
Reaching Grey Havens

Industrial Automotive Security Modeling with SAM

Markus Zoppelt

Department of Computer Science
Nuremberg Institute of Technology

Nuremberg, Bavaria 90489
Email: markus.zoppelt@th-nuernberg.de

Ramin Tavakoli Kolagari

Department of Computer Science
Nuremberg Institute of Technology

Nuremberg, Bavaria 90489
Email: ramin.tavakolikolagari@th-nuernberg.de

Abstract—Autonomous vehicles have a greater attack potential
than any previous individual mobility vehicle. This is primarily
due to the considerable communication demands of the vehicles,
which on the one hand emerge for reasons of functionality and
safety, and on the other hand for reasons of comfort. Driverless
vehicles require communication interfaces to the environment,
direct connections (e.g., Vehicle-to-X) and connections to an
original equipment manufacturer backend service or a cloud.
These communication connections could all be used as backdoors
for attacks. Most existing countermeasures against cyber attacks,
e.g., the use of message cryptography, concentrate on concrete
attacks and do not consider the complexity of the various access
options offered by modern vehicles. This is mainly due to a
solution-oriented approach to security problems. The model-
based technique SAM (Security Abstraction Model) adds to the
early phases of (automotive) software architecture development
by explicitly documenting attacks and managing them with
the appropriate security countermeasures. It additionally estab-
lishes the basis for comprehensive security analysis techniques,
e.g., already available attack assessment methods. SAM thus
contributes to an early, problem-oriented and solution-ignorant
understanding combining key stakeholder knowledge. This paper
provides a detailed overview of SAM and evaluates this security
technology using interviews with industry experts and a grounded
theory analysis. The resulting analyses of this evaluation show
that SAM puts the security-by-design principle into practice
by enabling collaboration between automotive system engineers,
system architects and security experts. The application of SAM
aims to reduce costs, improve overall quality and gain competitive
advantages. Based on our evaluation results, SAM is highly
suitable, comprehensible and complete to be used in the industry.

Keywords–Automotive Security; Automotive Software Engineer-
ing; Security Modeling; Model-based Security; Autonomous Driv-
ing.

I. INTRODUCTION

Modern vehicles are interconnected computer networks
in which many electronic control units (ECUs) communicate
with one another and with the environment (Vehicle-to-X
communication). In recent years, car manufacturers have been
producing vehicles that have an online connection and offer
cloud services, such as the mobile app from Tesla, BMW iDrive
or Audi Connect. In most cases, the user can actually monitor
or control parts of the vehicle via a mobile application or cloud
service. These convenience features are intended to attract new
customers, but can also be access points for new attacks [1].

Considering the fact that autonomous vehicles will continue
rather than reverse the trend towards more communication
interfaces for reasons of functionality, safety and comfort,
making collective research efforts in the field of vehicle security
understandable; after all, human lives are at stake every time
these “driving computers” are the target of attacks.

As far as security experts are concerned, it should be noted
that car attackers do not target cars the same way as they attack
desktop computer systems, because cars use different networks,
protocols and architectures [2], [3]. In addition, vehicles
often contain obsolete legacy mechanisms with unsecure and
unencrypted protocols (e.g., Controller Area Network (CAN)) in
their system design, because they were originally not designed
in accordance with today’s security principles [4], [5]. Secure
automotive network architectures were not prioritized in the
past due to the general prejudice that cars are secure due to
their technical complexity (security by obscurity). Sluggish
development processes, lack of standard guidelines and low
societal pressure, due to little attack experience in practice,
lead to a rather slow transformation of automotive development
processes, which systematically implement security by design.

Most existing countermeasures against cyber attacks, e.g.,
the use of message cryptography for encrypting, authenticating
or randomizing vehicle-level network messages, focus on
concrete attacks and do not consider the complexity of the
access options offered by modern vehicles, as shown by Zoppelt
et al. [6]. This is mainly due to a solution-oriented approach
to security problems.

The model-based technique SAM (Security Abstraction
Model) [7] adds to the early, solution-ignorant phases of
(automotive) software architecture development by explicitly
documenting attacks and managing them with appropriate secu-
rity countermeasures. The documentation of the attacks together
with their motivation, vulnerability, attackable property and
other relevant properties is put in relation to the entire system
description by SAM being an annex to the domain-specific
architecture description language EAST-ADL [8]. Thus, all
available information about the system is linked with potential
attack scenarios at an early stage of the automotive system
development and cooperation between the key stakeholders is
made possible. The problem-oriented documentation allows
automotive system developers and security experts to gain a
comprehensive picture of the overall attack situation before

223

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



developing a solution that otherwise may be too short-sighted.
Zoppelt et al. [7] presented a Security Abstraction Model

(SAM) for automotive software systems. In this publication, for
the first time, we present a comprehensive description of SAM,
put it in context with key security challenges for autonomous
driving and evaluate it using grounded-theory evaluation based
on interviews.

In this paper, we show:

• A systematic discussion of the current state of the
art for security techniques along the V-Model as a
common software engineering practice.

• A detailed description of SAM, including all of its
metamodel entities.

