indicates
how they are addressed by the MEADcast protocol proposed
in this work.

A. Scenario

We illustrate the challenges to large-scale multicast use by
means of the following scenario.

A media directory operates a website that lists freely
accessible IP-radio and IP-TV offerings from different content
providers, i.e., from Internet radio and TV “stations”. The
content streams are transmitted from the content providers
to users in remote domains. Users that become increasingly
aware of privacy issues are reluctant to use the service if other
users become knowledgeable of their content consumption
behaviour without their knowledge and consent. The privacy
concept within our context is extensively discussed in the work
“privacy terminology” [11].

Some content providers are willing to employ techniques
like multicast in order to reduce the volume of data transmitted
to the users. At the same time, some of the operators of
networks hosting many receivers of the media streams are also
interested in reducing the load within their own core and access
network.

Both the media directory and the content providers are
interested in reaching as many users as possible. Therefore,
they are reluctant to create any barrier to the users’ access of

their content. The current and potential users are distributed
globally over many domains, they have the skills to operate
only basic, common software (e.g., web browsers) running on
a diverse spectrum of types and versions of operating systems,
thus obviating the effective introduction of a specialised client
for receiving media streams.

Figure 3 illustrates the relationship between the content
provider that hosts the sender, the transit networks and the
networks hosting receivers. While there is a relationship of ser-
vice delivery and service usage between the content providers
and the users (brokered by the directory), this relationship is
created ad-hoc based on interaction at the application layer.
It does not extend to the network operators that host the
users: the operators lack knowledge about the service being
provided beyond what they may infer from observations of
the network traffic entering their network. Content providers
and network operators are associated with other networks by
the relationships fundamental to the Internet, i.e., by peering
and transit agreements. Such relationships are not necessarily
between the two roles, and they are not transitive. Hence, in
the general case, content provider and access network operator
roles lack a direct relationship.

In consequence, it is difficult to establish a consensus for
the use of multicast both technically due to the inter-domain
aspect, and formally due to the lack of relationship between
the content providers and the network operator hosting a user.
There remains no other choice that is “safe” from preventing
users’ access to the offerings, than for the directory to broker
unicast streams between the content providers and each of their
users. This choice implies that a significant amount of the
transmitted traffic will consist of identical payload.

B. Problem space

The scenario is exemplary of application scenarios that
would benefit from multicast but do not use it. Such scenarios
can be categorised by the properties of the applications arising
from their purpose and their technical implementation:

• their communication pattern can be symmetric or asym-
metric (i.e., m:n or 1:n communication),

• they can be operated within an administrative domain or
across domains,

• their usage sessions can be of short or long duration,
• they can have a fixed or variable set of participants,
• they can have a small or large number of participants,
• they can have high or low demands on network resources,
• their capacity utilisation can be symmetric or asymmetric

between participants, etc.

To be effective and efficient, the properties of the multicast
scheme should be determined by the application category it
serves.

The properties of the settings in which applications are
deployed also characterise the scenario:

• network administration may be aware or unaware of the
application,

• end-point users may or may not be allowed to self-
configure group membership in a multicast group,
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Figure 4. Application characterisation within a requirements space.

• the software package providing the application on the
end-point side may or may not support group-based
multicast.

C. Application examples

The resulting space is depicted in Figure 4, including
two application scenarios described in the following, their
usage requirements being shown as areas denoting their usage
subspaces.

a) IP-radio and IP-TV: are part of a class of “broad-
cast” applications in that they replace traditional, e.g., terres-
trial broadcast services. In analogy to the services it replaces,
the application class exhibits a 1:n communication pattern
and sessions that can reach durations of many hours, offered
to a large, variable set of participants distributed throughout
the Internet. The opportunity to employ buffering renders this
application class insensitive to latency, jitter and drop rate and
requires in principle only a sufficient end-to-end throughput ac-
cording to the media transmitted. Network capacity is utilised
in a highly asymmetric manner with a single sender producing
all traffic once a session has been established.

b) Video conferencing: is an application with an n:n
communication pattern of usage sessions in the range of a few
minutes to a few hours between a small, variable set of partic-
ipants that are grouped within a small number of domains. It
has rather high requirements on quality of the network service
due to being sensitive to latency, jitter, throughput and to some
extent drop rate. The capacity utilised is symmetric, due to
each participant sending his audio and video streams to all oth-
ers. Hence, an application session creates a full-mesh network
with traffic volume growing with the square of the number of
participants. This may be the motivation for some operators to
explicitly support multicast transport of conferences in order
to reduce the peak throughput requirements on the network.
Conferencing software typically supports the use of multicast
addresses, however, group management, i.e., the creation of a
group for a conference and the joining and leaving of multicast
groups by participants, requires management information with
respect to the mapping of conferences to multicast addresses.
The participation of users outside the domain of the network
operator cannot easily be supported from within the domain.

D. Challenges and opportunities

The challenges and opportunities in scenarios suitable for
multicast can be summarised as follows.

• Both 1:n and m:n communication patterns offer a high
degree of potential load reduction.

• The rather high volume requirements of pseudo-
multicasted streams of media (e.g., audio, video) increase
the potential reduction.

• The number of receivers of a particular content varies
strongly, and receivers must be expected to enter and exit
the group at any time.

• The duration of a session ranges between a few minutes
and a few hours. If transmission is continuous, the poten-
tial savings in transmitted volume are significant.

• Inter-domain transmission lacks a direct relationship be-
tween content provider and access network domains on
which a consensus for technology choice can be founded.

• Users cannot be expected to interact with non-trivial
network functions, such as group management functions,
unless explicit support by their local administration (i.e.,
the network operator) is provided. Likewise, the introduc-
tion of special software packages to support multicast on
the users’ side acts as a deterrent from using the service.

• The awareness to privacy issues with services provided
in the Internet needs to be addressed such that the
members of a communication group (e.g., a group simply
receiving content in a 1:n communication pattern) may
retain anonymity within the group.

Our construction of the MEADcast protocol, described in
Section IV, aims to exploit these opportunities and to address
the challenges in the scenario.

III. RELATED WORK

The idea of multicast was introduced decades ago and has
drawn research efforts broadly. A variety of solutions have
been proposed and a selection is presented here.

Traditional group-managed multicast [2], [3], [4], [12]
specifies the transmission of an IP datagram to a host group, a
set of zero or more hosts identified by a single IP destination
address. It requires network support (multicast-capable routers)
and the receivers to proactively join the host group. The routers
and end-points use the Internet Group Management Protocol
(for IPv4) or Multicast Listener Discovery (for IPv6) to main-
tain the multicast group. The deployment of IP multicast in
the Internet is still far behind expectations due to a number of
long-standing issues [13]. Amongst those are the management
complexity put on the end-point and the requirement of global
updates to routers.

