International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http.//www.iariajournals.org/security/

Verified Metrics for Continuous Active Defence

George O. M. Yee
Computer Research Lab, Aptusinnova Inc., Ottawa, Canada
Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada
email: george@aptusinnova.com, gmyee@sce.carleton.ca

Abstract—As a sign of the times, headlines today are full of
attacks against an organization’s computing infrastructure,
resulting in the theft of sensitive data. In response, the
organization applies security measures (e.g., encryption) to
secure its vulnerabilities. However, these measures are often
only applied once, with the assumption that the organization is
then protected and no further action is needed. Unfortunately,
attackers continuously probe for vulnerabilities and change
their attacks accordingly. This means that an organization must
also continuously check for new vulnerabilities and secure them,
to continuously and actively defend against the attacks. This
paper derives metrics that characterize the security level of an
organization at any point in time, based on the number of
vulnerabilities secured and the effectiveness of the securing
measures. The metrics are verified in terms of their soundness
using the author’s recently published procedure for deriving
good security metrics. The paper then shows how an
organization can apply the metrics for continuous active
defence.
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I. INTRODUCTION

This work extends Yee [1] by adding explanations and
related work, elaborating the application areas, and including
a new section on verifying the soundness of the proposed
metrics.

Headlines today are full of news of attacks against
computing infrastructure, resulting in sensitive data being
compromised. These attacks have devastated the victim
organizations. The losses have not only been financial (e.g.,
theft of credit card information), but perhaps more
importantly, have damaged the organizations’ reputation.
The first half of 2019 had 3,800 publicly disclosed breaches
with 4.1 billion records exposed, an increase of 54% in the
number of reported breaches when compared to the first half
of 2018 [2]. Here are just two of those breaches [2]:

e March 22 and 23, 2019, Capital One: The number of
records breached was 106 million, including names,
addresses, postal codes, phone numbers, email
addresses, birthdates, and self-reported income. Also
exposed in some cases were customer credit scores,
credit limits, balances, and payment history. The breach
affected about 100 million consumers in the United
States and about 6 million in Canada. A hacker accessed

the servers of a third-party cloud services company
contracted by Capital One. The hacker hacked the
servers on March 22 and 23, 2019 and has since been
arrested. According to CNN Business, Capital One
expected losses of $100 million to $150 million related
to the hack, for expenses incurred in notifying affected
customers, providing free credit monitoring, legal
defense, and fixing the vulnerability.

e August 1, 2018 to March 30, 2019, American Medical
Collection Agency: Here the number of records breached
was over 20 million, including social security numbers,
birthdates, payment card data, credit card information,
and bank account information. American Medical
Collection Agency collected overdue payments for
medical labs. This long running breach exposed the
records of the labs’ customers including the above
sensitive data. A cybersecurity firm found the breached
information on the dark web. American Medical
Collection Agency filed for bankruptcy in June 2019,
citing IT costs, possible lawsuits, and the loss of business
from its customers.

Hard hit data breach victims in 2018 [3] include toymaker
Vtech Technologies (a cyberattack exposed the personal data
of an estimated 6.4 million children worldwide), Under
Armour (a cyberattack stole the personal data of 150 million
users of its app), and major airlines such as Air Canada,
British Airways, and Cathay Pacific (hackers made off with
the personal data of a combined 9.8 million customers). The
year 2017 [4] saw a total of 5,207 breaches and 7.89 billion
information records compromised.

In response to attacks, such as the ones described above,
organizations  determine  their = computer  system
vulnerabilities and secure them using security measures.
Typical measures include firewalls, intrusion detection
systems, two-factor authentication, encryption, and training
for employees on identifying and resisting social engineering.
However, once the security measures have been
implemented, organizations tend to believe that they are safe
and that no further actions are needed. Unfortunately,
attackers do not give up just because the organization has
secured its known computer vulnerabilities. Rather, the
attackers will continuously probe the organization’s
computer system for new vulnerabilities that they can exploit.
This means that the organization must continuously analyze
its computer system vulnerabilities and secure any new ones
that it discovers. In order to do this effectively, it is useful to
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have quantitative metrics of the security level at any
particular point in time, based on the number of
vulnerabilities secured and the effectiveness of the security
measures, at that point in time. An acceptable security level
can be set, so that if the security level falls below this
acceptable level due to new vulnerabilities, the latter can be
secured to bring the security level back to the acceptable
level. This work derives such metrics and shows how to apply
them for continuous active defence, 1i.e., continuous
vulnerabilities evaluation and follow up. Further, this work
verifies that the proposed metrics are sound, a term that will
be defined below.

The objectives of this work are: 1) derive straightforward,
clear metrics of the resultant protection level obtained by an
organization at any point in time, based on the use of security
measures to secure vulnerabilities and based on the
effectiveness of the measures, ii) show how these metrics can
be calculated, iii) verify that these metrics are sound, and iv)
show how the metrics can be applied for continuous active
defence and discuss some application areas. We seek
straightforward, easy to understand metrics since
complicated, difficult to understand ones tend not to be used
or tend to be misapplied. We base these metrics on securing
vulnerabilities since this has been and continues to be the
method organizations use to secure their computer
infrastructure.

The rest of this paper is organized as follows. Section II
discusses sensitive data, attacks, and vulnerabilities. Section
IIT derives the metrics, shows how to calculate them, and
presents various aspects of the metrics, including some of
their strengths, weaknesses, and limitations. Section IV
verifies that the metrics are sound. Section V explains how to
apply the metrics for continuous active defence and presents
some application areas. Section VI discusses related work.
Section VII gives conclusions and future work.

