
69

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Implementation and Performance Evaluation of Eavesdropping Protection Method

over MPTCP Using Data Scrambling and Path Dispersion

Toshihiko Kato1)2), Shihan Cheng1), Ryo Yamamoto1), Satoshi Ohzahata1) and Nobuo Suzuki2)

1) Graduate School of Informatics and Engineering

University of Electro-Communications

Tokyo, Japan

2) Adaptive Communications Research Laboratories

Advanced Telecommunication Research Institute International

Kyoto, Japan

kato@net.lab.uec.ac.jp, chengshihan@net.lab.uec.ac.jp, ryo_yamamotog@net.lab.uec.ac.jp,

ohzahata@net.lab.uec.ac.jp, nu-suzuki@atr.jp

Abstract—In order to utilize multiple communication interfaces

installed mobile terminals, Multipath Transmission Control

Protocol (MPTCP) has been introduced recently. It can

establish an MPTCP connection that transmits data segments

over the multiple interfaces, such as 4G and Wireless Local Area

Network (WLAN), in parallel. However, it is possible that some

interfaces are connected to untrusted networks and that data

transferred over them is observed in an unauthorized way. In

order to avoid this situation, we proposed a method to improve

privacy against eavesdropping using the data dispersion by

exploiting the multipath nature of MPTCP in our previous

papers. The proposed method takes an approach that, if an

attacker cannot observe the data on every path, he/she cannot

observe the traffic on any path. The fundamental techniques of

this method is a per-byte data scrambling and path dispersion.

In this paper, we present the result of implementing the

proposed method within the Linux operating system and its

performance evaluation in more detail than our former papers.

Keywords- Multipath TCP; Eavesdropping; Data Dispersion;

Data Scrambling.

I. INTRODUCTION

This paper is an extension of our previous paper [1], which
is presented in an IARIA conference.

Recent mobile terminals are equipped with multiple
interfaces. For example, most smart phones have interfaces
for 4G Long Term Evolution (LTE) and WLAN. In the next
generation (5G) mobile network, it is expected that multiple
communication paths provided by multiple network operators
are commonly involved [2]. In this case, mobile terminals will
have more than two interfaces.

However, the conventional TCP establishes a connection
between single IP addresses at individual ends, and so it
cannot utilize multiple interfaces in one end at the same time.
In order to cope with this issue, MPTCP [3] is being
introduced in several operating systems, such as Linux, Apple
OS/iOS [4] and Android [5]. MPTCP is an extension of the
conventional TCP. It combines multiple TCP flows into one
data stream called an MPTCP connection, and provides the
same programing interface with the socket interface. So,
existing TCP applications can use MPTCP as if they were
working over conventional TCP.

MPTCP is defined by three Request for Comments (RFC)
documents by the Internet Engineering Task Force. RFC
6182 [6] outlines architecture guidelines. RFC 6824 [7]
presents the details of extensions to support multipath
operation, including the maintenance of an MPTCP
connection and subflows (TCP connections associated with an
MPTCP connection), and the data transfer over an MPTCP
connection. RFC 6356 [8] presents a congestion control
algorithm that couples the congestion control algorithms
running on different subflows.

When a mobile terminal uses multiple paths, some of them
may be unsafe such that an attacker is able to observe data
over them in an unauthorized way. For example, a WLAN
interface is connected to a public WLAN access point, data
transferred over this WLAN may be disposed to other nodes
connected to it. One way to prevent the eavesdropping is the
Transport Layer Security (TLS). Although TLS can be
applied to various applications including web access, e-mail,
and ftp, however, it generally requires at least one end to
maintain a public key certificate, and so it will not be used in
some kind of communication, such as private server access
and peer to peer communication.

As an alternative scheme, we proposed a method to
improve confidentiality against eavesdropping by exploiting
the multipath nature of MPTCP [9][10]. Even if an unsafe
WLAN path is used, another path may be safe, such as LTE
supported by a trusted network operator. So, the proposed
method is based on an idea that, if an attacker cannot observe
the data on every path, he/she cannot observe the traffic on any
path [11]. In order to realize this idea, we adopted a byte based
data scrambling for data segments sent over multiple subflows.
This mixes up data to avoid its recognition through illegal
monitoring over an unsafe path. Although there are some
proposals to use multiple TCP connections to protect
eavesdropping [12]-[15], all of them depend on the encryption
techniques. The proposed method is dependent on the
exclusive OR (XOR) calculation that is much lighter in terms
of processing overhead.