An interesting approach on routing multicast traffic through
a “multicast domain”, namely Bit Index Explicit Replication
(BIER) is presented in [7]. A multicast packet entering the
domain is encapsulated in a BIER header by the ingress router,
who then determines the set of egress routers to send the
packets to them. Egress routers are represented by a bitstring
in the BIER header. BIER simplifies the traditional multicast
by eliminating the per-flow state and the explicit tree-building
protocols with the trade-off of additional management layers
introduced in BIER-compliant routers including the routing
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underlay, the BIER layer and the multicast flow overlay. A
router has to maintain the routing information with other
routers in a BIER domain besides the ordinary unicast one and
be able to determine a set of egress routers for an incoming
multicast packet, this indicates an extra state to be maintained.
In comparison, a MEADcast router is much simpler by virtue
of being totally stateless. Moreover, BIER limits its scope in
routing multicast traffic within a BIER domain, leaving the
inherent management issues of multicast untouched. In con-
trast, MEADcast concentrates all management initiative with
the sender, allowing middle-boxes, non-MEADcast routers and
receivers to remain agnostic of the use of multicast.

Common practice to overcome the traditional multicast
management burden but still achieve better performance than
ordinary unicast is to employ Application Layer Multicast
(ALM), which implements multicasting functionality at the
application layer instead of at the network layer by using
the unicasting capability of the network. In contrast to the
slow deployment of IP multicast, ALM gains practical success
thanks to the ease of deployment. A survey of ALM over the
period 1995-2005 was given in [14]. ALM’s common approach
is to establish an overlay topology of unicast links between the
multicast participants where multicast trees can be constructed.
The drawback of ALM is that the privacy of receivers is not
ensured, which means the identity of one end-point might
become known to the other; furthermore, the data delivery of
ALM depends on the end-point capability, which could not
guarantee the stability and reliability. MEADcast overcomes
the above issues by leaving receivers agnostic of the underlying
technology being used. ALM also requires, by principle, the
deployment of ALM-capable software on at least a subset of
the hosts participating in a multicast group.

Xcast [10] is a multicast scheme with explicit encoding
of the destinations list in the data packets, instead of using
a multicast group address. Xcast is able to support a very
large number of small multicast sessions, making up the com-
plementary scaling property to traditional IP multicast, as the
latter has a scalability issue for a very large number of distinct
multicast groups. Xcast transmits data along optimal route
without traffic redundancy in the sufficient presence of Xcast-
capable routers; otherwise, some special mechanisms have
to be employed, e.g., tunneling or end-point upgrade, which
introduce new management tasks for Xcast routers (exchanging
and maintaining Xcast routing information) or end-points
(performing network functions of an Xcast-router). In case an
end-point assumes the Xcast router’s functions due to the lack
of network support, the identities of all receivers in a session
are exposed to this one, raising the privacy issue and possibly
hindering Xcast adoption by some applications. By design,
an Xcast-router suffers from complex header processing: it
has to perform a routing table lookup for each destination
in the Xcast header’s address list. Besides, Xcast is intended
for multicast sessions of small number of participants (i.e.,
small group size), confining its suitable applications. Xcast6
Treemap [15], [16], a derivative of Xcast, while providing
some enhancements to improve the traffic transmission latency
in a use case of Xcast gradual deployment, still shares the same
aforementioned limitations. However, Xcast does introduce
many efficient features: no maintenance of multicast state
by routers, routing based on ordinary unicast and automatic
reaction to unicast reroutes, easy security and accounting,

flexibility, among others. MEADcast takes advantage of some
valuable concepts from Xcast while off-loading the manage-
ment burden to the sender and simplifying the router functions.

IV. PROTOCOL DESIGN

MEADcast is implemented by senders and routers. We
describe the functions relevant for sender and router elements
and message types and procedures necessary for the realization
of these functions. A simple multicast scenario described in
full illustrates the behaviour of the protocol.

The information needed to describe the protocol is

• the sender S,
• the set of end-points Ei to which S transmits data,
• the set of MEADcast routers Rj in the network,
• the MEADcast distance d (or MEADcast hop-count)

from a MEADcast router to the sender in hops between
MEADcast routers.

Association is indicated by superscript, i.e., a router re-
sponsible for a sub-set Ek of the end-points is Rk and an
end-point served by a router Rj is Ej .

A. Functions

In MEADcast, we need to distinguish two groups of
functions for the sender and the router.

Sender functions include transmission of unicast and mul-
ticast messages, initiation of discovery of MEADcast routers
on paths to end-points and discovery response evaluation.

Router functions include normal forwarding, decomposi-
tion of multicast packets to unicast packets and multicast
packets and reaction to discovery requests from a sender.

1) Discovery-related functions: Both the sender and the
MEADcast router are involved in the discovery process. The
goal of discovery is for the sender to determine the sequence
of routers (Ri

1, R
i
2, · · ·) on the path to each end-point Ei.

Discovery requests and responses can be written as req(E, d)
and resp(E, d, R), respectively.

To initiate discovery, the sender addresses a MEADcast
discovery request req(E, 0) to an end-point E. When receiving
the request, every router R on the path to E increments d and
forwards the discovery request req(E, d+1) to the next hop;
at the same time, R sends a discovery response resp(E, d+1,
R) to S. Thus, the first router R1 on the path to E will send
(E, 1, R1), the second (E, 2, R2) and so on.

S can compile the sequence {(Ei, d1, R
i
1, d2, R

i
2, · · ·), · · ·}

and can compute the group of end-points to be handled by a
given router with a specific distance (Rj , dj , E

j
1, E

j
2, · · ·).

2) Decomposition: Decomposition, which is specific to
MEADcast router, means the transformation of a multicast
packet addressed to a set of target end-points into multiple
unicast and multicast packets with the same payload.

The target addresses Rj , E
j
1, E

j
2, · · · , Rk, E

k
1 , E

k
2 , · · ·

within a multicast message are structured to denote that
a router Ri is responsible for end-points Ei. During
decomposition a router will send unicast packets to each of
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Figure 5. Interaction between MEADcast’s entities.

the end-points it is responsible for and send multicast packets
to the routers responsible for the remaining target end-points.

When a multicast packet is created, the targets already
served either by unicast or by other multicast messages are re-
moved from the list of targets of the packet being created. The
removal process can be implemented efficiently by marking
removal in a bitmap and thus eliminating the need to compose
a new list of targets.

B. Interaction between MEADcast’s entities

Figure 5 shows the interaction between the sender, the
MEADcast router and the receivers, which involves the fol-
lowing steps.

