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Abstract—In order to utilize multiple communication interfaces 

installed mobile terminals, Multipath Transmission Control 

Protocol (MPTCP) has been introduced recently.  It can 

establish an MPTCP connection that transmits data segments 

over the multiple interfaces, such as 4G and Wireless Local Area 

Network (WLAN), in parallel.  However, it is possible that some 

interfaces are connected to untrusted networks and that data 

transferred over them is observed in an unauthorized way.  In 

order to avoid this situation, we proposed a method to improve 

privacy against eavesdropping using the data dispersion by 

exploiting the multipath nature of MPTCP in our previous 

papers.  The proposed method takes an approach that, if an 

attacker cannot observe the data on every path, he/she cannot 

observe the traffic on any path.  The fundamental techniques of 

this method is a per-byte data scrambling and path dispersion.  

In this paper, we present the result of implementing the 

proposed method within the Linux operating system and its 

performance evaluation in more detail than our former papers.    

Keywords- Multipath TCP; Eavesdropping; Data Dispersion; 

Data Scrambling.   

I. INTRODUCTION 

This paper is an extension of our previous paper [1], which 
is presented in an IARIA conference.   

Recent mobile terminals are equipped with multiple 
interfaces.  For example, most smart phones have interfaces 
for 4G Long Term Evolution (LTE) and WLAN.  In the next 
generation (5G) mobile network, it is expected that multiple 
communication paths provided by multiple network operators 
are commonly involved [2].  In this case, mobile terminals will 
have more than two interfaces.   

However, the conventional TCP establishes a connection 
between single IP addresses at individual ends, and so it 
cannot utilize multiple interfaces in one end at the same time.  
In order to cope with this issue, MPTCP [3] is being 
introduced in several operating systems, such as Linux, Apple 
OS/iOS [4] and Android [5].  MPTCP is an extension of the 
conventional TCP.  It combines multiple TCP flows into one 
data stream called an MPTCP connection, and provides the 
same programing interface with the socket interface.  So, 
existing TCP applications can use MPTCP as if they were 
working over conventional TCP.   

MPTCP is defined by three Request for Comments (RFC) 
documents by the Internet Engineering Task Force.  RFC 
6182 [6] outlines architecture guidelines.  RFC 6824 [7] 
presents the details of extensions to support multipath 
operation, including the maintenance of an MPTCP 
connection and subflows (TCP connections associated with an 
MPTCP connection), and the data transfer over an MPTCP 
connection.  RFC 6356 [8] presents a congestion control 
algorithm that couples the congestion control algorithms 
running on different subflows.   

When a mobile terminal uses multiple paths, some of them 
may be unsafe such that an attacker is able to observe data 
over them in an unauthorized way.  For example, a WLAN 
interface is connected to a public WLAN access point, data 
transferred over this WLAN may be disposed to other nodes 
connected to it.  One way to prevent the eavesdropping is the 
Transport Layer Security (TLS).  Although TLS can be 
applied to various applications including web access, e-mail, 
and ftp, however, it generally requires at least one end to 
maintain a public key certificate, and so it will not be used in 
some kind of communication, such as private server access 
and peer to peer communication.   

As an alternative scheme, we proposed a method to 
improve confidentiality against eavesdropping by exploiting 
the multipath nature of MPTCP [9][10].  Even if an unsafe 
WLAN path is used, another path may be safe, such as LTE 
supported by a trusted network operator.  So, the proposed 
method is based on an idea that, if an attacker cannot observe 
the data on every path, he/she cannot observe the traffic on any 
path [11].  In order to realize this idea, we adopted a byte based 
data scrambling for data segments sent over multiple subflows.  
This mixes up data to avoid its recognition through illegal 
monitoring over an unsafe path.  Although there are some 
proposals to use multiple TCP connections to protect 
eavesdropping [12]-[15], all of them depend on the encryption 
techniques.  The proposed method is dependent on the 
exclusive OR (XOR) calculation that is much lighter in terms 
of processing overhead.   