In our previous paper [1] that is the origin of this paper,
we showed how to implement the proposed method over the
Linux operating system. We used the kernel debugging
mechanism called JProbe, in order to avoid the modification
of the Linux kernel as much as possible. The previous paper

70

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

also showed the results of implementation focusing on how
the proposed method works over off-the shelf personal
computers and access point, but the descriptions on
performance evaluation was limited.

In this paper, we describe the proposed method and its
implementation in more detail. We also show another
behavior of the proposed method and the results of
performance evaluation in detail.

The rest of this paper is organized as follows. Section II
explains the overview and the security issue of MPTCP [10].
Section III describes the proposed method. Section IV shows
how to implement the proposed method within the MPTCP
software in the Linux operating system. Section V gives the
behavior of the proposed method and the results of the
performance evaluation. In the end, Section VI concludes this
paper.

II. OVERVIEW AND SECURITY ISSUES OF MPTCP

A. MPTCP connections and subflows

As described in Figure 1, the MPTCP module is located
on top of TCP. As described above, MPTCP is designed so
that the conventional applications do not need to care about
the existence of MPTCP. MPTCP establishes an MPTCP
connection associated with two or more regular TCP
connections called subflows. The management and data
transfer over an MPTCP connection is done by newly
introduced TCP options for MPTCP operation.

Figure 2 shows an example of MPTCP connection
establishment where host A with two network interfaces
invokes this sequence for host B with one network interface.
In the beginning, host A sends a SYN segment to host B with
a Multipath Capable (MP_CAPABLE) TCP option. This
option indicates that an initiator supports the MPTCP
functions and requests to use them in this TCP connection. It
contains host A’s Key (64 bits) used by this MPTCP
connection. Then, host B replies a SYN+ACK segment with
MP_CAPABLE option with host B’s Key. This reply means
that host B accepts the use of MPTCP functions. In the end,

host A sends an ACK segment with MP_CAPABLE option
including both A’s and B’s Keys. Through this three-way
handshake procedure, the first subflow and the MPTCP
connection are established. Here, it should be mentioned that
these “Keys” are not keys in a cryptographic sense. They are
a sort of random numbers assigned for individual MPTCP
connections. As described below, they are used for generating
the Hash-based Message Authentication Code (HMAC), but
MPTCP does not provide any mechanisms to protect them
from attackers’ accessing while transfer.

Next, host A tries to establish the second subflow through
another network interface. In the first SYN segment in this
try, another TCP option called a Join Connection (MP_JOIN)
option is used. An MP_JOIN option contains the receiver’s
Token (32 bits) and the sender’s Nonce (random number, 32
bit). A Token is an information to identify the MPTCP
connection to be joined. It is obtained by taking the most
significant 32 bits from the SHA-1 hash value for the
receiver’s Key (host B’s Key in this example). Then, host B
replies a SYN+ACK segment with MP_JOIN option. In this
case, MP_JOIN option contains the random number of host B
and the most significant 64 bits of the HMAC value. An
HMAC value is calculated for the nonces generated by hosts
A and B using the Keys of A and B. In the third ACK segment,
host A sends an MP_JOIN option containing host A’s full
HMAC value (160 bits). In the end, host B acknowledges the
third ACK segment. Using these sequence, the newly
established subflow is associated with the MPTCP connection.

B. Data transfer

An MPTCP implementation will take one input data
stream from an application, and split it into one or more
subflows, with sufficient control information to allow it to be
reassembled and delivered to the receiver side application
reliably and in order. The MPTCP connection maintains the
data sequence number independent of the subflow level
sequence numbers. The data and ACK segments may contain
a Data Sequence Signal (DSS) option depicted in Figure 3.

The data sequence number and data ACK is 4 or 8 byte
long, depending on the flags in the option. The number is
assigned on a byte-by-byte basis similarly with the TCP
sequence number. The value of data sequence number is the
number assigned to the first byte conveyed in that TCP
segment. The data sequence number, subflow sequence
number (relative value) and data-level length define the
mapping between the MPTCP connection level and the
subflow level. The data ACK is analogous to the behavior of
the standard TCP cumulative ACK. It specifies the next data
sequence number a receiver expects to receive.

Figure 1. Layer structure of MPTCP.

Host A
Address A1 Address A2

Host B
Address B

 SYN (MP_CAPABLE [Key-A])
 SYN+ACK (MP_CAPABLE [Key-B])

 ACK (MP_CAPABLE [Key-A, Key-B])
 SYN (MP_JOIN

[Token-B, Nonce-A])

 SYN+ACK (MP_JOIN
[HMAC-B, Nonce-B])

 ACK (MP_JOIN [HMAC-A])
 ACK

Figure 2. Example of MPTCP connection establishment.