1) First, the session is established between the sender and
the receivers. In essence, this could be the request on data
sent from each receiver to the sender or a data push from
sender to some pre-defined targets. The double-headed
arrow is used in this step to indicate both possibilities of
a session initiator (sender or receivers).

2) The sender starts transmitting data to the receivers via
unicast. Each router on the path takes part in the data
transmission process as usual.

3) In the meantime, the sender also performs the MEADcast
discovery by sending MEADcast discovery request to
each receiver. Upon receiving a request message, the

MEADcast router sends a MEADcast discovery response
back to the sender and a MEADcast discovery request
towards the receiver. The MEADcast hop-count in each
message is modified indicating the MEADcast distance
from the current router to the sender.

4) On receiving a MEADcast discovery response, the sender
will compose its topology view, which is an overlay
network connecting the sender, the MEADcast routers and
the receivers.

5) The data transmission by unicast is still carried out during
the MEADcast discovery phase.

6) The receivers drop MEADcast discovery request messages
since they do not understand them.

7) After a pre-defined timeout, the sender stops transmitting
data via unicast and starts the MEADcast data sending
phase. MEADcast data messages are built based on the
current topology viewpoint of the sender and are then
transmitted. Each MEADcast router on the path processes
the message according to the encoded MEADcast infor-
mation. It may forward the message intact or decompose
the message into multiple ones and forward them to
the other MEADcast routers, or build and send unicast
messages to the receivers.

C. Sender behaviour

The sender behaviour involves two phases: MEADcast
discovery and MEADcast data sending.

The sender sends MEADcast discovery requests req(Ei, 0)
to all receivers and updates the network topology in the
form of (Rj , dj , E

j
1, E

j
2, · · ·) whenever it receives a MEADcast

discovery response. In the mean time, the sender also transmits
unicast data to these end-points.

The MEADcast data sending phase starts when the discov-
ery phase is complete (i.e., after a pre-defined timeout). Based
on its network topology view, the sender constructs and trans-
mits MEADcast data messages containing the target addresses
(Rj , E

j
1, E

j
2, · · · , Rk, E

k
1 , E

k
2 , · · ·) for those receivers that can

be served by MEADcast routers and stops unicast data to them.
If the set of receivers of a multicast is larger than the maximum
number of addresses encodable in the MEADcast header, the
sender will divide the receivers into suitable subgroups, each
served by its own MEADcast packet. If discovery reveals that a
given MEADcast router would only be responsible for a single
receiver, that receiver is served unicast in order to conserve
header space in MEADcast transmission.

It is obvious that if there is no MEADcast router respon-
sible for any receivers, the data sending phase of MEADcast
operates exactly as unicast.

The discovery phase is carried out periodically so that the
sender can maintain an updated view of the topology.

D. Router behaviour

A MEADcast router is an IP router with added control
plane behaviour. It is capable to fulfil two tasks: participate in
the discovery mechanism and process MEADcast packets that
transport payload. The router does not hold state with respect
to the topology, the presence or the location of other routers
supporting MEADcast; nor does it hold information about the
multicast groups.
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Figure 6. MEADcast header sequence with relevant fields.

1) The discovery mechanism: Discovery requests pertain
to a path to one receiver. They are therefore addressed to that
receiver and have the source address of the sender performing
discovery. Upon receiving such a request, the router increments
the MEADcast hop-count field of the request packet before
processing (and forwarding) it as any other IP packet. In
addition, the router transmits a discovery response to the
sender, transmitting its own address, the hop-count of the
discovery request and the address of the receiver that the
discovery is for. In consequence, the sender is capable of
discerning the sequence of MEADcast-capable routers on the
path to a given receiver, as it is able to order the routers by
the MEADcast hop-count of their responses.

2) The processing of multicast packets: relies on the ad-
dress information transported in the MEADcast header. This
information consists of a list containing both the addresses
of receivers and those of the MEADcast routers expected to
process the packet. A static router tag bitmap within the header
differentiates between the addresses belonging to receivers and
those belonging to routers. An additional bitmap, the delivery
bitmap, is employed to mark the addresses already accounted
for within the multicast tree.

On receiving a MEADcast packet, the router determines
with the help of the router bitmap the addresses that it is
responsible for. For the addresses of receivers (e.g., those in
directly connected networks) it creates unicast packets and
introduces them into its output queues. For the addresses of
routers that are expected to perform additional distribution, it
duplicates the received packet. In the duplicates, it marks all
the addresses that it has accounted for in the delivery bitmap.
Thus, the next router in the chain can determine that it should
neither send unicast to the receivers at those destinations nor
create multicast packets for the routers among them.

S
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R1

E 4

E 3

E 2

(a) Full network support.

S

E 1

R2

E 4

E 3

E 2

(b) Partial network support.

Figure 7. Network topology from sender viewpoint.

E. Protocol headers

The tasks of sender and router are supported by a number
of data structures beyond those of the IP header. MEADcast
for IPv6 uses the extension header mechanism to introduce
multicast information. Figure 6 shows an overview of the
sequence of headers employed in a MEADcast transmission
with standard fields removed for clarity. The whole header in-
cludes the standard IPv6 header, Hop-by-Hop Options header,
MEADcast Routing header and Destination Options header.

The fields depicted in the figure have the following purpose
and structure:

• Source address and Destination address 1 · · ·n are normal
IPv6 addresses.

• # of Dest: Number of destinations in IPv6 address
encoded in the MEADcast Routing header.

• Disc. Flags: Discovery flags to mark a MEADcast mes-
sage as discovery request, response or data delivery.

• Disc. Hop-count: Discovery hop-count, which is the
MEADcast distance from a MEADcast router to the
sender.

• Delivery Bitmap: to mark if a MEADcast router has
received the MEADcast message.

• Router Tag Bitmap: to mark the position of the MEAD-
cast routers in the MEADcast Routing header’s address
list.

• Port 1 · · ·n: transport protocol port number (specifically
UDP port number) for receivers.

F. Protocol mechanics by example

Figure 7 describes the network where the proposed scheme
is effective, consisting of five end-points S,E1, E2, E3, E4

and three routers R0, R1, R2. Their connections are shown in
Figure 7(a) (without the rings). Two scenarios are described,
the first one with all routers being MEADcast-capable, the
second one with only R2 being a MEADcast router.

1) All routers are MEADcast-capable: The communica-
tions between the sender S and the receivers E1, E2, E3 and
E4 via the network in the first scenario are as follows.

1) S transmits unicast data to E1, E2, E3, E4.
2) S sends four different MEADcast discovery requests

req(Ei, 0), i ∈ {1, 2, 3, 4}.
3) For unicast messages, R0, R1, R2 simply forward it to the

intended receiver.
4) R0 receives req(E1, 0), it reacts to the presence of the

Hop-by-Hop header and analyses the content of the
MEADcast header. R0 sends a MEADcast discovery
response resp(E1, 1, R0) to S. It also sends req(E1, 1)
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Figure 8. Discovery in all MEADcast network (case a).
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Figure 9. Data delivery in all MEADcast network (case a).

to E1. The same procedure is carried out for req(E2, 0),
req(E3, 0), req(E4, 0).