II.  SENSITIVE DATA, ATTACKS, AND VULNERABILITIES

Sensitive data is data that needs protection and must not
fall into the wrong hands. It includes private or personal
information [5], which is information about an individual,
can identify that individual, and is owned by that individual.
For example, an individual’s height, weight, or credit card
number can all be used to identify the individual and are
considered as personal information or personal sensitive data.
Sensitive data also includes non-personal information that
may compromise the competitiveness of the organization if
divulged, such as trade secrets or proprietary algorithms and
formulas. For government organizations, non-personal
sensitive data may include information that is vital for the
security of the country for which the government
organization is responsible.

DEFINITION 1: Sensitive data (SD) is information that must
be protected from unauthorized access in order to safeguard
the privacy of an individual, the well-being or expected
operation of an organization, or the well-being or expected
functioning of an entity for which the organization has
responsibility.
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DEFINITION 2: An attack is any action carried out against
an organization’s computer system that, if successful,
compromises the system or the SD held by the system.

An attack that compromises a computer system is
Distributed Denial of Service (DDoS). One that compromises
the SD held by the system is a Trojan horse attack in which
malicious software (the Trojan) is planted inside the system
to steal SD. Attacks can come from an organization’s
employees, in which case the attack is an inside attack. For
example, a disgruntled employee secretly keeps a copy of a
SD backup and sells it on the “dark web”.

DEFINITION 3: A vulnerability of a computer system is any
weakness in the system that can be targeted by an attack with
some expectation of success. A vulnerability can be secured
to become a secured vulnerability through the application of
a security measure.

An example of a vulnerability is a communication
channel that is used to convey sensitive data in the clear. This
vulnerability can be targeted by a Man-in-the-Middle attack
with reasonable success of stealing the sensitive data. This
vulnerability can become a secured vulnerability by
encrypting the sensitive data that the communication channel
carries.

A computer system can undergo upgrades, downgrades,
and other modifications over time that changes its number of
secured and unsecured vulnerabilities. It is thus necessary to
specify a time ¢ when referring to vulnerabilities. Clearly, the
number of secured and unsecured vulnerabilities of a
computer system at time ¢ is directly related to the security
level of the system at time ¢ This idea is formalized in the
next definition.

DEFINITION 4: A computer system’s security level (SL) at
time t, or SL(t), is the degree of protection from attacks that
results from having q(t) secured vulnerabilities, and p(t)
unsecured vulnerabilities, where the system has a total of N(t)
= p(t)+q(t) secured and unsecured vulnerabilities. SL(t) is
uniquely represented by the pair (p(t), q(t)).

Clearly SL(t) increases with increasing q(t) and decreases
with increasing p(t). Figure 1 shows 3 SL(t) points on the
(p(t), q(t)) plane for N(t)=100.
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Figure 1. SL(t) points corresponding to a computer system with
N(t)=100. SL(3) is higher security than SL(2), which is higher
security than SL(1).
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In Figure 1, the higher values of q(t) correspond to higher
security levels, and the higher values of p(t) correspond to
lower security levels.

Definition 4 requires p(t) to be known. Of course, it is
next to impossible to determine all the vulnerabilities in a
typical computer system, so the exact value of p(t) is most
likely undeterminable. Thus, a value for p(t) can only be a
“best effort” value, and consequently, a value for SL(t) is not
the true value, but a “best effort” value. It is in this context
that the values of p(t) and SL(t) are to be understood.

III. METRICS FOR CONTINUOUS ACTIVE DEFENCE

While the pair (p(t), q(t)) uniquely represents SL(t), it
cannot be used to calculate the value of SL(t), which would
be useful in tracking the security of a system over time as its
vulnerabilities change. In this section, we derive two metrics
for the value of SL(t), one assuming that the measures
securing vulnerabilities are totally reliable; the other with the
measures only partly reliable. Both metrics are applied right
after the vulnerabilities have been determined, and possibly
before any of them have actually been secured. Determining
vulnerabilities is discussed in Section III.C below.

A.  Metric with Totally Reliable Securing Measures

We seek a metric STRM(t) (STRM is an acronym for “SL
with Totally Reliable Measures™”) for a computer system’s
SL(t), where all securing measures are totally reliable.
Suppose that p(t) and q(t) are as in Definition 4. Let Pi(e)
represent the probability of event e at time t. Let “exploit”
mean a successful attack on a vulnerability. Let “all exploits”
mean exploits on 1 or more vulnerabilities. Let Uk(t) denote
an unsecured vulnerability k at time t. We have

SL(t) = Pu(no exploits) = 1-Py(all exploits) )

However, the only exploitable vulnerabilities are the
unsecured vulnerabilities since the securing measures are
totally reliable. Therefore

P«(all exploits) = Zx [Pr(exploit of Uk(t))]

by applying the additive rule for the union of probabilities,
assuming that 2 or more exploits do not occur
simultaneously. Let uk(t) be a real number with 0 < uk(t) <
p(t) and Zxuk(t) = p(t). Set

Py(exploit of Uk(t)) = uk(t)/(p(t)+q(t)) 2)
By substitution using (2)
Py(all exploits) = Zx [ux(t)/(p(t)+q(t))]
= Za(®)/(p(H+q())
=p(®)/(p()+q(1)) A3)

The condition 0 < uk(t) < p(t) is needed to ensure that there is
some probability for an unsecured vulnerability to be
exploited. The condition Zxux(t) = p(t) is necessary in order
for Pyall exploits) < 1. Expression (2) gives a way of
assigning values for Pi(exploit of Uk(t)) based on a risk
analysis [5]. However, expression (3) ensures that such
assignment is not needed for calculating STRM(t). In other
words, the fact that some vulnerabilities are more likely to be
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exploited than others does not affect the value of STRM(t).
Substituting (3) into (1) gives

SL(t) = 1-[p()/(p(O+q(t)]
=q®)/(pM®+q(t)  if p(t)+q(t)>0
=1 if p(t)+qt)=0
(Note that mathematically, we cannot divide by 0.) We obtain
STRM(t) by assigning as follows:

STRM(t) = q/(p(ty+q(®) i pO+q®)>0  (4)

=1 if p(t)+q®)=0  (5)
We see from (4) that 0 < STRM(t) < 1 if p(t)+q(t) > 0 and has
value 0 if q(t)=0 (the system has no secured vulnerabilities)
and 1 if p(t)=0 (all of its vulnerabilities are secured). We see
from (5) that STRM(t)=1 if p(t)+q(t)=0 (no vulnerabilities,
which is unlikely). The values of the metric are therefore as
expected.