 Application

MPTCP

Subflow (TCP) Subflow (TCP)

IP IP

Kind (= 30) Length
Subtype

(= 2)
Flags

Data ACK (4 or 8 octets, depending on flags)

Data sequence number (4 or 8 octets, depending on flags)

Subflow sequence number (4 octets)

Data-level length (2 octets) Checksum (2 octets)

Figure 3. Data Sequence Signal option.

71

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Eavesdropping protection over multiple TCP

connections

As we mentioned in Section I, there are several proposals
on the data dispersion over multiple paths. Yang and
Papavassiliou [12] showed a method to analyze the security
performance when a virtual connection takes multiple disjoint
paths to the destination, and proposed a traffic dispersion
scheme to minimize the information leakage when some of
the intermediate routers are attacked. Nacher et al. [13] tried
to determine the optimal trade-off between traffic dispersion
and TCP performance over mobile ad-hoc networks to reduce
the chances of successful eavesdropping while maintaining
acceptable throughput. These two studies use multiple TCP
connections by their own coordination methods instead of
MPTCP. Gurtov and Polishchuk [14] used host identity
protocol (HIP), which locates between IP and TCP to provide
multiple paths, and proposed how to spread traffic over them.
Apiecionek et al. [15] proposed a way to use MPTCP for more
secure data transfer. After data are encrypted, they are divided
into blocks, mixed in the predetermined random sequence,
and then transferred through multiple MPTCP subflows. A
receiver rearranges received blocks in right order and decrypts
them.

All of those proposals aim at just spreading data packets
over multiple paths, and do not consider the coordination over
multiple paths. If the transferred data are encrypted before
dispersion, it can be said that they are coordinated by the
encryption procedure, but the coordination is not realized by
the dispersion schemes. In contrast with them, our proposal
adopts an approach to improve privacy by coordinating data
over multiple paths through data scrambling not encryption.

III. PROPOSED METHOD

A. Motivation

The first point we considered in designing our proposal
was utilize multiple paths supported by MPTCP. So we
picked up the secret sharing method [16], which produces
some number of pieces from data in a way that a specific
number of pieces are required for reconstructing the original
data. By using the secret sharing, it is possible to divide data
into multiple subflows. However, in this approach, it is
required to duplicate the original data or at least increase the
amount of sending data. Besides, this approach requires some
cryptographic calculation that uses a lot of CPU power.

Next approach we considered is the network coding
approach [17], where a packet is XORed with the following
packet and the first packet and the XOR result are sent via
different paths [18]. This approach does not require any
cryptographic calculation and so the processing overhead is
low. However, if the packet length is different, unnecessary
padding may be necessary.

The third approach is applying the mode of operation, such
as Cipher Block Chaining (CBC) and Output Feedback (OFB),
used in block ciphering [19]. The block cipher defines only
how to encrypt or decrypt a fixed length bits (block). The
mode of operation defines how to apply this operation to data
longer than a block. CBR and OFB introduce a chaining
between blocks such that a block is combined with the

preceding block by XOR calculation. The application of the
mode of operation without any encryption to data dispersion
is considered as a block level data scrambling. So, if the
length of packet is not integral multiple of block length,
unnecessary padding will be required again.

Based on these considerations, we picked up a byte level
scrambling which is described in the following subsection.

B. Detailed procedure

Figure 4 shows the overview of the proposed method. As
shown in Figure 4(a), we introduce a data scrambling function
within MPTCP and on top of the original MPTCP. When an
MPTCP communication is started, the use of data scrambling
is negotiated. It may be done using a flag bit in
MP_CAPABLE TCP option.

When an application sends data, it is stored in the send
socket buffer in the beginning. The proposed method
scrambles the data by calculating XOR of a byte with its
preceding 64 bytes in the sending byte stream. Then, the
scrambled data is sent through multiple subflows associated
with the MPTCP connection. Since some data segments are
transmitted through trusted subflows, an attacker monitoring
only a part of data segments cannot obtain all of sent data and
so cannot descramble any of them. When receiving data
segments, they are reordered in the receive socket buffer by
MPTCP. The proposed method descrambles them in a byte-
by-byte basis just before an application reads the received data.