5) R1 receives req(E1, 1), it sends resp(E1, 2, R1) to S.
It also sends req(E1, 2) to E1. The same procedure is
carried out when R1 receives req(E2, 1).

6) R2 receives req(E3, 1) and req(E4, 1), it sends resp(E3,
2, R2) and resp(E4, 2, R2) to S. It also sends req(E3, 2)
to E3 and req(E4, 2) to E4.

7) E1, E2, E3, E4 receive the unicast messages normally.
For the MEADcast discovery request, they do not under-
stand and simply drop it.

8) S receives MEADcast discovery responses and
updates its network topology viewpoint as
(R0, 1, E1, E2, E3, E4), (R1, 2, E1, E2), (R2, 2, E3, E4).
The topology viewpoint of sender can be illustrated by
the rings in Figure 7(a), where the sender is at the center,
R0 lies on the first ring with a distance of one, R1 and
R2 are on the second ring with a distance of two and all
receivers are always at the outermost ring.

All the steps above are depicted in Figure 8. The corresponding
data delivery phase described in the next steps is shown in
Figure 9. MEADcast routers and their associated entries in
bitmap fields of MEADcast headers are marked in blue bold
text. The same marking scheme is used in Figures 10 and 11.

9) S stops transmitting data via unicast and starts MEAD-
cast data sending phase. S transmits a MEADcast data
message consisting of:
• E1 as the destination IP address,
• {R1, E1, E2, R2, E3, E4} in the MEADcast Routing

header’s address list,
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Figure 10. Discovery in sparse MEADcast network (case b).
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Figure 11. Data delivery in sparse MEADcast network (case b).

• Router Tag Bitmap being 100100, where bit 1 indi-
cates a router and 0 an end-point, Delivery Bitmap is
initialized with the same value of Router Tag Bitmap.
Note that, Router Tag Bitmap also points out, which
MEADcast router is responsible for which end-point,
in this case: R1 is responsible for E1, E2 and R2

for E3, E4. Router Tag Bitmap of the MEADcast data
message stays unchanged after leaving the sender.

10) R0 receives the MEADcast data message, sees that:
• it does not have to deliver message to any receivers

since its address is not in the MEADcast address list,
• based on the Router Tag Bitmap and Delivery Bitmap

fields, there are two other MEADcast routers, namely
R1, R2, needing to receive MEADcast data message.
R0 duplicates the original MEADcast data message.
◦ The Delivery Bitmap field of the first one is modi-

fied to be 100000, indicating that R2 has received
a MEADcast data message. R0 sends this message
to R1.

◦ R0 changes the destination IP address of the second
message to E3, modifies the Delivery Bitmap field
to be 000100, indicating that R1 has received a
MEADcast data message and sends it to R2.

◦ The checksum at the transport layer (specifically,
UDP) of each message is changed accordingly and
is discussed further in Section VI-B.

◦ The Router Tag Bitmap fields in both messages are
the same as in original one.

11) R1 receives a MEADcast data message, reads the Router
Tag Bitmap field and sees that it is responsible for E1

and E2. R1 constructs two unicast messages with the
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data from the MEADcast data message and transmits
each to E1 and E2. The checksum at the transport layer
of each message is changed accordingly. The Delivery
Bitmap value of 100000 shows that there is no other
MEADcast router who needs to receives this MEADcast
data message.

12) R2 receives a MEADcast data message, reads the Router
Tag Bitmap field and sees that it is responsible for E3

and E4. R2 constructs two unicast messages with the
data from the MEADcast data message and transmits
each to E3 and E4. The checksum at the transport layer
of each message is changed accordingly. The Delivery
Bitmap value of 000100 shows that there is no other
MEADcast router who needs to receives this MEADcast
data message.

2) Only R2 is MEADcast-capable: The communications
between the sender S and the receivers E1, E2, E3 and E4 via
the network in the second scenario (only R2 is a MEADcast
router) are sketched in Figures 10 and 11, which have the same
first three steps as in the first scenario. The further steps are
as follows.

1) R0 receives req(E1, 0), it reacts to the presence of the
Hop-by-Hop header and analyses the content of the
MEADcast header, which it does not understand. It for-
wards the message further to the E1 direction. R0 does
not drop the message since the option type identifier of
MEADcast header is 00 [17]. The same procedure is
performed for req(E2, 0), req(E3, 0), req(E4, 0).

2) Similarly, R1 receives req(E1, 0) and req(E2, 0), it sends
these messages to E1 and E2.

3) R2 receives req(E3, 0), req(E4, 0). It sends resp(E3, 1,
R2) and resp(E4, 1, R2) to S. It also sends req(E3, 1) to
E3 and req(E4, 1) to E4.

4) E1, E2, E3, E4 receive the unicast messages normally.
For the MEADcast discovery requests, they do not un-
derstand and simply drop them.

5) S receives MEADcast discovery responses, updates its
network topology viewpoint as (R2, 1, E3, E4). Its net-
work topology viewpoint is illustrated in Figure 7(b).
There is no MEADcast router on the paths to E1, E2,
only R2 lying on the first ring of distance one is on the
paths to E3, E4. All receivers are on the outermost ring.

6) S starts MEADcast data sending phase. Based on its
topology view, S sees that:
• there is no MEADcast router on the paths to E1, E2.
S unicasts data to these receivers.

• R2 is on the paths to E3, E4. S transmits a MEADcast
data message with E3 as the destination IP address
and {R2, E3, E4} in the MEADcast routing header’s
address list, Router Tag Bitmap and Delivery Bitmap
being 100.

7) For unicast messages, R0, R1 simply forward them to the
intended receiver.

8) R0 receives the MEADcast data message, which it does
not understand. It forwards the message further to the E3

direction. R0 does not drop the message since the option
type identifier of MEADcast header is 00 [17].

9) R2 receives a MEADcast data message, reads the Router
Tag Bitmap field and sees that it is responsible for E3

and E4. R2 constructs two unicast messages with the data

from the MEADcast data message and transmits each to
E3 and E4. The checksum at the transport layer of each
message is changed accordingly.

G. Sender API

All state information about the multicast tree is held by
the sender, as MEADcast receivers are multicast-agnostic by
design. Routers with MEADcast-capability need not keep state
about the multicasted flows but require only the addition
of handling the discovery mechanism of MEADcast and the
processing of MEADcast data packets.