• An evaluation of the security technique via grounded-
theory interviews with industry experts.

The rest of this paper is structured as follows: Section II
reviews related work on security architectures for automotive
software systems. Section III reviews the state of the art on
attacks on modern vehicles and automotive security modeling.
Section IV discusses possible attack scenarios and the security
challenges in the automotive domain. Section V describes
the Security Abstraction Model in detail, including all of
its metamodel entities. In Section VI we evaluate SAM and
elaborate on the interviews and qualitatively analyse the results
via grounded theory. Section VII concludes the paper and gives
an outlook on future work.

II. RELATED WORK

The ISO/SAE 21434 “Road Vehicles—Cybersecurity engi-
neering” standard [9], which is currently under development at
the time of writing this paper, proposes the introduction of se-
curity work packages, security concepts and architectures along
the V-Model [10]. It suggests security support before after-sales.
Specifically, during product validation and production ramp-up.
The standard is being delegated between an consortium of 12
countries. The scope of the standard is to define a framework to
include requirements for cybersecurity processes and a common
language for communicating and managing cybersecurity risk
among stakeholders. Our work considers the early efforts and
design principles of the ISO/SAE 21434 and integrates them
into the EAST-ADL.

The SAE J3061 “Cybersecurity Guidebook for Cyber-
Physical Vehicle Systems” [11], also only available as a work in
progress, wants to establish a set of high-level guiding principles
for cybersecurity as it relates to cyber-physical vehicle systems,
including lifecycle process frameworks and information on
common existing tools and methods.

Although not much final information on those standards is
currently available, we join and unite many of the proposed
methods and principles in our contribution and show its practical
applicability in a system model.

PRESERVE was an “EU-funded project running from
2011 to 2015 and contributed to the security and privacy of
future vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2X) communication systems. It provides security require-
ments of vehicle security architectures” [12]. The EVITA
project tries to “design, verify and prototype an architecture
for automotive on-board networks where security-relevant
components are protected against tampering and sensitive

data are protected against compromise. It focuses on V2X
communications and provides a base for secure deployment
of electronic safety applications” [13]. Holm [14] features a
Cyber Security Modeling Language (CySeMoL) for enterprise
architectures. Juerjens [15] introduces UMLSec, which allows
to express security-relevant information within the diagrams
in a system specification. Other solutions include INCOSE
work on integrating system engineering with system security
engineering [16], NIST SP 800-160 [17] and other NIST work
on cyber-physical systems [18].

All these solutions have one essential downside: Other
than SAM (see Section V), they are stand-alone and are
not integrated into an existing system model. SAM is fully
integrated into EAST-ADL. In comparison with alternative
solutions, a tightly coupled solution with the system model
enables a seamless integration of a security model into a system
model that is extensively used in the automotive industry. This
helps overall acceptance and increases probability for adoption.
The tight interplay of SAM with existing system models
architectural considerations and practical security considerations
together.

III. STATE OF THE ART

The automotive core development process is organized
according to the traditional software engineering V-Model [10].
Each phase of the V-Model stands for a coherent set of process
steps in which a set of artifacts are produced. The phases
are logically organized, not temporally. In the system analysis
phase, requirements are elicited and documented, in the system
design phase, a logical, function-oriented architectural structure
is developed that is the basis for both the hardware and software
development phases, which results in the implementation
of the automotive system. In the following, we discuss the
current state of the art for security techniques along the
V-Model as a common software engineering practice. For
that, we will differentiate between the four major phases of
software engineering, namely analysis phase, design phase,
implementation phase and software test. Moreover, we will also
touch on the topic of security techniques during maintenance,
since this is part of the extended V-Model.

A. Security Techniques in Analysis Phase
In the system analysis phase, requirements are elicted and

documented. The current state of the practice for security
techniques in this phase is to capture requirements from
a specification or textual annotations of the system model.
Security experts identify threats and vulnerabilities of a system,
while software engineers fix bugs and implement security
functionality, e.g., cryptographic functions. System architects
define the architecture of the system (i.e., the software and
hardware topology), taking—among other things—security
requirements into consideration.

A case study conducted by Zoppelt et al. [7] has shown that
textual annotations cannot fully explain security scenarios in
a detailed, yet compact manner. The technical details and the
relevance of the threat get lost because the software engineers
could not decide for what purpose or security goal textual notes
were intended. Security has an inner complexity, especially
considering the requirements entailed. Requirements alone are
not sufficient enough. System architects and security experts
need to be able to mutually annotate the same model. Only

224

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



then they can make the necessary adjustments to the system’s
architecture. A better practice is to define a set of security
goals and systematically derive security requirements from a
common architecture model and reference architectures.

Threat modeling and risk assessment is a basis for security
requirements. Studies like Kadhirvelan’s work [19] have shown
that new processes, standards, methods and tools are necessary
for evaluating the security and safety of software-intensive
automotive systems.

Results of the analysis phase (mostly requirements) are then
used in the design phase to deduce attack vectors and think of
solutions according to derived requirements.