B.  Metric with Partially Reliable Securing Measures

Here, we seek a metric SPRM(t) (SPRM is an acronym
for “SL with Partially Reliable Measures™) for a computer
system’s SL(t) where the measures securing the
vulnerabilities are only partially reliable.

Let Vi(t) denote a secured vulnerability k at time t. The
reliability rk(t) of the measure securing Vk(t) can be defined
as the probability that the measure remains operating from
time zero to time t, given that it was operating at time zero
[6]. The unreliability of the measure is then 1-rk(t). We have
the events

[exploit of Vk(t)] if and only if [ Vk(t) selected for exploit]

AND [measure securing V(t) unreliable]
Since the two right-hand side events are independent,
Py(exploit of Vi(t)) = Pu(V«(t) selected for exploit) X
Pi(measure securing Vi(t) unreliable)
Set Py(Vi(t) selected for exploit) = 1/(p(t)+q(t)) 6)

since attackers will have no preference to attack one secured
vulnerability over another secured vulnerability (they should
not even see them as vulnerabilities). Again, applying the
additive rule for the union of probabilities,

Py(all Vi(t) exploits) = Zk[P«(Vi(t) selected for exploit) X
Pi(measure securing Vi(t) unreliable)]
= Zi [(U/(p(H)+q®))(1-re(t))]
= [Z(1-n(®)V[p(®) + q(V)]
= [q()-Zar())/[p(t) + q(1)]
=[q(®)/(p(H)+q(®)]-Zrk(/(p(V) + q(1)
Now, since both Uk(t) and Vk(t) can be exploited,
Py(all exploits)=P¢(all Ux(t) exploits) + Py(all Vk(t) exploits)
= [p®)/(p(H)+q®)] + [a®/(p(D+q(t)]-
Zi(®)/(p(H) + q(v)
=1 - Za(®/(p(H) + q(v) ®
by substitution using (3) and (7), where (3) is Py(all Uk(t)

(M
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exploits). Finally, by substitution using (1) and (8),
SL(t) = 1 — 1 + Zirk(t)/(p(t) + q(t))

= Zin()/(p(t) + q(v) if p(t) =0, q(t)>0
=1 if p(t)+q(t)=0
=0 if p(t)>0, q(t)=0
We obtain SPRM(t) by assigning as follows:
SPRM(t) = Zkrk(t)/(p(t)+q(t)) if p(t)=0,q(t)>0 (9)
=1 if pt)+q(t)=0 (10)
=0 if p()>0,qt)=0 (11)

We see from (9) that 0 < SPRM(t) <1 for p(t) > 0, q(t) > 0
(all vulnerabilities may or may not be secured), and from (10)
that SPRM(t) =1 for p(t)+q(t) = 0 (no vulnerabilities, which
is unlikely). We see from (11) that SPRM(t) = 0 for p(t)>0,
q(t) = 0 (no secured vulnerabilities). We also see that for rk(t)
= 1, SPRM(t) is the same as STRM(t). The values of the
metric are therefore as expected.

C. Calculating the Metrics

Calculating STRM(t) requires the values of p(t) and q(t)
at a series of time points of interest. SPRM(t) requires the
values of p(t), q(t), and the reliability value for each measure
used to secure the vulnerabilities.

To obtain the values of p(t) and q(t), an organization may
perform a threat analysis of vulnerabilities in the
organization’s computer system that could allow attacks to
occur. Threat analysis or threat modeling is a method for
systematically assessing and documenting the security risks
associated with a system (Salter et al. [7]). Threat modeling
involves understanding the adversary’s goals in attacking the
system based on the system’s assets of interest. It is
predicated on that fact that an adversary cannot attack a
system without a way of supplying it with data or otherwise
accessing it. In addition, an adversary will only attack a
system if it has some assets of interest. The method of threat
analysis given in [7] or any other method of threat analysis
will yield the total number N(t) of vulnerabilities to attacks at
time t. Once this number is known, the organization can select
which vulnerabilities to secure and which security measures
to use, based on a prioritization of the vulnerabilities and the
amount of budget it has to spend. A way to optimally select
which vulnerabilities to secure is described in [8]. Once
vulnerabilities have been selected to be secured, we have q(t).
Then p(t) = N(t)— q(t). The threat analysis may be carried out
by a project team consisting of the system’s design manager,
a security and privacy analyst, and a project leader acting as
facilitator. In addition to having security expertise, the
analyst must also be very familiar with the organization’s
computer system. Further discussion on threat analysis is
outside the scope of this paper. More details on threat
modeling can be found in [8]. Vulnerabilities may be
prioritized using the method in [5], which describes
prioritizing privacy risks.