The sender has special requirements on the API by which
the network socket is controlled. We build on the work
described in RFC 7046 [18] (“Hybrid Adaptive Multicast”,
HAM; “Transparent Hybrid Multicast”) as a generic API that
aims to provide a common vertical interface for multicast
sockets without regard to the multicast technology. Although
the HAM API does not specifically target the sender-centric
multicast schemes and does require extensions to fully support
them, the expressive power of the API is sufficient to control
most aspects of the sender and does not contain aspects that
are unimplementable for MEADcast.

The HAM model of multicast is that an application uses a
HAM socket, which can be bound to network interfaces and
multicast groups to support an n:m communication pattern,
as known from “traditional” multicast. The application effects
the life-cycle management of the socket, its binding to network
interfaces and the joining and leaving of multicast groups. Mul-
ticast group identifiers are separated from network addresses
and noted as a URI (Uniform Resource Identifier) in order to
avoid assumptions about the actual multicast technology being
employed. As a tacit assumption, every host supporting the
API is expected to manage its membership in a group: it is
this tacit assumption that will require extension of the HAM
API in order to support MEADcast.

We iterate through the four interface sections of the HAM
API and apply them to MEADcast, before specifying the
necessary extensions.

1) Group management: The create() and delete()
calls act on abstract Multicast Sockets as described in the RFC.

The group management functions join() and leave()
are strictly speaking not required for MEADcast, since group
membership is only managed by the sender. They are restricted
to enabling MEADcast to change a group’s denomination
during a session.

The calls for (de-)registering a multicast data source,
srcRegister(), srcDeregister() duplicate the function
of the socket creation and deletion functions for the purposes
of the 1:n MEADcast.

2) Send and receive: The send() function signature can
be applied as is. The receive() function is inert, given that
the sender does not receive multicast and the receivers do not
support the API.

3) Socket options: RFC 7046 specifies a number of socket
management functions, which are useful for a sender ap-
plication and can be supported in a MEADcast sender.
The functions allow the management of interfaces bound to
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a socket with getInterfaces(), addInterface() and
delInterface() and setting of network parameters for sock-
ets/interfaces with setTTL(), getTTL.

The function getAtomicMsgSize() “returns the maxi-
mum message size that an application is allowed to transmit
per socket at once without fragmentation”. Given that MEAD-
cast performs a trade-off between this “atomic size” and the
number of multicast targets addressable with a single PDU
(Protocol Data Unit), applications should always consult this
function to determine the application SDU (Service Data Unit)
size offered by the MEADcast trade-off.

If an application cannot practically reduce the amount
of data sent at once, it is useful to allow it to influence
the trade-off performed by the MEADcast socket, i.e., to
sacrifice the number of addressable targets in favour of larger
messages, e.g., in order to fit frames of media streams into one
message. We present an extension to support such hints later
in Section IV-G5.

4) Service Calls: The service calls of the HAM API allow
an application to retrieve information about the multicast
environment of a HAM node.

The most relevant is the function childrenSet(), which
returns the clients (receivers) served by this sender, queried by
interface. For a complete list of receivers, the list of interfaces
retrieved with getInterfaces() can be iterated through calls
of childrenSet().

The maximum message size transmittable (with pos-
sible fragmentation) over a socket can be queried with
getMaxMsgSize(). For MEADcast, the value returned can be
the maximum size transmittable by unicasted IP; an application
sending messages of that size would either force transmission
by unicast or the multicast of fragments.

Some service calls return information possibly useful to the
application: groupSet() would retrieve the groups mapped
to a given interface; the application can request the neighbour
nodes (assumed to be those on the same link layer segment)
by means of calling neighborSet() for an interface.

Some of the service calls lack a function for MEADcast but
can be implemented to return sensible values for the applica-
tion. The designatedHost() function determines ”whether
this host has the role of a designated forwarder (or querier), or
not.“. The parentSet() function returns a list of neighbours,
from the node (in our case, the sender) receiving multicast; a
MEADcast implementation can return an empty set.

Membership events are issued from a HAM socket instance
to the application to notify of other members of the multicast
group joining or leaving the group. In our case, that informa-
tion originates with the application. Hence, supplying it again
can be useful only for confirmation of changes to the group
made within the MEADcast layer. Event flow management
with enableEvents() and disableEvents can be imple-
mented as specified.

5) Extension: The HAM API document does mention, in
short, Xcast as an example for a sender-centric, agnostic-
receiver-multicast protocol, and it sketches a few ideas for
necessary information management for this class of protocols.
The API itself, however, fails to take into account that Xcast

as well as MEADcast require a means to inform a sender
about the introduction or removal of a receiver to/from a
group. Consequently, it is necessary to supply two fundamental
functions in addition to those specified in RFC 7046.

a) Group management API extension: For the exten-
sion, we employ the same terminology and language as
RFC 7046. In particular, the receivers of packets multicasted
from one sender are termed “children” with respect to that
sender.

The application can register or deregister a child at a socket.
These functions are mandatory, as they constitute the only
manner in which MEADcast can be made aware of status
changes in children, i.e., in receivers.

joinChild (in Uri groupName,
in Child childSpec,
out Int error);

and

leaveChild (in Uri groupName,
in Child childSpec,
out Int error);

In each function, groupName identifies the multicast group
that the receiver (“child”) is to be added to. The implementa-
tion is responsible for adding it to the appropriate socket or
sockets and, if enabled, to generate Events to this effect. An
error return value of 0 indicates success, one of −1 indicates
failure.

The Child structure contains a mandatory set of informa-
tion items pertaining to the basic multicast service and a set of
optional items to support optimisation or application-specific
parameters. It is given as:

Child { Int IPversion ;
IPAddress childIPAddress ;
IPAddress routerIPAddress ;
Int port ;
Int pathMTU ; }

The IPversion mandatory field identifies the Internet
Protocol version to be used when casting to this receiver. The
IPAddress type is a binary encoded IPv6 or IPv4 (according
to the value of IPversion) unicast address. The mandatory
field childIPAddress identifies the receiver by IP address.

The optional field routerIPAddress identifies the initial
router (if any) to be responsible for transmitting unicast to the
receiver, giving its IP address on the path between sender and
receiver. The optional field pathMTU contains the maximum
transfer unit (MTU) on that same path. The optional field port
carries the transport layer protocol port at the receiver.