B. Security Techniques in Design Phase
In the system design phase, a logical, function-oriented

architectural structure is developed utilizing the requirements
(for both software and hardware) from the analysis phase. Many
design decisions can be derived from knowing, analyzing or
building different attack vectors a potential adversary has to
target the system.

Attack vectors are a path or means by which an adversary
can gain unauthorized access to a target system [20] or which
hurts one or more security goals. Attack vectors can be
identified and extracted via attack trees. Attack trees can be
used to illustrate complex attack structures. The root of an
attack tree describes the main goal or motivation of an attack,
e.g., controlling certain functions of the target vehicle. Every
sub-attack needs to be completed in order to fulfill the parent
attack in the tree. The leafs of the attack tree are atomic actions
or conditions. A complete path from one of the leaves to the
root of the tree represents a concrete attack vector.

Moreover, security techniques in design phase utilize various
systems for attack rating and threat analyses. Those techniques,
e.g., the CVSS [21], allow for an early evaluation of essential
security measures. The CVSS is an acclaimed industry standard
for rating vulnerabilities in computer systems. The CVSS
bundles the result of threat analyses via multiple different
metrics, e.g., attack complexity, security goal impacts, etc.
and produces a numerical score reflecting its severity. Forcing
developers to think about attack vectors and vulnerability
already in design phase and conducting a CVSS analysis,
ensures that errors are detected early. This way, expensive
corrections can be prevented from the beginning. Unfortunately,
this is not the case. The current state of the practice shows that
OEMs forego this analysis at an early stage. We are trying to
contribute to this problem with the solution approach presented
in this paper. Alongside CVSS—which is not per-se automotive
related—more scoring systems exist, e.g., the SecL levels from
the SAHARA method [22].

Another significant design choice is how modern vehicles
communicate critical- and safety-relevant commands between
different types of ECUs. The most popular broadcast network
used for communication—even today—is the CAN bus [23].
CAN bus messages are unencrypted and unsigned by default, be-
cause back in the 80’s—when CAN was designed—automotive
security was not perceived a major issue. Remote exploitation
of a single ECU item on the CAN bus causes a major security
threat because it allows an attacker to send valid (and potentially
harmful) messages over the bus to critical parts of the vehicle’s
ECU network. Modern vehicles have a tremendous amount

of remote attack surfaces like wireless protocols, mobile
application support and more. Examples of specific remote
technologies are the passive anti-theft system (PATS), tire
pressure monitoring systems (TPMS), remote keyless entry
(RKE), Bluetooth, radio data systems (3G, 4G, LTE, 5G,
etc.), Wi-Fi and telematics. Typically, infotainment systems
tend to feature Internet access and support for third-party
applications. Various attacks [24] have shown that adversaries
are able to cause serious threats by compromising a vehicle’s
ECU (or adding an external device) and sending malicious
CAN commands to the devices listening on the bus. Once the
adversary has the ability to send arbitrary CAN messages, she
is able to control the braking system, engine behaviour, the
air vents, (un-)lock the doors, etc. Therefore, there is a strong
need to secure the vehicle before the adversary can gain access
to the CAN bus. If the adversary has access to the powertrain
it is already too late.

Common countermeasure decisions in design phase con-
sider network bus separation. By conceptually and physically
separating safety-relevant ECUs from the remaining network
system, many attack vectors can be mitigated. In reality, many
ECUs are still connected physically, but are being separated
through higher protocol abstractions, e.g., Unified Diagnostic
Service (UDS) or virtualized applications. Those happen in
implementation phase.

C. Security Techniques in Implementation Phase
According to the V-Model, the proposed countermeasures

are deployed in the implementation phase.
On the hardware side, implementation may differ by

different physical bus systems and wiring. If one or some
of these applications or services become vulnerable to hacking
attacks over the network, an adversary might be able to
control a crucial participant in the physical network of the
vehicle: the CAN bus. Another approach in the automotive
domain is Automotive Ethernet, though, it is not expected
to fully replace the CAN bus. CAN will continue to exist
as a low-cost component, for example for connecting low-
cost and computationally weak actuators and sensors with
their corresponding ECUs or gateways, rather than be used
as the main powertrain. As of today, the LIN-bus (Local
Interconnect Network) is used for this type (low-cost, low-
risk) of connection.

Cost is a limiting factor as well, when it comes to
implementing expensive hardware into the vehicle. Automobile
manufacturers prefer to spend more money on the salaries of
programmers (fixed costs; used for entire fleet) rather than
spending a cent more on a hardware part of a vehicle (variable
costs; for each vehicle) because of the huge market scale. This
means that hardware modules like TPMs (Trusted Platform
Modules) are unattractive (cost, weight, space) as a key storing
solution for each and every communicating part in the vehicle.

On software side, different protocol variations can be used
to implement security measures. Some network protocols like
ISO-TP, UDS and OBD2 are on a higher level of abstraction
that remedy a few shortcomings of CAN. Figure 1 illustrates
selected automotive protocols discussed in this paper in the
ISO/OSI reference model.