In our previous paper [1] that is the origin of this paper, 
we showed how to implement the proposed method over the 
Linux operating system.  We used the kernel debugging 
mechanism called JProbe, in order to avoid the modification 
of the Linux kernel as much as possible.  The previous paper 
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also showed the results of implementation focusing on how 
the proposed method works over off-the shelf personal 
computers and access point, but the descriptions on 
performance evaluation was limited.   

In this paper, we describe the proposed method and its 
implementation in more detail.  We also show another 
behavior of the proposed method and the results of 
performance evaluation in detail.   

The rest of this paper is organized as follows.  Section II 
explains the overview and the security issue of MPTCP [10].  
Section III describes the proposed method.  Section IV shows 
how to implement the proposed method within the MPTCP 
software in the Linux operating system.  Section V gives the 
behavior of the proposed method and the results of the 
performance evaluation.  In the end, Section VI concludes this 
paper.   

II. OVERVIEW AND SECURITY ISSUES OF MPTCP 

A. MPTCP connections and subflows 

As described in Figure 1, the MPTCP module is located 
on top of TCP.  As described above, MPTCP is designed so 
that the conventional applications do not need to care about 
the existence of MPTCP.  MPTCP establishes an MPTCP 
connection associated with two or more regular TCP 
connections called subflows.  The management and data 
transfer over an MPTCP connection is done by newly 
introduced TCP options for MPTCP operation.   

Figure 2 shows an example of MPTCP connection 
establishment where host A with two network interfaces 
invokes this sequence for host B with one network interface.  
In the beginning, host A sends a SYN segment to host B with 
a Multipath Capable (MP_CAPABLE) TCP option.  This 
option indicates that an initiator supports the MPTCP 
functions and requests to use them in this TCP connection.  It 
contains host A’s Key (64 bits) used by this MPTCP 
connection.  Then, host B replies a SYN+ACK segment with 
MP_CAPABLE option with host B’s Key.  This reply means 
that host B accepts the use of MPTCP functions.  In the end, 

host A sends an ACK segment with MP_CAPABLE option 
including both A’s and B’s Keys.  Through this three-way 
handshake procedure, the first subflow and the MPTCP 
connection are established.  Here, it should be mentioned that 
these “Keys” are not keys in a cryptographic sense.  They are 
a sort of random numbers assigned for individual MPTCP 
connections.  As described below, they are used for generating 
the Hash-based Message Authentication Code (HMAC), but 
MPTCP does not provide any mechanisms to protect them 
from attackers’ accessing while transfer.   

Next, host A tries to establish the second subflow through 
another network interface.  In the first SYN segment in this 
try, another TCP option called a Join Connection (MP_JOIN) 
option is used.  An MP_JOIN option contains the receiver’s 
Token (32 bits) and the sender’s Nonce (random number, 32 
bit).  A Token is an information to identify the MPTCP 
connection to be joined.  It is obtained by taking the most 
significant 32 bits from the SHA-1 hash value for the 
receiver’s Key (host B’s Key in this example).  Then, host B 
replies a SYN+ACK segment with MP_JOIN option.  In this 
case, MP_JOIN option contains the random number of host B 
and the most significant 64 bits of the HMAC value.  An 
HMAC value is calculated for the nonces generated by hosts 
A and B using the Keys of A and B.  In the third ACK segment, 
host A sends an MP_JOIN option containing host A’s full 
HMAC value (160 bits).  In the end, host B acknowledges the 
third ACK segment.  Using these sequence, the newly 
established subflow is associated with the MPTCP connection.   

B. Data transfer 

An MPTCP implementation will take one input data 
stream from an application, and split it into one or more 
subflows, with sufficient control information to allow it to be 
reassembled and delivered to the receiver side application 
reliably and in order.  The MPTCP connection maintains the 
data sequence number independent of the subflow level 
sequence numbers.  The data and ACK segments may contain 
a Data Sequence Signal (DSS) option depicted in Figure 3.    