The structure is intended to be extensible with respect to
the optional items. Conceivable options include the receiver’s
preferences regarding quality, transmission volume, as well as
accounting parameters.

b) Hints: It is necessary to control the trade-off between
the number of targets addressable in a single MEADcast PDU
and the maximum size of messages acceptable from upper
layers and applications while avoiding fragmentation. While
the MEADcast stack might strive to maximise the number of
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Figure 12. Parameters for experiments.

addressable targets, application-specific information regarding
the structure of data can be helpful. For that purpose, we extend
the API with an additional, optional function:

setExpectedSDUSize (in Int sduSize,
in Uri groupName,
out Int error);

The parameter sduSize is the size of the service data unit
(SDU) of the upper layer, in bytes, that the application expects
to send() to a group specified by groupName. The function
returns a value of zero, if the size can be transmitted without
fragmentation or −1 if the size cannot be transmitted.

Note that the SDU will encompass the payload and the
transport protocol header: it is up to the application program-
mer, who decides on the transport protocol to be used, to
calculate the value.

For example, an application transmitting a media stream
can set the expected size of the payload to be the size of
one or more media frames plus the size of an UDP header.
In response, the MEADcast implementation can determine the
maximum number of addresses included in its own header.

V. EVALUATION

We have performed experiments within the parameter space
illustrated in Figure 12. We simulate MEADcast for 100
routers both on random network topologies with a diameter of
16 (generated by GT-ITM [19]) and on topologies designed
according to realistic scenarios using ns-2 1. To be more
specific, the experiments are carried out by the following steps.

1) A core network of 100 routers is generated.
2) Three core networks are created by randomly enabling the

MEADcast capability on 30, 50, 70 routers of the core
network in step 1, respectively. One more designed core
network by selectively enabling the MEADcast capability
on 10 routers and another for all routers are added. In
total, there are six core networks associated with 0, 10,
30, 50, 70 and 100 MEADcast-capable routers, in which
the second one is intended for designed cases and the
others for random ones.

1https://www.isi.edu/nsnam/ns/

3) The end-points are added to the core networks in step
2. The number of end-points ranges in 100, 200,...,1000.
We actively distribute the end-points over MEADcast-
capable routers for design cases while they are scattered
arbitrarily in random cases. Each association of a chosen
end-point set with a core network in either case forms
a final topology, which means there are 50 random final
topologies and 10 designed ones.

4) For each final topology in step 3, two experiments, one
for unicast and another for MEADcast, are performed.
An end-point is chosen as sender and the remaining end-
points are receivers. The sender then transmits a data
stream of 800 MB into the network to all the receivers.
The trace file created by ns-2 for each experiment to
log the whole data transmission process is analysed.
The traffic volume on all links of the whole network
is calculated and logged for further analysis. It is 120
different experiments on the whole.

A screenshot of a random topology with 100 routers (red
square nodes) and 100 end-points (grey round leaf nodes) is
presented in Figure 13. Node 100 (leftmost leaf node) is chosen
as sender, the remaining leaf nodes are receivers.

Table I shows an excerpt of the whole result when ex-
perimenting MEADcast and unicast for 100, 500 and 1000
end-points. Their corresponding total data volume in this table
is plotted in Figure 14 whereas Figure 15 presents all the
results. The percentage of traffic saving between MEADcast
and unicast for the case of 1000 end-points is highlighted by
double-headed arrows in the latter figure.

If there is no MEADcast router, the sender sends mainly
unicast messages and periodically sends discovery messages
that occupy only a little traffic volume over the whole network.
This discovery overhead is indicated by the value “−0.x”
in Table I and depends on how many times the discovery
is performed. Hence, the traffic volume of the MEADcast
protocol when there is no MEADcast router is approximately
that of unicast, provided that sender has large traffic to send.
The gap increases when the number of receivers and the
percentage of MEADcast routers grow. The extreme case

TABLE I. TOTAL TRAFFIC VOLUME IN THE WHOLE NETWORK [MB].
* INDICATES DESIGNED TOPOLOGY.

Topology MEADcast Discovery Traffic
End-points MEADcast Unicast without (one time) saving

routers discovery [%]

100

0 761,504 761,504 0.075 0
10(*) 761,504 271,104 0.149 64,4
30 761,504 563,376 0.157 26
50 761,504 433,504 0.210 43.1
70 761,504 372,964 0.246 51
100 761,504 272,420 0.500 64.2

500

0 4,136,544 4,136,544 0.409 (−0.x)
10(*) 4,136,544 1,279,936 0.813 69.1
30 4,136,544 2,513,296 0.897 39.2
50 4,136,544 1,698,336 1.216 58.9
70 4,136,544 1,069,276 1.389 74.2
100 4,136,544 902,056 2.835 78.2

1000

0 8,341,776 8,341,776 0.826 (−0.x)
10(*) 8,341,776 2,525,904 1.640 69.7
30 8,341,776 4,978,384 1.802 40.3
50 8,341,776 3,137,972 2.462 62.4
70 8,341,776 1,866,456 2.819 77.6
100 8,341,776 1,552,304 5.727 81.4
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Figure 13. A network topology generated by GT-ITM.
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of 1000 end-points and 100% MEADcast routers shows the
difference of 81.4% in total traffic volume.

The total traffic volume reduction is considerable in the
presence of sufficient MEADcast routers, as shown by the
designed cases. The link stress (i.e., the number of packets
with the same payload sent by a protocol over each underlying
link in the network) [20] at the sender is reduced to an even
higher degree.

The impact of the service data unit size and the number of
entries in the address list are discussed in Section VI.

VI. DISCUSSION

We discuss a selection of aspects of MEADcast pertinent to
its deployment, the relationship of the protocol implementation
to other architectural components within the sender software
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Figure 15. Total data volume of unicast and MEADcast when varying
MEADcast support in the network and the number of receivers.

stack, as well as limitations and the treatment of anomalies
that may occur.

A. Addressing scenario challenges

The scenario (see Section II) describes challenges origi-
nating in organisational and technological distance between
content providers in the sender role and the network operators
hosting the receivers.

MEADcast allows the gradual shift from many unicast
flows to a reduced number of multicast flows. Due to the
protocol’s properties, the receivers are not made aware of the
use of the protocol or the manner in which it transports a
flow to them. Certainly, the interception of discovery packets
addressed to receivers allows them to actively detect the
sender’s ability to employ MEADcast but without discerning
with certainty
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• if multicast is actually in use for “their” flow, and
• which other addresses receive the same data stream.

The privacy of each receiver is thus preserved.

The content provider can deploy MEADcast within their
own network in order to reduce the load between the senders
and the MEADcast routers. The operators of neighboring
networks to which the content provider organisation maintains
contractual relationships can be informed of the option to
deploy the protocol in order to improve distribution and thus
reduce the transmission volume.

Our approach specifically targets the subspace of applica-
tions delivered via massive unicast into networks in different
administrative domains than the sender. While MEADcast
can be employed as a general-purpose multicast protocol,
its benefits are most apparent in these scenarios: without an
approach with native internetwork support and incremental
deployment features it does not seem plausible that multicast
would be deployed at all. In the special cases where a managed
service is provided locally (e.g., in a symmetric conference-
style application provided to participants within the same
administrative domain) and pre-configured by that domain’s
network management, traditional, group-based multicast may
be the more effective choice.