Figure 5 shows the details of data scrambling. In order to
realize this scrambling, the data scrambling module maintains
the send scrambling buffer, whose length is 64 bytes. It is a
shift buffer and its initial value is HMAC of the key of this
side, with higher bytes set to zero. The key used here is one
of the MPTCP parameters, exchanged in the first stage of
MPTCP connection establishment. When a data comes from
an application, each byte (bi in the figure) is XORed with the
result of XOR of all the bytes in the send scrambling buffer.

original MPTCP

Subflow (TCP) Subflow (TCP)

Data Scrambling
M
P
T
C
P

(a) Layer structure of proposed method

Send socket
buffer

Data Scrambling

original MPTCP

trusted path
untrusted

path

Receive socket
buffer

Data
Descrambling

original MPTCP

trusted path
untrusted

path
 (b) Sending data procedure (c) Receiving data procedure

Figure 4. Overview of proposed method [9].

72

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The obtained byte (Bi) is the corresponding sending byte.
After calculating the sending byte, the original byte (bi) is
added to the send scramble buffer, forcing out the oldest
(highest) byte from the buffer. The send scrambling buffer
holds recent 64 original bytes given from an application. By
using 64 byte buffer, the access to the original data is protected
even if there are well-known byte patterns (up to 63 bytes) in
application protocol data.

Figure 6 shows the details of data descrambling, which is
similar with data scrambling. The data scrambling module
also maintains the receive scramble buffer whose length is 64
bytes. Its initial value is HMAC of the key of the remote side.
When an in-sequence data is stored in the receive socket
buffer, a byte (Bi that is scrambled) is applied to XOR
calculation with the XOR result of all the bytes in the receive
scramble buffer. The result is the descrambled byte (bi),
which is added to the receive scramble buffer.

By using the byte-wise scrambling and descrambling, the
proposed method does not increase the length of exchanged
data at all. The separate send and receive control enables two
way data exchanges to be handled independently. Moreover,
the proposed method introduces only a few modification to
the original MPTCP.

IV. IMPLEMENTATION

A. Use of Kernel Probes

Since MPTCP is implemented inside the Linux operating
system, the proposed method also needs to be realized by
modifying operating system kernel. However, modifying an
operating system kernel is a hard task, and so we decided to
use a debugging mechanism for the Linux kernel, called
kernel probes [20].

Among kernel probes methods, we use a way called
"JProbe" [21]. JProbe is used to get access to a kernel
function's arguments at runtime. It introduces a JProbe
handler with the same prototype as that of the function whose
arguments are to be accessed. When the probed function is
executed, the control is first transferred to the user-defined
JProbe handler. After the user-defined handler returns, the
control is transferred to the original function [20].

In order to make this mechanism work, a user needs to
prepare the following;

 registering the entry by struct jprobe and
 defining the init and exit modules by functions

register_jprobe() and unregister_jprobe

()[21].

In the Linux kernel, function tcp_sendmsg() is called
when an application sends data to MPTPCP (actually TCP,
too) [22]. As stated in Section II, the scrambling will be done
at the beginning of this function. So, we define a JProbe

handler for function tcp_sendmsg() for scrambling data
to be transferred.

In order for an application to read received data, it calls

function tcp_recvmsg() in MPTCP. In contrast to data
scrambling, the descrambling procedure needs to be done at
the end of this function. So, we introduce a dummy kernel
function and export its symbol just before the returning points

of function tcp_recvmsg(). We then define a JProbe
handler for descrambling in this dummy function.

By adopting this approach, we can program and debug
scrambling/descrambling independently of the Linux kernel
itself.

B. Modification of Linux opeating system

We modified the source code of the Linux operating
system in the following way. We believe that this is a very
slight modification that requires to us to rebuild the kernel
only once.

 Introduce a dummy function in tcp_recvmsg().
As described above, we defined a dummy function named

dummy_recvmsg(). It is defined in the source file

“net/ipv4/tcp.c” as shown in Figure 7. It is a function

just returning and inserted before function tcp_recvmsg()
releases the socket control. Since this function is very simple,

“noinline” indication pragma needs to be specified. The
prototype declaration is done in the source file

“include/net/tcp.h”.
 Maintain control variables within socket data structure.

In order to perform the scrambling/descrambling, the
control variables, such as a scramble buffer, need to be
installed within the Linux kernel. The TCP software in the

sending data

XOR　　　　・・・

send scramble buffer

scrambled sending data

XOR

・・・ ・・・

・・・ ・・・

　　　　・・・

・・・ ・・・

sending data

send scramble buffer

(a) Scrambling

(b) Adding sending byte to scramble buffer

bi

bi

Bi

bi

Figure 5. Processing of data scrambling [9].

scrambled received data

XOR　　　　・・・

receive scramble buffer

received data

XOR

・・・ ・・・

・・・ ・・・

　　　　・・・

・・・ ・・・

received data

receive scramble buffer

(a) Descrambling

(b) Adding received byte to scramble buffer

bi

Bi

bi

bi

Figure 6. Processing of data descrambling [9].