The reliability values for hardware measures used to
secure the selected vulnerabilities may be obtained from the
hardware’s manufacturers (e.g., hardware firewall).
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Reliability values for software and algorithmic measures are
more difficult to obtain (e.g., encryption algorithm). For
these, it may be necessary to estimate the reliability values
based on the rate of progress of technology. For example, one
could estimate the reliability of an encryption algorithm
based on estimates of the computer resources that attackers
have at their disposal. If they have access to a super computer,
an older encryption algorithm may not be sufficiently
reliable. One could also opt to be pessimistic and assign low
reliability values, which would have the net effect of boosting
security by securing more vulnerabilities, in order to meet a
certain SL(t) level (see Section V). Reliability values for
security measures represent a topic for future research.

It is important to note that at each time point where the
metrics are calculated, the values of p(t) and q(t) are
generated anew. Vulnerabilities secured previously with
totally reliable measures would not appear again as
vulnerabilities. On the other hand, vulnerabilities secured
with only partially reliable measures should be identified
again as vulnerabilities. Further, it is not necessary to have
actually implemented the securing measures before
calculating the metrics.

D. Graphing the Metrics

The metrics STRM(t) and SPRM(t) are both functions of
p(t), q(t), and t. Figure 2 shows a 3-dimensional graph of
these metrics with axes for STRM(t)/SPRM(t), p(t), and q(t).
Time is not shown explicitly as an axis since we would need
4 dimensions, but is instead represented as time period
displacements of the metrics’ values.

STRM(t) /
SPRM(t)
1 t4
- t ® -, t3
\ /
°
t2
q(®)
0
p(®)

Figure 2. STRM(t)/SPRM(t) values at times t; <ty <t3 <t4.

Figure 2 shows 4 values of one of the metrics, labeled
according to the times it was evaluated, namely ti, t2, t3, and
ts where t1 < t2 < t3; <ts. The intervals between these times may
be 1 week or 1 month, for example. T is a threshold, below
which the metric values should not drop (see Section V.A).
At t1, one of the metrics was evaluated producing the value
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shown. At t2, the metric was again evaluated, but this time the
value was found to be much lower than at ti, and in fact, the
value dropped below T. The reason for this was that new
vulnerabilities were found that had not been secured. The
organization decides to secure the additional vulnerabilities.
At t3, another evaluation was carried out, and this time, the
metric had improved, reaching above T. The organization
finds some surplus money in its budget and decides to secure
2 other vulnerabilities. An evaluation of the metric at t4 finds
the value a little higher than at t3, due to the 2 additional
vulnerabilities secured. It is thus seen that the security level
of a computer system changes over time, in accordance with
the system’s number of secured and unsecured
vulnerabilities.

E.  Strengths, Weaknesses, and Limitations

Some strengths of the metrics are: a) conceptually
straightforward, and easily explainable to management, and
b) flexible and powerful, i.e., they have many application
areas, as described in Section V.

Some weaknesses are: a) threat modeling to determine the
vulnerabilities is time consuming and subjective, and b) the
SL will involve more factors than vulnerabilities and secured
vulnerabilities. Moreover, as mentioned above, it is next to
impossible to find all the p(t), so the SL determined by the
metrics can never be the true SL. For weakness a), it may be
possible to automate or semi-automate the threat modeling.
Related works [18] and [28] are good starting points for
further research. For weakness b), it may be argued that the
metrics as presented are sufficient for their envisaged
application when other sources of error are considered (e.g.,
it is difficult to tell where an attacker will strike or how he
will strike), and that adding more factors would only make
the metrics unnecessarily more cumbersome and time
consuming to evaluate with little additional benefit. It is next
to impossible to determine the true SL anyway.

Some mathematical limitations of the metrics follow.
First of all, the metrics are only estimates of the security level,
not the security level itself (and can never be the true SL due
to unknowable p(t) as mentioned above). This was indicated
in assigning the probabilities as approximate in expressions
(2) and (6) above. Second, as noted in Section III.A, it makes
no difference to the values of the metrics whether one
unsecured vulnerability is more likely to be exploited than
another. This means that the metrics are insensitive to one
exploited vulnerability causing more damage than others, and
may be due to the fact that the metrics are estimating the total
security of the computer system, and therefore the total
number of exploitable vulnerabilities is what’s important, not
whether a particularly damaging vulnerability is exploited.
Third, we applied the additive rule for the union of
probabilities above, requiring that 2 or more exploits do not
occur simultaneously. This condition holds in general but if
it is violated, the metrics will be inaccurate. This may not be
very significant, since they are only estimates. An additional
limitation may be that a secured vulnerability may not in
reality be secured because the attacker has a secret way of
defeating the securing measure. However, this additional
limitation is true of other security methods as well.
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IV. VERIFICATION OF SOUNDNESS

This section examines the soundness (as defined below)
of the proposed metrics using a procedure in this author’s
previously published paper [9]. In that paper, this author
pointed out some flaws that can unintentionally be included
in the definition of security metrics, leading to invalid
conclusions. The flaws can be found in a number of existing
security metrics that were presented in [9]. This author then
proposed a procedure that can be used to design “good” or
sound security metrics that would be free of the flaws. As it
turns out, the procedure can also be used to check existing
security metrics to verify that they are sound.

Consider the metric number of viruses detected and
eliminated at a firewall. The purpose of this metric is to
assess the effectiveness of a firewall at filtering out viruses,
which impacts the organization’s level of security.
Unfortunately, this metric says nothing about the viruses that
were not detected and got through. If 50 viruses were detected
and eliminated but 100 got through, basing the firewall’s
effectiveness solely on the 50 viruses that were detected and
not on the 100 that got through would falsely inflate the
firewall’s effectiveness and the level of security. Thus, this
metric fails its purpose. Another often-used security metric is
time spent on a security-related task, such as software
patching or security incident investigation. The purpose of
this metric is to gauge the level of security, assuming that
more time spent means higher security. This metric may be
useful for project management, to make sure that there is
sufficient time to complete the project, but it is practically
useless as an indicator of security. The assumption is wrong:
more time spent does not necessarily mean better security.
For example, the extra time may have been due to inefficient
procedures or work processes. Thus, this metric also fails its
purpose. To avoid problematic metrics such as the foregoing,
this author proposed the following procedure [9] for
designing good or sound security metrics.