Although the CAN specification describes CAN as un-
encrypted by default, a sound solution for encryption and

225

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 1. Selected automotive protocols classified in the ISO/OSI reference
model

authentication is necessary to ensure a safe and secure distri-
bution of critical new software over this public channel. In
the automotive domain, there are not only software updates
to consider, but hardware updates as well. If a workshop, for
instance, replaces one of the brakes in a vehicle, they might
also replace the corresponding ECU. In that scenario, how
will the new cryptographic key (for message cryptography) be
obtained? Common key distribution techniques like the Diffie-
Hellman key exchange [25] are difficult to implement, since
many of the smaller network participants are low-cost and
computationally weak ECUs. These ECUs often do not feature
enough memory or CPU power to perform those cryptographic
algorithms and methods. Message cryptography on the CAN
bus is not only hard to realize due to the strong network
complexity, where key distribution is a difficult problem, but
because an adversary in control of an ECU also gets access
to the keys stored on that device. For some parts of the
vehicle, where stronger threat models are required, e.g., keyless
entry systems, emerging technologies like Password Hardened
Encryption (PHE) services [26] are promising candidates
for securing system components where classic challenge-and-
response techniques are insufficient. Protocol implementations
of UDS, for example, feature a security seed mechanism that
hinders attackers from getting advanced security access. It
is shown, however, that weak ciphers or a badly executed
implementation of such protocols still allow for successful
attacks, e.g., shown by Garcia et al. [27].

D. Security Techniques during Software Test

The implemented countermeasures for the attack vectors an-
alyzed in design phase are tested during software test. Software
test in the V-Model verifies that the software is built according
to the specification given by the client. Additionally, security
testing techniques are quite different to classic software test.
Mostly—as is later shown in the evaluation section—security
techniques are not even part of the software engineering process.
Penetration testing and vulnerability assessments are familiar
techniques to check a system for vulnerabilities and security
measures. Currently, OEMs are starting to integrate those
techniques into their existing processes. Known penetration
testing techniques are to reverse engineer bus network traffic
or disassembling ECU firmware images trying to get access to
keys, secrets or specific messages.

E. Security Techniques during Maintenance
Vehicles have to be maintained and tested after delivery, thus

over-the-air (OTA) updates are important, albeit challenging,
because there is no secure OTA interface, yet. A clever solution,
like PHE with an authentication scheme could resolve this issue.
In addition, a fully secured and encrypted system excludes
workshops and third-party service providers, which require
open access, e.g., for resetting error codes, etc.

OTA updates are most often pulled and received via the
infotainment unit, which has access to a 4G, LTE or 5G
broadband connection. From there, each and every ECU that
needs to receive an update has to get the new firmware or
software patch from the infotainment unit via the CAN bus.
Rolling out sensitive data, especially new firmware or security
patches in case of OTA updates over the CAN bus is incredibly
critical and a major liability. OEM updates must be checked
and validated before they can be deployed to the range of ECUs
connected to the CAN bus. Faulty network configurations and
the lack of authentication checks for OTA updates and patches
increase the risk of cloud and botnet attacks, e.g., Mirai [28].
Basically, cloud features and OTA updates have to be considered
skeptically from the start. Even if the distribution source of
the software is the OEM, attacks are still possible. A potential
attacker might have found a way to distribute his malware over
the OEM’s infrastructure (e.g., their servers) and as a result
a trust problem arises. It is fair to assume that any kind of
roll-out (software updates, cloud data) is untrusted until the
key distribution problem has been solved. Even if a solution
for key distribution in heterogeneous CAN bus networks is
developed, the number of remote attack vectors will rise harshly
in comparison to the number of direct attack vectors.

IV. AUTOMOTIVE ATTACK SCENARIOS

This section describes the motivation of our approach. This
motivation is necessary to highlight the threats and dangers of
automotive attack scenarios and attack vectors. Section V will
describe how to assess them in more detail with SAM.

Security goals like authenticity, integrity, confidentiality, etc,
are especially important to make sure that the safety-critical
software of the vehicle stays untampered. The following is a
non-exhaustive list of attack vectors that cause major threats
to automotive software systems:

• Injection of CAN frames from ECUs that were taken
over after the remote attack (e.g., replay attacks,
spamming attacks, etc.) [24], [29], [30]

• Reverse engineering of CAN frames by filtering by
arbitration IDs and identifying frames via tools like
cansniffer or other can-utils [31]

• Rolling out malicious (possibly unsigned) firmware to
ECUs [24], [29], [30], [32], [33], [34], [35], [36]

• Gaining remote control access to the vehicle using
the OEMs cloud and/or mobile application’s infrastruc-
ture [33], [35], [37], [38]

• Getting SecurityAccess via Unified Diagnostic Services
(UDS) [39]

• Controlling the car via Onboard Diagnostic (OBD)
injection [40]

• Remotely breaking into the telematics unit [41]

226

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



• Exploiting remote keyless entry with software-defined
radios [27]

• Denial of Service (DoS) attacks, e.g., as shown by
Palamanca et al. [42]

• Infecting the system with ransomware. [43]

The easiest way to understand the SAM metamodel is to
explain which piece of information the individual language
components (on the M2 level) actually represent in a concrete
M1 model. Therefore, in this section we present an already
published attack, which we use to make the individual language
building blocks accessible in an exemplary manner in addition
to the conceptual explanation. SAM presented in this paper
is a tangible solution for this kind of security analysis and
security by design. All information needs to be documented
in a system model that takes attack modeling for automotive
software systems into account. The latest version of SAM
introduces new attributes for rating these kinds of attacks.