73

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

kernel uses a socket data structure to maintain internal control
data on an individual TCP / MPTCP connection [22]. This is
controlled by the following variable, as shown in Figure 4.

struct tcp_sock *tp = tcp_sk(sk);

This structure includes the MPTCP related parameters, such
as keys and tokens. The parameters are packed in an element
given below.

struct mptcp_cb *mpcb;

So, we added the control variables for data scrambling in this
data structure. Figure 8 shows the control variables. The
details of those variables are given in the following.

 sScrBuf[64] and rScrBuf[64]: the send and
receive scramble buffers, used as ring buffers.

 sXor and rXor: the results of calculation of XOR for
all the bytes in the send and receive scramble buffers.

 sIndex and rIndex: the index of the last (newest)

element in sScrBuf[64] and rScrBuf[64].

 sNotFirst and rNotFirst: the flags indicating
whether the scrambling and descrambling are invoked
for the first time in the MPTCP connection, or not.

C. Implementation of scrambling

(1) Framework of JProbe handler
Figure 9 shows the framework of JProbe hander defined

for tcp_sendmsg(). Function jtcp_sendmsg() is a
main body of the JProbe hander. The arguments need to be
exactly the same with the hooked kernel function

tcp_sendmsg(), and it calls jprobe_return() just

before its returning. Data structure struct jprobe

mptcp_jprobe specifies its details.

Function mptcp_scramble_init() is the
initialization function invoked when the relevant kernel
module is inserted. In the beginning, it confirm that the
hander has the same prototype with the hooked function.
Then it defines the entry point and registers the JProbe handler.

Function mptcp_scramble_exit() is called when the

relevant kernel module is removed. It removes the entry point
and unregisters the hander from the kernel.

(2) Flowchart of data scrambling
The data scrambling procedure is implemented in

jtcp_sendmsg(). Figure 10 shows the flowchart for this

procedure. When jtcp_sendmsg() is called, it is checked
whether this function is invoked for the first time or not. If it
is the first invocation over a specific MPTCP connection,

sScrBuf[] is initialized to the value of the local key

maintained in the struct mptcp_cb structure. Then,

XOR of all the bytes in sScrBuf[] is calculated and saved

in sXor, and sIndex is set to 63.

The argument containing data (msg) is a list of data blocks,
and so individual blocks are handled sequentially. For each
data block, a byte-by-byte basis calculation is performed in
the following way. First, the XOR of the focused byte and

sXor is saved in temporal variable x. Then, sIndex is
advanced by one under modulo 64. Thirdly, the XOR of

sXor, sScrBuf[sIndex] and the original byte are
calculated and saved in sXor. It should be noted that the value

in sScrBuf[sIndex] at this stage is the oldest value in the
send scramble buffer. Fourthly, the original byte is stored in

sScrBuf[sIndex],which means that the send scramble
buffer is updated. At last, the byte in the message block is

replaced by the value of x.

D. Implementation of descrambling

The data descrambling is implemented similarly with
scrambling. We developed the JProbe handler for function

dummy_recvmsg() in the same way with the approach
given in Figure 9. The flowchart of descrambling procedure
is shown in Figure 11. This is similar with the flowchart
shown in Figure 10. In the first part of the flowchart, it should

Figure 7. Dummy function in tcp_recvmsg().

Figure 8. Control variables for data scrambling/descrambling.

struct mptcp_cb {

unsigned char sScrBuf[64], rScrBuf[64];

 unsigned char sXor, rXor;

 int sIndex, rIndex, sNotFirst, rNotFirst;

};

Figure 9. JProbe hander definition for tcp_sendmsg().

static const char procname[] = mptcp_scramble
int jtcp_sendmsg(struct sock *sk, struct msghdr *msg,

 size_t size) {

 struct tcp_sock *tp = tcp_sk(sk);

 . . .

 jprobe_return();

 return 0;

} // (i) JProbe handler

static struct jprobe mptcp_jprobe = {

 .kp = {.symbol_name = "tcp_sendmsg",},

 .entry = jtcp_sendmsg,

}; // (ii) Register entry

static __init int mptcp_scramble_init(void) {

 int ret = -ENOMEM;