The data sequence number and data ACK is 4 or 8 byte 
long, depending on the flags in the option.  The number is 
assigned on a byte-by-byte basis similarly with the TCP 
sequence number.  The value of data sequence number is the 
number assigned to the first byte conveyed in that TCP 
segment.  The data sequence number, subflow sequence 
number (relative value) and data-level length define the 
mapping between the MPTCP connection level and the 
subflow level.  The data ACK is analogous to the behavior of 
the standard TCP cumulative ACK.  It specifies the next data 
sequence number a receiver expects to receive.   

 
Figure 1.  Layer structure of MPTCP. 

Host A
Address A1 Address A2

Host B
Address B

 SYN (MP_CAPABLE [Key-A]) 
 SYN+ACK (MP_CAPABLE [Key-B]) 

 ACK (MP_CAPABLE [Key-A, Key-B]) 
 SYN (MP_JOIN 

[Token-B, Nonce-A]) 

 SYN+ACK (MP_JOIN 
[HMAC-B, Nonce-B]) 

 ACK (MP_JOIN [HMAC-A]) 
 ACK 

 
Figure 2.  Example of MPTCP connection establishment. 
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Figure 3.  Data Sequence Signal option. 
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C. Eavesdropping protection over multiple TCP 

connections 

As we mentioned in Section I, there are several proposals 
on the data dispersion over multiple paths.  Yang and 
Papavassiliou [12] showed a method to analyze the security 
performance when a virtual connection takes multiple disjoint 
paths to the destination, and proposed a traffic dispersion 
scheme to minimize the information leakage when some of 
the intermediate routers are attacked.  Nacher et al. [13] tried 
to determine the optimal trade-off between traffic dispersion 
and TCP performance over mobile ad-hoc networks to reduce 
the chances of successful eavesdropping while maintaining 
acceptable throughput.  These two studies use multiple TCP 
connections by their own coordination methods instead of 
MPTCP.  Gurtov and Polishchuk [14] used host identity 
protocol (HIP), which locates between IP and TCP to provide 
multiple paths, and proposed how to spread traffic over them.  
Apiecionek et al. [15] proposed a way to use MPTCP for more 
secure data transfer.  After data are encrypted, they are divided 
into blocks, mixed in the predetermined random sequence, 
and then transferred through multiple MPTCP subflows.  A 
receiver rearranges received blocks in right order and decrypts 
them.   

All of those proposals aim at just spreading data packets 
over multiple paths, and do not consider the coordination over 
multiple paths.  If the transferred data are encrypted before 
dispersion, it can be said that they are coordinated by the 
encryption procedure, but the coordination is not realized by 
the dispersion schemes.   In contrast with them, our proposal 
adopts an approach to improve privacy by coordinating data 
over multiple paths through data scrambling not encryption. 

III. PROPOSED METHOD 

A. Motivation 

The first point we considered in designing our proposal 
was utilize multiple paths supported by MPTCP.  So we 
picked up the secret sharing method [16], which produces 
some number of pieces from data in a way that a specific 
number of pieces are required for reconstructing the original 
data.  By using the secret sharing, it is possible to divide data 
into multiple subflows.  However, in this approach, it is 
required to duplicate the original data or at least increase the 
amount of sending data.  Besides, this approach requires some 
cryptographic calculation that uses a lot of CPU power.   

Next approach we considered is the network coding 
approach [17], where a packet is XORed with the following 
packet and the first packet and the XOR result are sent via 
different paths [18].  This approach does not require any 
cryptographic calculation and so the processing overhead is 
low.  However, if the packet length is different, unnecessary 
padding may be necessary.   

The third approach is applying the mode of operation, such 
as Cipher Block Chaining (CBC) and Output Feedback (OFB), 
used in block ciphering [19].  The block cipher defines only 
how to encrypt or decrypt a fixed length bits (block).  The 
mode of operation defines how to apply this operation to data 
longer than a block.  CBR and OFB introduce a chaining 
between blocks such that a block is combined with the 

preceding block by XOR calculation.  The application of the 
mode of operation without any encryption to data dispersion 
is considered as a block level data scrambling.  So, if the 
length of packet is not integral multiple of block length, 
unnecessary padding will be required again.   