1) Data-driven deployment: MEADcast signalling, i.e., the
discovery subprotocol, creates a technical means to advertise
the technology being in use and at the same time to identify
the number and location of receivers within a network to the
network operator.

By observing MEADcast discovery traffic, a network op-
erator is capable of determining

• the amount of traffic with potential MEADcast support
• whether the traffic terminates within the operator’s net-

work or constitutes transit traffic,
• the distribution of the terminating traffic within the net-

work topology, and
• the distribution of the transit traffic onto egress points.

Based on this information, the network operator is capable
to gauge the savings in terms of traffic volume if MEADcast
capability is introduced at a certain point in the network.

Consequently, the mechanism allows MEADcast routers to
be deployed at points where they have the greatest benefit,
while maintaining the freedom from association between a
content provider sending multicastable data and a network
operator hosting multiple receivers.

2) Incentives for non-access networks:

a) Incentives for peer and transit networks: to support
the protocol may originate in their own capacity management,
in order to reduce volume destined to their own egress routers.

b) Carrier services: may not be motivated to support
MEADcast, depending on their usage accounting model. How-
ever, the networks they serve might request MEADcast support
as a service, when acting as transit networks to the MEADcast
traffic or as the hosting network for many receivers.

3) Deploying m:n multicast applications: Applications like
video conferencing (see Section II-C have an m:n (in their
special case m = n) communication pattern. They can benefit
from MEADcast by deploying the sender software stack on
participants’ hosts, thus placing those hosts in the role of a
MEADcast sender.

This type of deployment has a number of beneficial prop-
erties:

• The sender stack is optional: if it is missing or inoperable
on a given host, the outgoing traffic from that host is
regular unicast.

• The support of the networks connecting the participants
is employed to the degree that it is actually available,
but network operators may decide to deploy MEADcast
capability in order to manage the network load produced
by video conference sessions.

• No mapping of participants’ network identities to multi-
cast groups is necessary, therefore allowing a conference
to be configured by selecting, e.g., SIP identities.

• Finally, the extension software stack can be pre-
configured by the administrative domain’s system man-
ager without regard to the location of other participants
and without the need for user configuration.

B. Relation to upper layers

The concepts of MEADcast require a higher degree of
interaction between the network layer and its upper layers
(transport and application), which merits discussion. While
our simulation results indicate significant performance gains
for a wide range of parameters, MEADcast scenarios may be
limited by properties of the protocol or the applications using
it, and routers may experience a higher control plane load.
After discussing these points, we conclude with remarks on
fault and security issues.

Decomposition of MEADcast data packets may yield pack-
ets with different destination addresses and thus invalidate
checksums in upper layer headers that include network ad-
dresses in the checksum (e.g., UDP for IPv6). For the new
packet to be valid at the destination, MEADcast routers must
re-compute these checksums for every new unicast packet
and every new MEADcast packet with a different destination
address. This issue is due to the re-use of network addresses in
transport layer protocols, and problematic not only because of
the increased load on routers’ control plane but also because
of the requirement to handle protocols other than IP. The
checksum calculation in the transport layer by a MEADcast
router is similar to that of an Xcast router, which is presented
in [10]-Section 10.1.

Transport layer port numbers will differ at end-point sock-
ets and have to be included in the MEADcast header along with
the IP address of each end-point, thus creating an additional
binding to the transport layer.

Network service primitives do not support addressing mul-
tiple receivers. Therefore, applications and higher protocols on
the sender side must be modified to make use of MEADcast.
A solution idea would be to use “regular” IGMP/MLD-based
multicast on the first hop, thus allowing applications and higher
protocols to employ multicast addressing as usual, then use
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a proxy function to translate between regular multicast and
MEADcast before transmitting. While Path MTU discovery
[21] is a standard function of the Internet, the application
requirements on payload size are not readily available to allow
the computation of optimum header size. We envision an
interface to the network layer allowing the application to issue
hints with respect to its intended use of the network.

We emphasize that these modifications are required for the
sender only. The providers of asymmetric applications (IP-TV,
Internet radio, etc.) can be assumed to correctly gauge the
cost and benefit of introducing modifications to consolidate
the multitude of unicast flows they create presently.

C. Limitations

Inherent limitations of the approach include the maximum
number of entries in the address table, the overhead introduced
by the address table, the time required to establish multicast
structures and load introduced in the control plane of routers.

MEADcast routers do not keep group information, thus
rendering MEADcast processing stateless, while nevertheless
complex in contrast to multiple flows that may be handled by
accelerators such as FPGAs.

MEADcast performs a gradual transition from a number of
unicast packet flows to a (smaller) number of multicast flows
as the availability of MEADcast-capable routers is discovered.
Sessions that are shorter than the time for discovery not only
forego the benefit of multicast but also carry the additional
load for discovery; they are an application for unicast.

Given a path MTU value, the number of entries in the
address table determines the remaining space for payload. If
the service data units received from the upper layer is small,
the sender may enlarge the number of entries, however, for
large number of end-points even small payloads will require
the sender to issue multiple multicast packets. Figure 16
shows the critical points where data volume is increased when
the address table space of 32 entries is exhausted by one
router multicasting to an increasing number of end-points.
Conversely, a large address table leaves less space for payload
and may lead to fragmentation, as illustrated in Figure 17.

D. Fault and security considerations

Packet loss naturally incurs a larger penalty for MEADcast
than unicast, as more receivers are affected. In particular,
the failure of a MEADcast path by changes in routing (by
administrative action or by faults) will lead to continuous loss
of packets until the periodic discovery mechanism informs
the sender of the change in the network topology. A higher
discovery frequency might lessen the consequences at the
expense of increased control plane load in routers and an
increase in the number of (albeit small) packets transmitted
over a path.

Beyond the security issues noted for Xcast (see [10]),
which also employs sender-based multicast, we note that
the deprecation [22] of the Type 0 Routing Header in IPv6
to prevent amplification attacks suggests careful scrutiny of
any mechanism that causes Internet routers to transmit more
packets than they receive. We presume our mechanism to
be reasonably safe due to the following properties: i) the
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total volume of transmitted multicast data does not exceed
the corresponding unicast volume for the same data, with
the exception of the lightweight signalling overhead required
for consolidating multicast, ii) addresses are not modified by
routers, i.e., data is transmitted via the same path in both
unicast and multicast modes.