 BUILD_BUG_ON(__same_type(tcp_sendmsg, jtcp_sendmsg) == 0);

 if(!proc_create(procname, S_IRUSR, init_net.proc_net, 0))

 return ret;

 ret = register_jprobe(&mptcp_jprobe);

 if (ret) {

 remove_proc_entry(procname, init_net.proc._net);

 retrun ret;

 }

 return 0;

} // (iii) Init function

module_init(mptcp_scramble_init);

static __exit void mptcp_scramble_exit(void) {

 remove_proc_entry(procname, init_net.proc._net);

 unregister_jprobe(&mptcp_jprobe);

} // (iv) Exit function

module_exit(mptcp_scramble_exit);

74

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be noted that rScrBuf[] is set to the remote key, which is
the local key in the sender side. In this case, the data block is
a descrambled data. Therefore, in the byte-by-byte basis part,

the original value (x in the figure) is used to calculate rXor

and is stored in rSrcBuf[rIndex].

V. EXPERIMENT AND PERFORMANCE EVALUATION

A. Experimental settings

We implemented the proposed method over the Linux
operating system (Ubuntu 16.04 LTS/14.04 LTS with
MPTCP support). We evaluated it in the experimental
configuration shown in Figure 12. Two note PCs are used as
a client and a server. They are connected with each other via
a hub/access point using Ethernet and WLAN. Ethernet is
100base-T and WLAN is IEEE 802.11g with 2.4 GHz. The
client uses both Ethernet and WLAN, and the server uses only
Ethernet. The WLAN interface does not use any encryption.
We suppose that the Ethernet link is a trusted network and the
WLAN link without any encryption is an untrusted network.
Table I shows the specification of nodes. It should be noted
that the model for the client and server nodes is a little old and
the processing power of CPU is low. The model of the access
point is Buffalo Air Station G54. The proposed method is
implemented in the Linux operating system running over the

client and server nodes. In the attacker node, Wireshark (and
tshark) is executed in order to monitor data transferred over
WLAN.

Figure 10. Flowchart of data scrambling.

Figure 11. Flowchart of data descrambling.

Figure 12. Experiment configuration.

TABLE I. SPECIFICATION OF NODES USED IN EXPERIMENT.

75

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The network setting is as follows.
 Since the access point works as a bridge, the client and

the server are connected to the same subnetwork,
192.168.0.0/24.

 The Ethernet and WLAN interfaces in the client are
assigned with IP addresses 192.160.0.1 and 192.168.0.3,
respectively. The Ethernet interface in the server is
assigned with IP address 192.168.0.2. The ESSID of the
WLAN is “MPTCP-AP.”

 In order to use two interfaces at the client, the IP routing
tables are set for individual interfaces, by use of the ip
command in the following way (for the Ethernet

interface enp4s1).

 ip rule add from 192.168.0.1 table

1

 ip route add 192.168.0.0/24 dev

enp4s1 scope link table 1

 The JProbe handlers for jtcp_sendmsg() and

jdummy_recvmsg() are built as kernel modules.

They are inserted and removed using insmod and

rmmod Linux commands without rebooting the system.

 In the experiment, we used iperf for sending data from
the client to the server, using Ethernet and WLAN. In
another evaluation, we used a simple file transfer, which
we implemented, where a specified file is transferred
from the server to the client.

 In the attacker node, the Wireshark network analyzer is
invoked for monitoring a WLAN interface with both the
promiscuous mode the monitor mode set to effective.
When we use tshark at the attacker node, which is a

command line interface version of Wireshark, the “-I”

option is used for capturing all WLAN frames and the “-

Y” option is used for applying a display filter defined
similarly with Wireshark.

B. Behaviors of proposed method

Figure 13 shows a result of the attacker’s monitoring of
iperf communication over WLAN in the conventional
communication. In the iperf communication, an ASCII digit
sequence “0123456789” is sent repeatedly. If the attacker can
monitor the WLAN, the content is disposed as shown in this
figure. Figure 14 shows a monitoring result by the attacker
over the WLAN link when the data scrambling is performed.

Figure 13. Capturing result of iperf when no scrambling is performed.

Figure 14. Capturing result of iperf when scrambling is performed.

76

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This figure shows the monitoring result for the first data
segment over the WLAN link, which is the same with Figure
13. The original data is a repetition of “0123456789” but the
data is scrambled in the result here. So, it can be said that the
attacker cannot understand the content, even the WLAN link
is not encrypted.