Based on these considerations, we picked up a byte level 
scrambling which is described in the following subsection.   

B. Detailed procedure 

Figure 4 shows the overview of the proposed method.  As 
shown in Figure 4(a), we introduce a data scrambling function 
within MPTCP and on top of the original MPTCP.  When an 
MPTCP communication is started, the use of data scrambling 
is negotiated.  It may be done using a flag bit in 
MP_CAPABLE TCP option.   

When an application sends data, it is stored in the send 
socket buffer in the beginning.  The proposed method 
scrambles the data by calculating XOR of a byte with its 
preceding 64 bytes in the sending byte stream.  Then, the 
scrambled data is sent through multiple subflows associated 
with the MPTCP connection.  Since some data segments are 
transmitted through trusted subflows, an attacker monitoring 
only a part of data segments cannot obtain all of sent data and 
so cannot descramble any of them.  When receiving data 
segments, they are reordered in the receive socket buffer by 
MPTCP.  The proposed method descrambles them in a byte-
by-byte basis just before an application reads the received data.   

Figure 5 shows the details of data scrambling.  In order to 
realize this scrambling, the data scrambling module maintains 
the send scrambling buffer, whose length is 64 bytes.  It is a 
shift buffer and its initial value is HMAC of the key of this 
side, with higher bytes set to zero.  The key used here is one 
of the MPTCP parameters, exchanged in the first stage of 
MPTCP connection establishment.  When a data comes from 
an application, each byte (bi in the figure) is XORed with the 
result of XOR of all the bytes in the send scrambling buffer.  

original MPTCP

Subflow (TCP) Subflow (TCP)

Data Scrambling
M
P
T
C
P

 

(a) Layer structure of proposed method 

Send socket 
buffer

Data Scrambling

original MPTCP

trusted path
untrusted 

path   

Receive socket 
buffer

Data 
Descrambling

original MPTCP

trusted path
untrusted 

path  
 (b) Sending data procedure (c) Receiving data procedure 

Figure 4.  Overview of proposed method [9].   
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The obtained byte (Bi) is the corresponding sending byte.  
After calculating the sending byte, the original byte (bi) is 
added to the send scramble buffer, forcing out the oldest 
(highest) byte from the buffer.  The send scrambling buffer 
holds recent 64 original bytes given from an application.  By 
using 64 byte buffer, the access to the original data is protected 
even if there are well-known byte patterns (up to 63 bytes) in 
application protocol data.   

Figure 6 shows the details of data descrambling, which is 
similar with data scrambling.  The data scrambling module 
also maintains the receive scramble buffer whose length is 64 
bytes.  Its initial value is HMAC of the key of the remote side.  
When an in-sequence data is stored in the receive socket 
buffer, a byte (Bi that is scrambled) is applied to XOR 
calculation with the XOR result of all the bytes in the receive 
scramble buffer.  The result is the descrambled byte (bi), 
which is added to the receive scramble buffer.   

By using the byte-wise scrambling and descrambling, the 
proposed method does not increase the length of exchanged 
data at all.  The separate send and receive control enables two 
way data exchanges to be handled independently.  Moreover, 
the proposed method introduces only a few modification to 
the original MPTCP.   

IV. IMPLEMENTATION 

A. Use of Kernel Probes 

Since MPTCP is implemented inside the Linux operating 
system, the proposed method also needs to be realized by 
modifying operating system kernel.  However, modifying an 
operating system kernel is a hard task, and so we decided to 
use a debugging mechanism for the Linux kernel, called 
kernel probes [20].   