V. DESCRIPTION OF THE SECURITY ABSTRACTION MODEL

In this section we describe our innovative contribution:
a Security Abstraction Model (SAM) language specification
for the automotive modeling environment as an extension for
the EAST-ADL. We clarify the differences between security
modeling and functional safety modeling and describe our
metamodel entities of SAM to provide a comprehensive
modeling environment for automotive security modeling. The
entities can be used on the type-level (M1) to create functional
architectures for safe and secure automotive systems. SAM is
available as an open source project [44] and contains a concrete
set of security modeling entities that are fully compliant to
the EAST-ADL and AUTOSAR [45] specifications. As such,
SAM is a proposition for an annex extending EAST-ADL with
security modeling facilities, which are currently not covered
by the existing language specification.

A. SAM Metamodel
For the sake of better understanding, we will use a published

attack from the literature as a modeling example. In the
following, brief descriptions of the attack details are given
along with the SAM entity description used for representing
the attack details. The full SAM metamodel is illustrated in
Figure 2. Afterwards, the complete SAM model figure is shown
on type-level (M1) in Figure 3.

We describe the attack in detail in the following. The Tesla
Remote Control Attack [33], [35], [37]: This attack enables an
adversary to break into the vehicle via the infotainment unit. The
researchers of Tencent Keen Security Lab have demonstrated
how to remotely control and steer the vehicle, how to disturb
the autowipers and how to eliminate the lane detection of the
vehicle.

Attack: Represents a cyber-physical attack on the system
described by an attack vector. An attack vector is a path or
means by which an adversary can gain unauthorized access
to a target system [20] or hurts one or more SecurityGoals.
Attack vectors can be identified and extracted via attack trees.
In an attack tree, child nodes are conditions which must be
satisfied to make the direct parent node true. When the root
is satisfied, the attack is complete. Typically, child nodes on
the same level are linked with “OR” conditions. SAM uses a

SubAttackGroup to also allow “AND” conditions and any other
project-specific conditions between the grouped subattacks.

The attack can be performed over a remote network connection.
The vehicle user does not need to interact actively with the
vehicle to allow for the attack to work. The privileges required
for this attack are high. Also, impact on confidentiality, integrity
and availability is high as well. As a result, an adversary can
cause serious harm to passengers and other road users. As this
attack is a research approach by security experts, the actual
adversaries are not real-world attackers with bad intentions.
They do have a knowledge-level, however, which they can
provide for ill-minded attackers.

Adversary: Attacks are performed by either an individual or
the system’s environment. Either way, adversaries are derivates
of the system environment because they are not part of the main
systems model and interact from the outside. An adversary
can, however, come from within the system, e.g., from an
unauthorized part or device.

Environment: This entity describes a collection of the
environment functional descriptions. Many circumstances may
be important for the attack description and a better under-
standing of the attack vector. Adversaries and security experts
are conceptionally part of the environment. The Environment
is not a newly introduced entity as it already exists in its own
package, though it is extended due to the adversary’s ability
to use the environment for her attacks, e.g., external or real
world attacks via adversarial examples [46], [47].

In a real world scenario where adversaries with bad intentions
perform the attack, the motivation behind such an attack would
be to harm car occupants or other road users by crashing the
vehicle. The attack therefore has a high safety relevance.

AttackMotivation: An abstract representation of the adver-
sary’s motivations. This motivation is especially useful, when
no other information, e.g., broken security goals, is available
from the start. In that case, it offers an easy differentiation of
the degree of severity and one can prioritise attacks according
to their motivation. Moreover, it is fairly easy to find out if
certain attack motivations are causing safety hazards, e.g., when
tampering with safety-critical systems or modifying software-
components related to the reliability of the system. The safety
relevance can either be “High” (system failures), “Low” (fail-
safe) or “None”. It turns out that every single attack (or
sub-attack) is part of a larger attack motivation. Through
generalization methods we found out that there are only four
higher motivations behind each attack: Harm, information
retrieval, financial gain and product modification. There is also
the motivation of prestige and other abstract ideals but those
inherently cause consequences in at least one of the other
motivations so they are not listed here. There is at least one
AttackMotivation in an attack tree (its root). AttackMotivations
collide with SecurityGoals. All attacks can be subsumed under
one of those higher motivations:

Harm: A threat by an attack meant to actively or passively
harm passengers and other road users, e.g., crashing the vehicle
or causing a threat to other road users.

InformationRetrieval: A threat by an attack meant to, e.g.,
invade the privacy of passengers, other road users and other sit-
uational or political stakeholders, e.g., the OEM. Furthermore,

227

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 2. SAM Metamodel

getting access to other types of info, e.g., software/firmware
by performing reverse engineering. Even research interest to
break into the system for academic reasons is subsumed by
this motivation.