Figures 15 through 17 show result of the attacker’s
monitoring of file transfer over WLAN. Figure 15 is a display
image at the client node when it is receiving a text file
containing the text of our previous paper. It is the part of
references in the paper. Figure 16 shows a monitoring result
by the attacker when no data scrambling is performed. This

figure is a result with tshark command with “-x” option that
requests to display of data part in TCP segments. As shown
in this figure, the content of file can be obtained by the attacker.
Figure 17 shows the monitoring result by the attacker for the
same part of file given in Figure 16. Since the content is
scrambled, the attacker cannot recognize the content of the file.

C. Throughput evaluation

In order to evaluation the performance of the proposed
method, we measured file transfer throughput for the original
MPTCP (without data scrambling nor encryption), the
proposed method, and the MPTCP data transfer with
encryption and decryption using Advanced Encryption
Standard (AES) [23]. AES is a block based ciphering
algorithm standardized by NIST in 2001. It is a symmetric
block cipher that can process data blocks of 128 bits (16 bytes),
using cipher keys with lengths of 128, 192, and 256 bits (16
bytes, 24 bytes, and 32 bytes, respectively). In this experiment,
we used 16 byte key with the CBC mode. For the
implementation of AES based file transfer, we used a publicly
available source programs for AES [24] distributed by PJC, a

Japanese software company. In the throughput measurement,
data is transferred from the server node to the client node in
the configuration given in Figure 12. We measured the
throughput by changing the size of file transferred.

Figure 18 shows the measured throughput. When
changing the transferred file size from 20 MB through 80 MB,
the results are similar for all the sizes in every case. The

Figure 15. Client display image of file receiving.

Figure 16. Capturing result of file transfer without scrambling.

Figure 17. Capturing result of file transfer with scrambling.

77

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

throughput of the original MPTCP is the highest among three
and the result is around 90 Mbps. In the case of the proposed
method, the measured throughput is around 75 Mbps, which
is lower than the original MPTCP but high enough. In the
case of AES encryption, the throughput goes down to 2 Mbps.
Comparing the encryption and decryption, the decryption has
higher overhead in our experiment, and it limits the
performance of file transfer. It should be noted that the
software we used for AES encryption may not be optimized
and so the sophisticated AES program may improve the
throughput. But, it can be said that the proposed method will
require much less overhead than the encryption based method.
Another thing to be mentioned is that the equipment we used
in this experiment is rather old and so the processing power of
CPU is not high. This is one factor that makes the throughput
of the AES based method worse.

VI. CONCLUSIONS

This paper described the results of implementation and
performance evaluation of a method to improve privacy
against eavesdropping over MPTCP communications, which
we proposed in the previous papers. The proposed method
here is based on the not-every-not-any protection principle,
that is, if an attacker cannot observe the data over trusted path
such as an LTE network, he/she cannot observe the traffic on
any path. Specifically, the proposed method uses the byte
oriented data scrambling and the data dispersion over multiple
paths.

In the implementation of the proposed method, we took an
approach to avoid the modification of the Linux kernel as
much as possible. The modification is as follows. The control
parameters are inserted in the socket data structure, and the

dummy function for the last part of tcp_recvmsg()
function. The main part of scrambling and descrambling is
implemented by use of the kernel debugging routine called
JProbe handler, which is independent of the kernel.

Through the experiment, we confirmed that the data
transferred over unencrypted WLAN link cannot be
recognized when the data scrambling is performed. As for the
performance, the throughput of the scrambled communication
is just a little smaller than the original MPTCP communication
exposed to unauthorized access. Moreover, the throughput of
cryptographic method is degraded largely compared with the

original MPTCP and the proposed method. For the terminals
with low power CPU, the cryptographic approach will
decrease the throughput and so the proposed method will be
effective.

In the last of this paper, we need to say that the proposed
method is a practical approach based on the assumption that
the trusted path, for example, a path via a trusted network
operator, is safe enough. That means that, if the trusted path
is accessed in an unauthorized way, the data will be observed
thoroughly. By owing to the safety in the trusted networks,
the proposed method provides low overhead in the data
protection.

ACKNOWLEDGMENT

This research was performed under the research contract
of “Research and Development on control schemes for
utilizations of multiple mobile communication networks,” for
the Ministry of Internal Affairs and Communications, Japan.

REFERENCES

[1] T. Kato, S. Cheng, R. Yamamoto, S. Ohzahata, and N. Suzuki,
“Implementation of Eavesdropping Protection Method over MPTCP
Using Data Scrambling and Path Dispersion,” in Proc. SECURWARE
2018, pp. 108-113. Sep. 2018.

[2] NGNM Alliance, “NGMN 5G White Paper,”
https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/
2015/NGMN_5G_White_Paper_V1_0.pdf, Feb. 2015, [retrieved: Feb.,
2019].