A. Steps for Designing Sound Security Metrics (SDSSM)

1. Definition: Define the quantity to be measured, i.e. the
candidate metric. Check that this quantity is meaningful,
objective, and unbiased as a measure of the component or
components of the security level of “something”, where
that “something” could be the organization, the
organization’s computer system, or even a software
product. Check also that this quantity can be obtained
with undue hardship or costs. If the quantity passes all
these checks, proceed to Step 2. Otherwise, repeat this
step to obtain a new quantity. Note that the quantity can
only measure a component or components of the security
level since the actual security level has many
components, such as the number of unsecured
vulnerabilities, security flaws in software, disgruntled
employees, and so on. An example quantity is number of
software security patches issued in a month, which is a
component of the security level of the software.

2. Sufficiency: Verify that the quantity is a sufficient
measure of the component or components of the security
level (as in necessary and sufficient conditions for
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something to be true, see [10]). It is enough to verify
sufficiency since there are usually many ways to measure
a component, so necessity will not apply in most cases.
Verify sufficiency by asking and answering the questions
in Table 1. For the quantity to be sufficient, the answers
to questions 1, 2, and 3 must be “yes”, “yes”, and “no”
respectively. If the quantity is found to be sufficient,
proceed to Step 3. Otherwise, repeat from Step 1 to obtain
a new quantity. For example, the quantity time spent on a
security-related task is not a sufficient estimator since
spending more time does not mean that the security level
will be consistently higher (or lower), as discussed above.
Thus, the answer is “no” to question 1. Since this answer
must be “yes” for sufficiency, this quantity is not
sufficient.

TABLEI. QUESTIONS FOR DETERMINING SUFFICIENCY

No. Question

1 If the quantity goes up, do you believe that the security level
consistently goes up (or down)?

2 Does the quantity have a direct impact on the security level?

3 Are there any aspects missing from the definition of the
quantity that are needed for it be effective as a measure of the
component or components of the security level?

3. Divisibility: Verify if the quantity is divisible into other
constituent quantities, or is expressible mathematically in
terms of other constituent quantities. If not, proceed to
step 4. Otherwise, formulate a mathematical expression
that equates the quantity to the constituent quantities, and
proceed to Step 4. For example, the quantity number of
software security patches issued in a month is not further
divisible, = whereas  the  quantity outstanding
vulnerabilities after threat analysis each month may be
divided into and equated to the number of non-secured
vulnerabilities from last month plus the number of new
vulnerabilities found during threat analysis.

4. Progression: Verify that the quantity has the
“progression property”’, that when evaluated over a
sufficiently large time period, from past to future, the
quantity progresses to an acceptable target level that
corresponds to an acceptable or maximal security level. If
the quantity has this property, proceed to Step 5.
Otherwise, repeat from Step 1 to obtain a new quantity.
For example, in the case of number of software security
patches issued in a month, suppose that this metric is
evaluated at the first of the month for the last month.
Suppose that the target level for the quantity is zero. Thus,
over a sufficiently large number of months in which
patches are issued, there are corresponding increases in
the security level of the software toward some level. The
security level of the software increases with each patch
issued until at some point, there is consistently no new
patch issued (target zero reached). At this point, the
security level of the software is maximal (but not
necessarily maximized since there may still be
undiscovered security bugs). The quantity has progressed
to its target level with corresponding maximal security.
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5. Reproducibility: Verify that the quantity is reproducible
by third-party verifiers. This means that the latter may
evaluate the quantity or arrive at its value using the same
inputs or procedure and obtain the same result. If the
quantity is reproducible, stop. The quantity is now
considered a sound security metric. Otherwise, repeat
from Step 1 to obtain a new quantity. For example, if the
quantity is number of software security patches issued in
a month, a third-party verifier would add up the software
security patches issued for a particular month, and find
the same number as the organization that is using the
metric. If the quantity is outstanding vulnerabilities after
threat analysis each month, which we know is equated to
the number of non-secured vulnerabilities from last
month plus the number of new vulnerabilities found
during threat analysis, the third-party verifier would do
the latter addition and verify that the total is the same as
obtained by the organization using the metric.

Procedure SDSSM can be used not only to design a sound
security metric but also to verify if an existing security metric
is sound. This verification is carried out by checking if the
metric satisfies each of the steps in SDSSM except for STEP
3, which is not a condition to be checked. STEP 3 is only used
when designing a security metric, in order to allow the metric
to take on a clearer form. This verification of soundness is
captured in the following definition.

DEFINITION 5: A security metric is sound if it satisfies
every step in SDSSM, excluding STEP 3.

We now apply definition 5 to verify that the metrics
proposed in Section III are sound. These metrics are:

if p(H+q(t) >0
if p(H)+q(t) =0

SPRM(t) = Zxrk(t)/(p(t)+q(t)) if p(t)=>0,q(t)>0
=1 if p(t)+qt)=0
=0 if p(t)>0, q(t)=0

STRM(D) = 1q(t)/ P®+q(1)

It suffices to check that these metrics satisfy the
conditions in each step of SDSSM, as follows.