FinancialGain: A threat by an attack meant to steal or
cause financial or material gain for the adversary, service
workshops or insurance companies. This usually leads to a

financial loss for the owner or the OEM.

ProductModification: A threat by tampering with the
product’s specification, e.g., getting more functionality out the
car or tampering with the software in general, e.g., down-
/upgrading or performance tuning.

The affected item in the Tesla Remote Control Attack is the

228

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



AutoPilot ECU (APE).
Item: The Item entity identifies the scope of safety/security

information and the safety/security assessment. Safety/security
analyses are carried out on the basis of an item definition and
the safety/security concepts are derived from it.

The exploited vulnerability in the Tesla attack is the Webkit
browser framework of the infotainment unit, which offers the
JSArray function and can be used for privilege escalation.

Vulnerability: An abstract failure of a set of items, i.e.,
an inability to fulfill one or several of its requirements. In
order to represent the weak spots in the system architecture,
a vulnerability describes the weakness and affiliation to one
or more Items. Vulnerabilites are concrete definitions of faulty
software or configurations and requirements must be derived
from them. Vulnerabilites have a scope. The scope of a
vulnerability is changed, if a successful attack affects more
security goals and vulnerabilities, i.e., enabling follow-up
attacks.

In case of a successful attack, adversaries can cause functional
safety hazards by tampering with or disabling safety-critical
functions of the Tesla vehicle.

Hazard: The hazard metaclass represents a condition or
state in the system that may contribute to accidents. The hazard
is caused by malfunctioning behavior of E/E safety-related
systems including interaction of these systems.

The exploited vulnerability changes the scope of the attack,
meaning that all six security goals are broken if the attack is
performed successfully.

SecurityGoal: This entity offers enumerations for common
security goals [48] across any communication or data flow.
These goals are: Confidentiality, Integrity, Availability, Authen-
ticity, Reliability and Accountability.

The exploited vehicle feature is Tesla’s Autopilot, used for
autonomous driving. In this case there exists a 1:1 relationship
between item and vehicle feature.

VehicleFeature: Provided by the Dependability package, a
VehicleFeature represents a special kind of feature intended for
use on Vehicle Level. Items consist of a set of VehicleFeatures.

The JSArray function is the attackable property the adversary is
looking for, i.e., his anchor of the attack. Attackable properties
are concrete characteristics that describe the potential attack
surface, e.g., if they have known security bugs and flaws like
the JSArray function.

AttackableProperty: Characteristics or certain properties
of Items an adversary searches / needs for his attack to succeed,
e.g., wireless communication capabilities, used ciphers, features,
etc. If exploited, attackable properties allow the adversary to
successfully perform an attack and define a vulnerability.

After analysing the attack properties via the CVSS metrics,
one can calculate the base score and temporal score of the
attack and derive the requirement: code signing protection for
over-the-air (OTA) updates.

Score: Score is the entity for attack rating. SAM allows for
any generic type of scoring system. Properties of other entities
will provide all the relevant information that are needed for
attack rating. The attribute calculationFormula describes which
scoring system is used, e.g., CVSS, SecL, etc. Alternatively, an
empirical value or expert opinion can be given if this attribute
is left empty. Section V-C will explain scoring systems for SAM
in broader detail.

Requirement: To define requirements to fix vulnerabilities,
a so-called requirement is the packed result of lesson’s learned
and is derived from an attack. It represents a capability or
condition that must (or should) be satisfied.

The described attack is only possible when the vehicle is “Slow
or Standing”. Otherwise, the vehicle does not allow to use the
Webkit browser. The Tesla remote control attack is possible
in any operational situation of the vehicle. Once the adversary
has gained full access over the system she can fully control
the system over the CAN bus.

OperationalSituation: In security modeling, it is often
beneficial to know about this situation, e.g., whether the car is
standing, driving or in parking mode. An operational situation
is a state, condition or scenario in the environment that may
influence the vehicle. It may be further detailed by a functional
definition in the EnvironmentModel. Examples are: “Driving
on highway”, “Driving in city”, “In reverse gear”, “Parking”,

“Any”, etc.

SAM has no explicit specifications for a security concept.
However, SAM proposes Common Criteria (CC) ISO/IEC
15408 protection profiles [49] as a possible solution. Common
Criteria is an established standard in the security domain
to provide guidance during the development of dependable
systems.

SecurityConcept: Represents the set of security require-
ments that together fulfill at least one SecurityGoal. An
exemplary structure and classification of respective security
requirements can be found in Common Criteria (CC) ISO/IEC
15408. Ideally, the security concept is motivated by analyses of
the documented attacks connected to the respective item (in this
case, the motivatedBy property is set to “documentedAttacks”).
Otherwise, security concepts can just as well be motivated
by standard or certification demands (then, the motivatedBy
property is set to either “standard” or “certification”.)

SecurityConceptMotivation: This entity offers enumera-
tions for motivations of security requirements. These motivations
are: “standard”, “certification” and “documentedAttacks”.