[3] C. Paasch and O. Bonaventure, “Multipath TCP,” Communications of
the ACM, vol. 57, no. 4, pp. 51-57, Apr. 2014.

[4] AppleInsider Staff, “Apple found to be using advanced Multipath TCP
networking in iOS 7,” http://appleinsider.com/articles/13/09/20/apple-
found-to-be-using-advanced-multipath-tcp-networking-in-ios-7,
[retrieved: Feb., 2019].

[5] icteam, “MultiPath TCP – Linux Kernel implementation, Users::
Android,” https://multipath-tcp.org/pmwiki.php/Users/Android,
[retrieved: Feb., 2019].

[6] A. Ford, C.Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
Guidelines for Multipath TCP Development,” IETF RFC 6182, Mar.
2011.

[7] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions
for Multipath Operation with Multiple Addresses,” IETF RFC 6824,
Jan. 2013.

[8] C. Raiciu, M. Handley, and D. Wischik, “Coupled Congestion Control
for Multipath Transport Protocols,” IETF RFC 6356, Oct. 2011.

[9] T. Kato, S. Cheng, R. Yamamoto, S. Ohzahata, and N. Suzuki,
“Protecting Eavesdropping over Multipath TCP Communication Based
on Not-Every-Not-Any Protection,” in Proc. SECURWARE 2017, pp.
82-87, Sep. 2017.

[10] T. Kato, S. Cheng, R. Yamamoto, S. Ohzahata, and N. Suzuki,
“Proposal and Study on Implementation of Data Eavesdropping
Protection Method over Multipath TCP Communication Using Data
Scrambling and Path Dispersion,” International Journal On Advances
in Security, 2018 no. 1&2, pp. 1-9, Jul. 2018.

[11] C. Pearce and S. Zeadally, “Ancillary Impacts of Multipath TCP on
Current and Future Network Security,” IEEE Internet Computing, vol.
19, iss. 5, pp. 58-65, Sept.-Oct. 2015.

[12] J. Yang and S. Papavassiliou, “Improving Network Security by
Multipath Traffic Dispersion,” in Proc. MILCOM 2001, pp. 34-38, Oct.
2001.

[13] M. Nacher, C. Calafate, J. Cano, and P. Manzoni, “Evaluation of the
Impact of Multipath Data Dispersion for Anonymous TCP
Connections,” In Proc. SecureWare 2007, pp. 24-29, Oct. 2007.

Figure 18. Measured throughput.

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80

th
ro

u
gh

p
u

t
(M

b
p

s)

transferred file size (MB)

original scrambling AES

78

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] A. Gurtov and T. Polishchuk, “Secure Multipath Transport For Legacy
Internet Applications,” In Proc. BROADNETS 2009, pp. 1-8, Sep.
2009.

[15] L. Apiecionek, W. Makowski, M. Sobczak, and T. Vince, “Multi Path
Transmission Control Protocols as a security solution,” in Proc. 2015
IEEE 13th International Scientific Conference on Informatics, pp. 27-
31, Nov. 2015.

[16] A. Shamir, “How to share a secret,” Communications of the ACM, vol.
22, no. 11, pp. 612-613, Nov. 1979.

[17] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network Information Flow,”
IEEE Trans. Information Theory, vol. 46, no. 4, pp. 1204-1216, Jul.
2000.

[18] M. Li, A. Lukyanenko, and Y. Cui, “Network Coding Based Multipath
TCP,” in Proc. Global Internet Symposium 2012, pp. 25-30, Mar. 2012.

[19] ISO JTC 1/SC27, “ISO/IEC 10116: 2006 – Information technology –
Security techniques – Modes of operation for an n-bit cipher,” ISO
Standards, 2006.

[20] LWN.net, “An introduction to KProbes,” https://lwn.net/Articles/
132196/, [retreieved: Feb., 2019].

[21] GitHubGist, “jprobes example: dzeban / jprobe_etn_io.c,”
https://gist.github.com/dzeban/a19c711d6b6b1d72e594, [retreieved:
Feb., 2019].

[22] S. Seth and M. Venkatesulu, “TCP/IP Architecture, Desgn, and
Implementation in Linux,” John Wiley & Sons, 2009.

[23] Federal Information Processing Standards Publication 197,
“Anouncing the Advanced Encryption Standard (AES),” Nov. 2001.

[24] PJC, “Distribution of Sample Program / Source / Software (in
Japanese),” http://free.pjc.co.jp/index.html, [retrieved: Feb., 2019].