STEP 1: Definition. The security of the computer system is
directly related to the number of secured vulnerabilities in the
system: the higher this number, the higher the security, and
the lower this number, the lower the security. Consequently,
since both metrics express the security level in terms of the
proportion of secured vulnerabilities to total vulnerabilities,
both metrics are clearly meaningful for assessing the security
level (note that the numerator in SPRM(t) is really the number
of secured vulnerabilities as a fractional or real number). The
metrics are objective since secured vulnerabilities relate
directly to the security of the system. They are unbiased since
their values, based on secured and unsecured vulnerabilities,
cannot be overstated or understated. Finally, one can
evaluate these metrics without undue hardship or cost by
doing a vulnerability or threat analysis, deciding which
vulnerabilities to secure, and using the reliabilities of the
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securing measures where available. Thus, these metrics are
considered to have passed Step 1 and we proceed to Step 2.

STEP 2: Sufficiency. We answer the questions in Table I. The
first question asks if the security would consistently go up (or
down) if the quantity (metric) goes up. Clearly if the value of
STRM(t) goes up, the number of secured vulnerabilities must
consistently go up since the denominator is a constant. In
other words, the security consistently goes up. The same can
be said of SPRM(t), since its numerator is the number of
secured vulnerabilities as a real number. So, the answer to the
first question is “yes” for both metrics. The second question
asks if the quantity has a direct impact on the security level.
The answer is again “yes” for both metrics, since the higher
their values, the higher the security level, and the lower their
values, the lower the security level. Finally, the third question
asks if the quantity is missing any components or aspects that
are needed for it to be effective. The answer here is “no” for
both metrics, since they are ready to be used “as is” for
effectively assessing the security level. The answers to the
three questions conform to the answers required for
sufficiency. We declare the metrics sufficient and proceed to
Step 4, since STEP 3 is not needed for verifying soundness.

STEP 4: Progression. Suppose that vulnerabilities are
determined (through a threat analysis) and one of the metrics
(STRM(t) if no reliability values are available, SPRM(t)
otherwise) is re-calculated at regular time intervals, e.g.,
monthly. Suppose also that Company A’s management has
agreed on a goal of 95% for the metric, at which level the
computer system is considered “safe”, i.e. management is
willing to live with the risks arising from the remaining non-
secured vulnerabilities. With this goal in mind, management
will want to secure vulnerabilities at each opportunity until
the metric attains 95%. This doesn’t mean that the metric will
increase monotonically, since it is possible that a particular
threat analysis identifies so many new vulnerabilities that the
metric is actually lower than when it was last calculated.
However, the metric will eventually reach 95%, given that
management wants to secure new vulnerabilities until this
goal is reached, which is all we mean by having the
progression property. Since this analysis applies to both
metrics, we can consider them as having passed Step 4 and
proceed to Step 5.

STEP 5: Reproducibility. Given the expression for STRM(t),
anyone will calculate the same value for it given the same
values for p(t) and q(t). Similarly, given the expression for
SPRM(t), anyone will calculate the same value for it given
the same values for the reliabilities, p(t), and q(t). Thus, the
metrics are reproducible.

Thus, according to Definition 5, the metrics STRM(t) and
SPRM(t) are sound.

To show that the application of SDSSM can find that a
metric is not sound, consider its application to the flawed
metric mentioned above, namely the metric number of viruses
detected and eliminated at a firewall. Applying SDSSM to
this metric leads to it failing STEP 1 Definition, since it is
biased towards overstating the firewall’s effectiveness. Thus,
according to Definition 5, this metric is not sound. Note that
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the metric time spent on a security-related task would also be
found by SDSSM as not sound since it failed STEP 2
Sufficiency, as indicated in the description of SDSSM above.

V. APPLICATION AREAS

In this section, we present some applications for the
metrics. In Section V.A, we discuss how they can be used for
continuous active defence of a computer system. In Section
V.B, we present other application areas, such as critical
infrastructure and defence.

A. Continuous Active Defence

Attackers do not attack once, and finding that you are well
protected, go away. Rather, they continuously probe your
defences in order to find new vulnerabilities to exploit. It is
thus necessary to continuously evaluate the computer
system’s vulnerabilities using threat modeling, and add
additional security by securing new vulnerabilities when
necessary. We call this “Continuous Active Defence” or
CAD. How do we know when it is necessary to add more
security? This is where the metrics can be applied.
Continuous Active Defence involves the following steps:

1. Decide on a threshold for SL(t) below which the values
of the metrics should not drop.

2. Decide on the frequency with which to perform threat
modeling, e.g., every week, every month, exceptions.

3. Begin Continuous Active Defence by carrying out the
threat modeling at the frequency decided above. After
each threat modeling exercise, calculate either STRM(t)
(if reliability data is not available) or SPRM(t) (if
reliability data is available). If the value of the metric
falls below T (see Figure 2), secure additional
vulnerabilities until the value is above T.

4. If there has been a change to the system, such as new
equipment or new software, do an immediate threat
analysis, calculate one of the metrics, and add security if
necessary based on T. Then, proceed with the frequency
for threat modeling decided above.

The value of T and the frequency of threat modeling can
be determined by the same threat analysis team mentioned
above. The values would depend on the following:

e The potential value of the sensitive data — the more
valuable the data is to a thief, a malicious entity, or a
competitor, the higher the threshold and frequency
should be.

e  The damages to the organization that would result, if the
sensitive data were compromised — of course, the higher
the damages, the higher the threshold and frequency.

e  The current and likely future attack climate — consider
the volume of attacks and the nature of the victims, say
over the last 6 months; if the organization’s sector or
industry has sustained a large number of recent attacks,
then the threshold and frequency need to be higher.

e  Consider also potential attacks by nation states as a result
of the political climate; attacks by individual hacktivist
groups such as Anonymous or WikiLeaks may also
warrant attention.
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In general, a computer system should be as secure as
possible. Therefore, T above 80% and a frequency of weekly
would not be uncommon. However, whatever the threshold
and frequency, the organization must find them acceptable
after considering the above factors. The financial budget
available for securing vulnerabilities also plays an important
role here, since higher thresholds call for securing more
vulnerabilities, which means more financial resources will be
needed.