Among kernel probes methods, we use a way called 
"JProbe" [21].  JProbe is used to get access to a kernel 
function's arguments at runtime.  It introduces a JProbe 
handler with the same prototype as that of the function whose 
arguments are to be accessed.  When the probed function is 
executed, the control is first transferred to the user-defined 
JProbe handler.  After the user-defined handler returns, the 
control is transferred to the original function [20].   

In order to make this mechanism work, a user needs to 
prepare the following;  

 registering the entry by struct jprobe and  
 defining the init and exit modules by functions 

register_jprobe() and unregister_jprobe 

()[21].     

In the Linux kernel, function tcp_sendmsg() is called 
when an application sends data to MPTPCP (actually TCP, 
too) [22].  As stated in Section II, the scrambling will be done 
at the beginning of this function.  So, we define a JProbe 

handler for function tcp_sendmsg() for scrambling data 
to be transferred.   

In order for an application to read received data, it calls 

function tcp_recvmsg() in MPTCP.  In contrast to data 
scrambling, the descrambling procedure needs to be done at 
the end of this function.  So, we introduce a dummy kernel 
function and export its symbol just before the returning points 

of function tcp_recvmsg().  We then define a JProbe 
handler for descrambling in this dummy function.   

By adopting this approach, we can program and debug 
scrambling/descrambling independently of the Linux kernel 
itself.   

B. Modification of Linux opeating system 

We modified the source code of the Linux operating 
system in the following way.  We believe that this is a very 
slight modification that requires to us to rebuild the kernel 
only once.   

 Introduce a dummy function in tcp_recvmsg().   
As described above, we defined a dummy function named 

dummy_recvmsg().  It is defined in the source file 

“net/ipv4/tcp.c” as shown in Figure 7.  It is a function 

just returning and inserted before function tcp_recvmsg() 
releases the socket control.  Since this function is very simple, 

“noinline” indication pragma needs to be specified.  The 
prototype declaration is done in the source file 

“include/net/tcp.h”.   
 Maintain control variables within socket data structure.  

In order to perform the scrambling/descrambling, the 
control variables, such as a scramble buffer, need to be 
installed within the Linux kernel.  The TCP software in the 
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send scramble buffer

scrambled sending data
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・・・ ・・・

・・・ ・・・

　　　　・・・
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Figure 5.  Processing of data scrambling [9].   
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Figure 6.  Processing of data descrambling [9]. 
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kernel uses a socket data structure to maintain internal control 
data on an individual TCP / MPTCP connection [22].  This is 
controlled by the following variable, as shown in Figure 4.   

struct tcp_sock *tp = tcp_sk(sk); 

This structure includes the MPTCP related parameters, such 
as keys and tokens.  The parameters are packed in an element 
given below.   

struct mptcp_cb *mpcb; 

So, we added the control variables for data scrambling in this 
data structure.  Figure 8 shows the control variables.  The 
details of those variables are given in the following.   

 sScrBuf[64] and rScrBuf[64]: the send and 
receive scramble buffers, used as ring buffers.   

 sXor and rXor: the results of calculation of XOR for 
all the bytes in the send and receive scramble buffers.   

 sIndex and rIndex: the index of the last (newest) 

element in sScrBuf[64] and rScrBuf[64].   

 sNotFirst and rNotFirst: the flags indicating 
whether the scrambling and descrambling are invoked 
for the first time in the MPTCP connection, or not.   

C. Implementation of scrambling 

(1) Framework of JProbe handler 
Figure 9 shows the framework of JProbe hander defined 

for tcp_sendmsg().  Function jtcp_sendmsg() is a 
main body of the JProbe hander.  The arguments need to be 
exactly the same with the hooked kernel function 

tcp_sendmsg(), and it calls jprobe_return() just 

before its returning.  Data structure struct jprobe 

mptcp_jprobe specifies its details.   

Function mptcp_scramble_init() is the 
initialization function invoked when the relevant kernel 
module is inserted.  In the beginning, it confirm that the 
hander has the same prototype with the hooked function.  
Then it defines the entry point and registers the JProbe handler.  