B. Methodical Context for SAM

In order to protect and defend a system from attacks and
threats it is necessary to identify and classify these threats
first. The categorization of AttackMotivations already creates
methodological benefits with regard to the identification of
attacks. Systematic security analyses can be used to quantify the
required effort for a potential attack. There is a constant battle
between the attacker’s efforts and the layers of security devised
by system engineers. Because no system can be completely
secured against all sorts of attack, system engineers compromise
on varying levels of security abstractions to reach an acceptable

229

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 3. SAM model of Tesla Remote Control Attack—CVSS v3.0 Vector String: CVSS:3.0/AV:N/AC:H/PR:H/UI:N/S:C/C:H/I:H/A:H/E:P/RL:O/RC:C

degree of security. Hence, any security system ultimately results
in a trade-off.

Although SAM does not instill security in the system design,
it enforces reflection about attacks and their consequences for
the system, ideally as a collaboration between system engineers
and security experts. While SAM’s metalevel is rather abstract,
its application becomes concrete on metalevel M1. Notice that
the multiplicity from AttackMotivation to Item is 1..* to 1..*,
requiring the system engineer to describe at least one attack
motivation for every item of the automotive system. This is an
important methodical support for the discovery of threats. If a
single item has no associated motivation for an attack, increased
caution is required, e.g., because no attack against the item is
known yet. In this case, system engineers might simply desist
to scrutinize an item for possible attack motivations. With the
1..* multiplicity, however, they are forced to think about at least
one attack motivation for every item. Therefore, the reason for
this decision is to eagerly enforce the methodology of SAM’s
security approach.

The main difference between safety risks and security threats
is that security threats do not happen at random (i.e., they are not
bound by probability) but always occur in worst-case scenarios.
For safety hazards, a statistical probability can be assumed.
Cyber attacks are performed by an intelligent attacker at the
most suitable time for the adversary and at the lowest defense
barrier. Furthermore, it can be misleading to confuse safety
goals with security goals. Security threats, however, can cause

safety hazards and vice-versa. Though it is not recommended
to treat them in the same way during the system design phase
for reasons mentioned above. Additionally, text annotations
are bad practice. Usually, the transfer from annotations in
natural language is imprecise and the original intent of the
security experts, which is needed to represent the system model
and its security mechanisms accordingly, might be lost during
the transfer. An extensive reuse of security solutions can be
established by embedding SAM in the “Dependability” package
of EAST-ADL and the subsequent integration into AUTOSAR.
This makes it possible to keep the development effort at a
minimum and to implement comprehensive safety and security
solutions in a wide range of applications in the vehicle.

SAM offers the possibility to model socio-technical systems
by providing the modeling entity Adversary. Security goals
need to be fulfilled in a socio-technical context or a socio-
technical system. The definition of a socio-technical system is
an organized group of humans and connected technologies,
which are constructed in a certain manner to produce a
specific result [48]. Nevertheless, trying to improve security
simply by adding cryptography to the system is a fallacy. At
best, cryptography can ensure confidentiality but cannot cover
security goals like availability, reliability or accountability. With
our approach, we offer co-engineering processes of security
and safety for automotive software engineering (security and
safety by design).

230

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



C. Using Generic Scoring Systems for SAM

The latest major release of SAM [1] introduced many new
attributes to the modeling entities, which allow for using well-
known security scoring systems like CVSS [21]. In order to
be able to keep SAM up-to-date and gain some flexibility
by not making a strong commitment to one particular system
we designed SAM to use any generic scoring system. When
modeling attack scenarios, users of SAM can choose among
their favorite. Here, we will use the CVSS. The latest version of
SAM is available open source [44]. The architecture description
has been completed to the extent that common scoring systems
are now able to find the necessary information and thus perform
their analyses. Inspired by the CVSS, which is an acclaimed
industry standard for rating vulnerabilities in computer systems,
we added new attributes to some of SAM’s entities. The
CVSS proposes three different metric groups for calculating
the vulnerability scores. In the following, an explanation of
the interplay between SAM and the metrics is given. The
assignment of the attributes to the meta entities and partly their
naming does not come from CVSS, but was developed by the
athors.

The Base Metric Group reflects the intrinsic properties
of Attack: from SAM’s automotive-oriented perspective, this
group therefore indicates the characteristics that result if the
attack in question is aimed at the automotive domain in
general. The entity AttackableProperty refers to the prop-
erties of the attacked item that are beyond the control of
the attacker and must exist in order to exploit the vulner-
ability, for example, in the case of a side channel attack,
the use of shared caches within a multicore system. The
attribute conditionPrerequisiteComplexity (“Low”
and “High”) in the AttackableProperty refers to the complexity
of encountering or creating such conditions. For example,
in the case of the side channel attack mentioned above,
the conditionPrerequisiteComplexity is “Low” be-
cause shared caches are to be expected nowadays. It would
be “High” if the attack made it necessary for all tasks on
all cores to use one single common cache. When evaluating
this property, all user interaction requirements for exploiting
the vulnerability must be excluded (these conditions are
recorded in the property privilegesRequired of Attack
instead). If the conditionPrerequisiteComplexity
is “Low”, the attack is more dangerous than if the
conditionPrerequisiteComplexity is “High”. The
property privilegesRequired describes the level of priv-
ileges an attacker must possess before successfully exploiting
the vulnerability. This metric is greatest if no privileges are
required. Also, the Attack entity has been extended with the
attributes accessRequired and userInteraction. The
attribute accessRequired describes the context in by which
vulnerability exploitation is possible. It must not be confused
with general attack vector handling in SAM, which describes
the path from attack motivation of an attack tree to one of
its leafs. Whether the user or driver of the vehicle needs to
interact with the system in a certain way, e.g., by pressing a
button, is captured in userInteraction. Attacks that do not
require any user interaction increase the score of the attack. The
Temporal Metric Group allows for adjustment of the score
after more information of the exploited vulnerability is available.
If, for example, exploit code has been published or the
report confidence of a vulnerability is confirmed, the