B.  Other CAD Application Areas

CAD may also be applied to a specific type of
vulnerabilities. An example of this application is dealing with
inside attacks. If the organization is particularly susceptible
to inside attacks, it can decide to apply CAD to vulnerabilities
that can be exploited for inside attacks. In this case, some of
the vulnerabilities may be weaknesses of the organization
itself, e.g., ineffective screening of job applicants, and the
securing measures may not be technological, e.g., having an
ombudsman for employee concerns. A list of questions that
can be used to identify vulnerabilities to inside attack is given
in [8].

CAD may be applied to a specific subset of vulnerabilities
that the organization deems are crucial to its mission. For
example, a cloud service provider would deem the protection
of clients’ data crucial to its mission. It can choose to apply
CAD to vulnerabilities that are specific to its data storage
capabilities, and also apply CAD to its computer system as a
whole.

CAD may also be applied to code level vulnerabilities. In
this case, the frequency of application will depend on how
often the code is changed, due to patching and the addition or
deletion of functionality. The threat modeling would have to
be tailored to code and would be more of a code inspection
exercise.

Finally, CAD may be applied to protect critical
infrastructure and defence systems. The power grid is an
example of critical infrastructure. The development of the
metrics only considers vulnerabilities and reliabilities, which
are also found in critical infrastructure and defence systems.
However, the threat analyses would involve different types of
threats, and the securing measures, would of course, need to
be appropriate for the vulnerability. For example, the
vulnerability of transformer sabotage in a power grid may
need to be secured by the use of intrusion alarms. As another
example, the vulnerability of a retaliatory missile site being
preemptively destroyed may need to be secured by putting
the missile on a mobile platform. The application of CAD to
protect these areas is a subject of future research.

C. Where CAD May and May Not Be Applied

Fundamentally, CAD may be applied to organizations
and systems that have the following elements:

a) Possess “something” that attackers want

b) Vulnerabilities that change over time and that attackers
can attack to access the “something”

¢) Measures (or controls) that can be used to secure the
vulnerabilities from attack
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An examination of the above CAD application areas will find
these elements present in each area. Organizations or systems
that are missing any of these elements are therefore not
suitable for the application of CAD. An example of such a
“system” may be an expensive bicycle. In this case, it is the
bicycle itself that thieves (attackers) want. Its vulnerability is
that it can be stolen if the bicycle is not suitably secured. The
measure that can be used to secure the bicycle is a strong lock.
However, the bicycle’s vulnerability to being stolen is not
changing over time. This vulnerability will be the same
always, even if the bicycle becomes less attractive to thieves
over time. This bicycle is not a suitable system for the
application of CAD.

VI. RELATED WORK

Related work found in the literature includes attack
surface metrics, risk and vulnerabilities assessment,
vulnerabilities classification, threat analysis, an “other”
category, and this author’s previous work. We discuss each
of these categories in turn, starting with attack surface
metrics.

A system’s attack surface is related to a SL; it is
proportional to the inverse of a SL since the lower the attack
surface, the higher the SL. Manadhata and Wing [11]
formalize the concept of a system’s attack surface and
propose an attack surface metric for systematically measuring
the attack surface. They claim that their metric does not
depend on the software system’s implementation language
and can be used on systems of all sizes. They further provide
demonstrations of the metric and have conducted empirical
studies to validate it. Stuckman and Purtilo [12] present a
framework for formalizing code-level attack surface metrics
and describe activities that can be carried out during
application deployment to reduce the application’s attack
surface. They also describe a tool for determining the attack
surface of a web application, together with a method for
evaluating an attack surface metric over a number of known
vulnerabilities. Munaiah and Meneely [13] propose function
and file level attack surface metrics that allow fine-grained
risk assessment. They claim that their metrics are flexible in
terms of granularity, perform better than comparable metrics
in the literature, and are tunable to specific products to better
assess risk.

In terms of risk and vulnerabilities assessment, Islam et
al. [14] present a risk assessment framework that starts with
a threat analysis followed by a risk assessment to estimate the
threat level and the impact level. This leads to an estimate of
a security level for formulating high-level security
requirements. The security level is qualitative, such as “low”,
“medium”, and “high”. Vanciu et al. [15] compare an
architectural-level approach with a code-level approach in
terms of the effectiveness of finding security vulnerabilities.
Wang et al. [16] discuss their work on temporal metrics for
software vulnerabilities based on the Common Vulnerability
Scoring System (CVSS) 2.0. They use a mathematical model
to calculate the severity and risk of a vulnerability, which is
time dependent as in this work. Gawron et al. [17] investigate
the detection of vulnerabilities in computer systems and
computer networks. They use a logical representation of
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preconditions and post conditions of vulnerabilities, with the
aim of providing security advisories and enhanced
diagnostics for the system. Wu and Wang [18] present a
dashboard for assessing enterprise level vulnerabilities that
incorporates a multi-layer tree-based model to describe the
vulnerability topology. Vulnerability information is gathered
from enterprise resources for display automatically. Farnan
and Nurse [19] describe a structured approach to assessing
low-level infrastructure vulnerability in networks. The
approach emphasizes a controls-based evaluation rather than
a vulnerability-based evaluation. Instead of looking for
vulnerabilities in infrastructure, they assume that the network
is insecure, and determine its vulnerability based on the
controls that have or have not been implemented. Neuhaus et
al. [20] present an investigation into predicting vulnerable
software components. Using a tool that mines existing
vulnerability databases and version archives, mapping past
vulnerabilities to current software components, they were
able to come up with a predictor that correctly identifies about
half of all vulnerable components, with two thirds of the
predictions being correct. Roumani et al. [21] consider the
modeling of vulnerabilities using time series. According to
these researchers, time series models provide a good fit to
vulnerability datasets and can be used for vulnerability
prediction. They also suggest that the level of the time series
is the best estimator for prediction. Li et al. [22] present
VulPecker, a tool for automatically detecting whether source
code contains a particular vulnerability. Pang et al. [23]
propose a technique based on a deep neural network to predict
vulnerable software components. They claim that their
technique can predict vulnerable Java classes in Android
applications with high accuracy. Anand et al. [24] propose a
model for classifying security patterns according to the type
of vulnerability they address, claiming that their model helps
software developers to select an appropriate security pattern
once they know the type of vulnerability they would like to
remove. The authors also claim that their classification
scheme identifies missing security patterns, when no patterns
can be found for particular vulnerabilities. Salfer and Eckert
[25] consider the attack surface and vulnerability assessment
of automotive electronic control units (ECUs). They propose
a method and metric for assessing the attack surface and
predicting the effort for a code injection exploit using ECU
development data. They also provide an application of their
method and metric to a graph-based security assessment.