Function mptcp_scramble_exit() is called when the 

relevant kernel module is removed.  It removes the entry point 
and unregisters the hander from the kernel.   

(2) Flowchart of data scrambling 
The data scrambling procedure is implemented in 

jtcp_sendmsg().  Figure 10 shows the flowchart for this 

procedure.   When jtcp_sendmsg() is called, it is checked 
whether this function is invoked for the first time or not.  If it 
is the first invocation over a specific MPTCP connection, 

sScrBuf[] is initialized to the value of the local key 

maintained in the struct mptcp_cb structure.  Then, 

XOR of all the bytes in sScrBuf[] is calculated and saved 

in sXor, and  sIndex is set to 63.   

The argument containing data (msg) is a list of data blocks, 
and so individual blocks are handled sequentially.  For each 
data block, a byte-by-byte basis calculation is performed in 
the following way.  First, the XOR of the focused byte and 

sXor is saved in temporal variable x.  Then, sIndex is 
advanced by one under modulo 64.  Thirdly, the XOR of 

sXor, sScrBuf[sIndex] and the original byte are 
calculated and saved in sXor.  It should be noted that the value 

in sScrBuf[sIndex] at this stage is the oldest value in the 
send scramble buffer.  Fourthly, the original byte is stored in 

sScrBuf[sIndex],which means that the send scramble 
buffer is updated.  At last, the byte in the message block is 

replaced by the value of x.   

D. Implementation of descrambling 

The data descrambling is implemented similarly with 
scrambling.  We developed the JProbe handler for function 

dummy_recvmsg() in the same way with the approach 
given in Figure 9.  The flowchart of descrambling procedure 
is shown in Figure 11.  This is similar with the flowchart 
shown in Figure 10.  In the first part of the flowchart, it should 

 

Figure 7. Dummy function in tcp_recvmsg().   

 

Figure 8.  Control variables for data scrambling/descrambling.   

struct mptcp_cb {

 . . . .
unsigned char sScrBuf[64], rScrBuf[64];

  unsigned char sXor, rXor;

  int sIndex, rIndex, sNotFirst, rNotFirst;

};

 

Figure 9.  JProbe hander definition for tcp_sendmsg().   

static const char procname[] =  mptcp_scramble 
int jtcp_sendmsg(struct sock *sk, struct msghdr *msg, 

       size_t size) {

  struct tcp_sock *tp = tcp_sk(sk);

  . . .

  jprobe_return();

  return 0;

} // (i) JProbe handler

static struct jprobe mptcp_jprobe = {

  .kp = {.symbol_name = "tcp_sendmsg",},

         .entry = jtcp_sendmsg,

}; // (ii) Register entry

static __init int mptcp_scramble_init(void) {

  int ret = -ENOMEM; 

  BUILD_BUG_ON(__same_type(tcp_sendmsg, jtcp_sendmsg) == 0);

  if(!proc_create(procname, S_IRUSR, init_net.proc_net, 0))

    return ret;

  ret = register_jprobe(&mptcp_jprobe);

  if (ret) {

    remove_proc_entry(procname, init_net.proc._net);

    retrun ret;

  }

  return 0;

}  // (iii) Init function

module_init(mptcp_scramble_init);

static __exit void mptcp_scramble_exit(void) {

  remove_proc_entry(procname, init_net.proc._net);

  unregister_jprobe(&mptcp_jprobe);

}  // (iv) Exit function

module_exit(mptcp_scramble_exit);
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be noted that rScrBuf[] is set to the remote key, which is 
the local key in the sender side.  In this case, the data block is 
a descrambled data.  Therefore, in the byte-by-byte basis part, 

the original value (x in the figure) is used to calculate rXor 

and is stored in rSrcBuf[rIndex].   