RFC 6398 [23] warns that the Router Alert Option (RAO)
[24], which is useful to indicate MEADcast packets to routers,
may be used as an attack vector. The authors recommend, as
a measure to defend against attacks, to either forward packets
with RAO without evaluating the RAO content or, as a last
resort, to drop packets with the RAO. Given that the RAO is
employed by a number of well-known protocols, e.g., Resource
Reservation Protocol (RSVP), Internet Group Management
Protocol (IGMP), we assume that support for RAO will be
maintained.

E. Multiple unicast paths between two MEADcast routers

As MEADcast routing relies on unicast, there are cases
where different data delivery unicast paths from the sender
to receivers cause a MEADcast router to send discovery
responses to the sender with different distances (MEADcast
hop-count). Figure 18 illustrates a case where the distance of
R3 to S is 4 according to the path from S to E1 (S-R1-R2-R4-
R3-E1) while it is 3 for the path from S to E2 (S-R1-R2-R3-
E2). This case is conceivable in reality for some reason, e.g.,
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Figure 18. Hop-count conflict situation.

path load balancing deployment causes traffic to be directed
on different paths. The network topology viewpoint building
process at the sender is influenced: i) R3 could have the same
distance to S as R4 and both are immediately after R2 or ii) R3

is one hop farther than R4. Note that the sender’s viewpoint
is key for the MEADcast data sending phase and has to be
a tree (with the sender as root), i.e., a loop-free viewpoint.
Therefore, only one possibility of these two can appear in the
final sender’s viewpoint.

Several strategies could be employed by the sender in this
case, e.g., for multiple discovery responses from a source
(MEADcast router) with different distances (MEADcast hop-
count), the sender could:

1) consider only the distance in the first response, which
means this router always has this distance to the sender
regardless of any different distance reflected in subsequent
discovery responses,

2) choose the shortest distance extracted from all the discov-
ery responses,

3) choose the longest distance,
4) choose the most popular distance, i.e., the distance with

highest frequency in all responses.

Our current implementation is based on the second option
since it intuitively induces the least latency in data delivery.
The longer path can be seen as backup in case the shortest one
is broken and comes into use after the next periodic discovery
phase. So the path through router R4 in Figure 18 is considered
as redundant and the traffic is normally sent from S to E1 and
E2 on the path R1-R2-R3.

It is conceivable to amend the specification of router
behaviour to effect the transmission of a responding router’s IP
addresses within the discovery response message, e.g., encoded
in the destination address field.

F. Opportunities for optimisation

It is easy to upgrade MEADcast to control the data trans-
mission’s efficiency, e.g., which router is responsible for which
receiver and how many of them. It is only the design matter at
sender side, not at MEADcast router or other end-points. So
the upgrade point is only the sender.

1) Reflection of unicast: It is safe to assume that the
majority of routers in the Internet are either agnostic or phobic.

• If a datagram is forwarded through agnostic routers past
the point where it should be branched, a receiving aware
router can forward it back over the same path by unicast
if it recognises this to be the case.

• The reflecting router should at the same time notify the
sender of reflection being necessary on this path, e.g.,
by sending it an ICMP message containing the reflected

S

E 1

E 3

E 2
R1

R0

R2

Figure 19. A scenario for optimization consideration.

destinations. In response to this message, the sender is
expected to stop multicasting to those destinations and
use unicast for them instead.

• The reflecting router should process (i.e., reflect) only
a limited number of multicast datagrams from a certain
source in order to avoid senders that are in violation of
the protocol. Reflection, like multicast itself, might be a
vector for an amplification attack, using a reflecting router
to inject large amounts of traffic into the network.

2) Greedy unicast: If only few destinations are reachable
via a given path, it may be more efficient to transmit unicast.
E.g., it may not be worth the effort of transmitting and
processing extra headers in the case where only one destination
is addressed in the MEADcast header. Figure 19 raises such
a scenario where according to the sender’s viewpoint after
the topology discovery process, there are some MEADcast
routers (R1, R2) responsible for only one receiver. For the
setting of allowing a MEADcast router to be responsible for
at least one receiver, the data delivery tree is then exactly
alike the topology viewpoint of the sender: the sender may
build two different MEADcast messages for each branch:
{R0, E1, R1, E2} and {R2, E3} and send them to the direction
of E2 and E3, respectively. The data delivery process is similar
to the steps described in Section IV-F. R0 composes and sends
a unicast message to E1 and sends a MEADcast message to
R1, who then composes and sends a unicast message to E2.
Obviously, it is not so efficient compared to the case where the
first message built by sender is: {R0, E1, E2}, then R0 will
decompose the MEADcast message into two unicast ones and
send them to E1 and E2. The transmitted message from sender
to R0 is smaller by saving up the space for R1 in the address
list, the unicast message sent from R0 to R1 is also more
bandwidth-efficient compared to the MEADcast message in the
former case. Similarly, S does not send MEADcast messages
to E3 but unicast ones, which is also more efficient.

VII. CONCLUSION

The MEADcast protocol introduced in this article addresses
long-standing issues of the adoption of multicast. We find
that the requirement on group participants to perform group
management, as well as the addressing scheme and the intra-
domain design of traditional multicast erect barriers to its
adoption as a natural, common means for group communi-
cation. The massive unicast employed by many services, in
consequence, leads to a significant waste of network resources
due to the transmission of identical payload over all links to
all receivers.

We have introduced MEADcast as a sender-centric multi-
cast protocol that introduces a separation of the concerns of
managing groups and holding state (at the sender), forwarding
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multicast payload without having to keep state (routers) and
receiving the payload, without having to have knowledge of
the network technology employed (receivers). The discovery
mechanism of MEADcast allows a “fall-forward”, incremental
introduction of multicast transmission, depending on the actual
support by the network, on a single receiver basis. At the
same time, in contrast to a fall-back mechanism, it avoids the
transmission of address tables to receivers and consequently
avoids the potential breach of privacy between them. Our
experiments have focused on the reduction of the total volume
of traffic in the network compared with unicast in a wide
range of simulated scenarios with varying support for MEAD-
cast in the network. These experiments have employed both
randomly generated topologies with randomized placement of
MEADcast routers and topologies specified to reflect real-
life networks. We have found that even a modest amount of
MEADcast routers in the network yield a reduction in resource
use. The gains in performance become larger with a higher
degree of support.

Our discussion indicates several open questions and av-
enues for development, including the study of the load increase
in router control planes and the real-world evaluation of
streaming applications based on a module implementation for
the Linux kernel and the development of an interface for
the management of multicast groups and parameters on the
sender side. We intend to employ the kernel implementation
for studies of the protocol’s behaviour during the experimental
provisioning of services transported via MEADcast within
a moderately controlled environment such as an academic
network. A different point of interest is the realisation of
MEADcast with virtual network functions, to be used in and
between Software Defined Networks (SDN).
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