With regard to vulnerabilities classification, Spanos et al.
[26] look at ways to improve CVSS. They propose a new
vulnerability scoring system called the Weighted Impact
Vulnerability Scoring System (WIVSS) that incorporates the
different impact of vulnerability characteristics. In addition,
the MITRE Corporation [27] maintains the Common
Vulnerability and Exposures (CVE) list of vulnerabilities and
exposures, standardized to facilitate information sharing.

In terms of threat analysis, Schaad and Borozdin [28]
present an approach for automated threat analysis of software
architecture diagrams. Their work gives an example of
automated threat analysis. Sokolowski and Banks [29]
describe the implementation of an agent-based simulation
model designed to capture insider threat behavior, given a set
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of assumptions governing agent behavior that pre-disposes an
agent to becoming a threat. Sanzgiri and Dasgupta [30]
present a taxonomy and classification of insider threat
detection techniques based on strategies used for detection.
Manzoor et al. [31] claim that contemporary cloud threat
analysis approaches fail to include variants of identified
vulnerabilities in their analyses. They target achieving a
holistic cloud threat analysis procedure by designing a multi-
layer cloud model, employing Petri Nets to comprehensively
profile the operational behavior of the services in cloud
operations. They use this model to identify threats within and
across different operational layers. They further claim that
their approach also looks at the variants of potential
vulnerabilities to infer the cloud attack surface. Valani [32]
looks at Secure DevOps threat modeling and concludes that
maintaining speed to support business needs is difficult due
to the fact that the threat modeling is too slow. He proposes
the use of a lightweight threat modeling approach that uses a
correlation matrix created from common lists and application
abstractions, that is quicker and can be applied where detailed
threat modeling is unnecessary.

The following publications fall into the other category.
Kotenko and Doynikova [33] investigate the selection of
countermeasures for ongoing network attacks. They suggest
a selection technique based on the countermeasure model in
open standards. The technique incorporates a level of
countermeasure effectiveness that is related to the reliability
of measures securing vulnerabilities, used in the SPRM(t)
metric proposed in this work. Ganin et al. [34] present a
review of probabilistic and risk-based decision-making
techniques applied to cyber systems. They propose a
decision-analysis-based approach that quantifies threat,
vulnerability, and consequences through a set of criteria
designed to assess the overall utility of cybersecurity
management alternatives. Pendleton et al. [35] provide a
systematic survey of systems security metrics. Based on this
survey, they propose that an overall system security metric
can be represented by the following dimensions of metrics:
vulnerabilities, defenses, attacks, and situations. The
situation dimension is focused on the current security state of
a given system at a particular point in time, in order to
account for dynamics related to system security states,
including the level of vulnerabilities, attacks, and system
defenses.

This author’s directly related work includes [36], [8], and
[1] where [8] is an expanded version of [36]. Yee [1]
improves on [36] and [8] by a) adding time dependency,
together with the notion that an organization’s security level
needs to be continuously evaluated, b) adding a new metric
incorporating the reliability of the securing measures, and c)
adding a description of new application areas. This work
extends Yee [1] by adding the material mentioned at the start
of Section I.

VIL

Since attackers continuously probe for new
vulnerabilities to exploit, an organization cannot afford to
assess its computer system’s vulnerabilities once, secure
some of the vulnerabilities, and then do nothing further.

CONCLUSION AND FUTURE WORK
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Rather, the organization needs to assess and secure its
vulnerabilities on a continuous basis, i.e., perform CAD.
This work has proposed two conceptually clear SL metrics,
verified as sound, that can be used to evaluate a computer
system’s security level at any point in time for CAD. One
metric assumes that the measures securing vulnerabilities are
totally reliable; the other considers the measures to be only
partially reliable. CAD may be applied to specific types of
vulnerabilities (e.g., vulnerabilities to insider attack),
groupings of vulnerabilities that require special attention,
specific application areas such as critical infrastructure and
defence, and even at the code level. CAD may not be applied
to areas that are missing any of the elements listed in Section
V.C.

There are many security metrics in the literature, as seen
in Section VI. The metrics in this work have the advantages
of being easy to understand, and easy to calculate, which may
be needed to convince management to provide the necessary
resources required for CAD.

Future work includes formulations of other security
metrics, the application of security metrics to critical
infrastructure and defence, improving the methods for threat
modeling, and exploring how this work may complement
work in the literature and in the standardization community.
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