V. EXPERIMENT AND PERFORMANCE EVALUATION 

A. Experimental settings 

We implemented the proposed method over the Linux 
operating system (Ubuntu 16.04 LTS/14.04 LTS with 
MPTCP support).  We evaluated it in the experimental 
configuration shown in Figure 12.  Two note PCs are used as 
a client and a server.  They are connected with each other via 
a hub/access point using Ethernet and WLAN.  Ethernet is 
100base-T and WLAN is IEEE 802.11g with 2.4 GHz.  The 
client uses both Ethernet and WLAN, and the server uses only 
Ethernet.  The WLAN interface does not use any encryption.  
We suppose that the Ethernet link is a trusted network and the 
WLAN link without any encryption is an untrusted network.  
Table I shows the specification of nodes.  It should be noted 
that the model for the client and server nodes is a little old and 
the processing power of CPU is low.  The model of the access 
point is Buffalo Air Station G54.  The proposed method is 
implemented in the Linux operating system running over the 

client and server nodes.  In the attacker node, Wireshark (and 
tshark) is executed in order to monitor data transferred over 
WLAN.   

 

Figure 10.  Flowchart of data scrambling.   

 

Figure 11.  Flowchart of data descrambling.   

 

Figure 12.  Experiment configuration.   

TABLE I.  SPECIFICATION OF NODES USED IN EXPERIMENT.  
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The network setting is as follows. 
 Since the access point works as a bridge, the client and 

the server are connected to the same subnetwork, 
192.168.0.0/24.   

 The Ethernet and WLAN interfaces in the client are 
assigned with IP addresses 192.160.0.1 and 192.168.0.3, 
respectively.  The Ethernet interface in the server is 
assigned with IP address 192.168.0.2.  The ESSID of the 
WLAN is “MPTCP-AP.” 

 In order to use two interfaces at the client, the IP routing 
tables are set for individual interfaces, by use of the ip 
command in the following way (for the Ethernet 

interface enp4s1). 

 ip rule add from 192.168.0.1 table 

1 

 ip route add 192.168.0.0/24 dev 

enp4s1 scope link table 1 

 The JProbe handlers for jtcp_sendmsg() and 

jdummy_recvmsg() are built as kernel modules.  

They are inserted and removed using insmod and 

rmmod Linux commands without rebooting the system.   

 In the experiment, we used iperf for sending data from 
the client to the server, using Ethernet and WLAN.  In 
another evaluation, we used a simple file transfer, which 
we implemented, where a specified file is transferred 
from the server to the client.   

 In the attacker node, the Wireshark network analyzer is 
invoked for monitoring a WLAN interface with both the 
promiscuous mode the monitor mode set to effective.  
When we use tshark at the attacker node, which is a 

command line interface version of Wireshark, the “-I” 

option is used for capturing all WLAN frames and the “-

Y” option is used for applying a display filter defined 
similarly with Wireshark.   

B. Behaviors of proposed method 

Figure 13 shows a result of the attacker’s monitoring of 
iperf communication over WLAN in the conventional 
communication.  In the iperf communication, an ASCII digit 
sequence “0123456789” is sent repeatedly.  If the attacker can 
monitor the WLAN, the content is disposed as shown in this 
figure.  Figure 14 shows a monitoring result by the attacker 
over the WLAN link when the data scrambling is performed.  

 

Figure 13.  Capturing result of iperf when no scrambling is performed.   

 

Figure 14.  Capturing result of iperf when scrambling is performed.   
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This figure shows the monitoring result for the first data 
segment over the WLAN link, which is the same with Figure 
13.  The original data is a repetition of “0123456789” but the 
data is scrambled in the result here.  So, it can be said that the 
attacker cannot understand the content, even the WLAN link 
is not encrypted.   

Figures 15 through 17 show result of the attacker’s 
monitoring of file transfer over WLAN.  Figure 15 is a display 
image at the client node when it is receiving a text file 
containing the text of our previous paper.  It is the part of 
references in the paper.  Figure 16 shows a monitoring result 
by the attacker when no data scrambling is performed.  This 

figure is a result with tshark command with “-x” option that 
requests to display of data part in TCP segments.  As shown 
in this figure, the content of file can be obtained by the attacker.  
Figure 17 shows the monitoring result by the attacker for the 
same part of file given in Figure 16.  Since the content is 
scrambled, the attacker cannot recognize the content of the file.   

C. Throughput evaluation 

In order to evaluation the performance of the proposed 
method, we measured file transfer throughput for the original 
MPTCP (without data scrambling nor encryption), the 
proposed method, and the MPTCP data transfer with 
encryption and decryption using Advanced Encryption 
Standard (AES) [23].  AES is a block based ciphering 
algorithm standardized by NIST in 2001.  It is a symmetric 
block cipher that can process data blocks of 128 bits (16 bytes), 
using cipher keys with lengths of 128, 192, and 256 bits (16 
bytes, 24 bytes, and 32 bytes, respectively).  In this experiment, 
we used 16 byte key with the CBC mode.  For the 
implementation of AES based file transfer, we used a publicly 
available source programs for AES [24] distributed by PJC, a 

Japanese software company.  In the throughput measurement, 
data is transferred from the server node to the client node in 
the configuration given in Figure 12.  We measured the 
throughput by changing the size of file transferred.   

Figure 18 shows the measured throughput.  When 
changing the transferred file size from 20 MB through 80 MB, 
the results are similar for all the sizes in every case.  The 

 

Figure 15.  Client display image of file receiving.   

 

Figure 16.  Capturing result of file transfer without scrambling.   

 

Figure 17.  Capturing result of file transfer with scrambling. 
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throughput of the original MPTCP is the highest among three 
and the result is around 90 Mbps.  In the case of the proposed 
method, the measured throughput is around 75 Mbps, which 
is lower than the original MPTCP but high enough.  In the 
case of AES encryption, the throughput goes down to 2 Mbps.  
Comparing the encryption and decryption, the decryption has 
higher overhead in our experiment, and it limits the 
performance of file transfer.  It should be noted that the 
software we used for AES encryption may not be optimized 
and so the sophisticated AES program may improve the 
throughput.  But, it can be said that the proposed method will 
require much less overhead than the encryption based method. 
Another thing to be mentioned is that the equipment we used 
in this experiment is rather old and so the processing power of 
CPU is not high.  This is one factor that makes the throughput 
of the AES based method worse.   

VI. CONCLUSIONS 

This paper described the results of implementation and 
performance evaluation of a method to improve privacy 
against eavesdropping over MPTCP communications, which 
we proposed in the previous papers.  The proposed method 
here is based on the not-every-not-any protection principle, 
that is, if an attacker cannot observe the data over trusted path 
such as an LTE network, he/she cannot observe the traffic on 
any path.  Specifically, the proposed method uses the byte 
oriented data scrambling and the data dispersion over multiple 
paths.   

In the implementation of the proposed method, we took an 
approach to avoid the modification of the Linux kernel as 
much as possible.  The modification is as follows.  The control 
parameters are inserted in the socket data structure, and the 

dummy function for the last part of tcp_recvmsg() 
function.  The main part of scrambling and descrambling is 
implemented by use of the kernel debugging routine called 
JProbe handler, which is independent of the kernel.   

Through the experiment, we confirmed that the data 
transferred over unencrypted WLAN link cannot be 
recognized when the data scrambling is performed.  As for the 
performance, the throughput of the scrambled communication 
is just a little smaller than the original MPTCP communication 
exposed to unauthorized access.  Moreover, the throughput of 
cryptographic method is degraded largely compared with the 

original MPTCP and the proposed method.  For the terminals 
with low power CPU, the cryptographic approach will 
decrease the throughput and so the proposed method will be 
effective.   

In the last of this paper, we need to say that the proposed 
method is a practical approach based on the assumption that 
the trusted path, for example, a path via a trusted network 
operator, is safe enough.  That means that, if the trusted path 
is accessed in an unauthorized way, the data will be observed 
thoroughly.  By owing to the safety in the trusted networks, 
the proposed method provides low overhead in the data 
protection.   
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