temporal score rises. In SAM, temporal metrics are part of the
vulnerability. The Environmental Score Metrics additionally
enable the general CVSS Score (resulting from the Base
Metric Group) to be adapted to the specific (automotive)
company. The metrics are the modified equivalent of the
base metrics weighting properties related to the concrete
company’s infrastructure and business risk. SAM offers a
fully comprehensive basis to analyse the CVSS Base Metric
Group, which means that SAM can also be used to evaluate the
Environmental Metric Group. Environmental Metrics do not
require any additional information beyond the Base Metrics,
but merely a readjustment of the analysis perspective towards
the concrete company. This means that the security scoring
analysis can be carried out entirely by an analyst based on the
available information provided by SAM.

This allows for more flexibility and SAM does not have to
be adapted for any future CVSS updates. All attributes used
for attack assessment are of the type String. This allows for
SAM to be used with generic assessment techniques and is not
tightly coupled with the CVSS attribute descriptions. In the
model itself, or from the model itself, a CVSS score cannot
be calculated automatically anyway. Doing so would happen
in a behaviour model while SAM models are structure models.
But if a security analyst is familiar with the CVSS, she will be
able to calculate the CVSS score with all the information that
is provided by the structure model. It is therefore still possible
to find related information about the attribute types (“High”
and “Low”, etc.) in the notes of the meta model, but does not
lead to problems in case of non-compliance.

The additional benefit of having SAM models compared
to directly giving the properties and a vulnerability score is
that not only the CVSS (or scoring systems in general) is
used, but also the possibility to construct attack trees via
sub-attacks and follow-up attacks. SAM is also a method for
hierarchical processing of attack vectors. In terms of substance,
this goes beyond the classic attack rating. SAM makes the
scoring system available to the software architect or in other
words: SAM’s strength lies in its ability to integrate with
existing automotive architectures. What is brought together are
architectural considerations with pure security considerations
as regards the attack itself (attack vectors that can be derived
from it, motivations, target areas) and all scoring systems that
are known, which can derive all necessary information from
the properties.

VI. EVALUATION

To prove that SAM is feasible, we have evaluated our
solution approach through “Grounded Theory” [50] interviews
with two experts (in the following we will refer to them as
E1 and E2) of two different automotive software companies
from the industry. Both interview partners have a professional
background in automotive systems engineering and/or em-
bedded security. The interviews were structured as follows:
First, we asked some general questions about automotive
security modeling and current processes in the analysis, design,
implementation and test phase. Afterwards, the authors gave
a brief introduction and explanation of SAM. During the
presentation, a real-world attack was shown and illustrated
to show how to use SAM. Together with the interview partners,
we jointly created a reference SAM model for a real-world
usecase. Figure 4 illustrates a Function Unlock Attack. The

231

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



attack describes an attack vector that allows an adversary (here:
a third party workshop) to unlock specific vehicle functions for
the driver of the vehicle via tampering with the TimeServer item.
The answers for the remainder of our interview were related
to this modeling example. Finally, the industry experts were
asked questions about the five categories: suitability, scalability,
comprehensibility, completeness and tool support.

A. General Findings
Our interviews have shown that there is no clear process

for security engineering, yet. Companies are in the process of
creating them. Hopes are that the process will be similar to
the ISO 21434 and ISO 26262 standards for safety, which is
currently seen as a general guideline for automotive engineers.
The SAE J3061 standard would also be a good starting
point if engineers want to get started with this matter. Our
interviews show that a detailed development process for security
requirements is highly desired. Many projects in the industry
are done by service providers, where the instructed companies
integrate security into the finished standard components. On
the part of Tier 1 there are also no concrete specifications for
the security development process

Both experts confirmed that they are indeed working
according to the V-Model. They have quite clear process
models. Ideally, they get a specification, write a requirement
specification, create an architecture for the software, create
module specifications, derive tests from them, test the modules,
then test what is integrated. Depending on what needs to be
developed in the end, they then develop a piece of software or
an entire ECU. Afterwards, they go up (in the V-Model) until
they have finally tested all the specification requirements. They
do this for all requirements.

For some requirements, security is not in the focus. Even
if security is mentioned at all, it is only given implicitly by
implementation instructions or which software to use. Putting
a security concept in place especially for all phases of the
V-Model would be desirable, even though integration might be
challenging.

B. Suitability
We asked the experts how existing processes could use

SAM in their current workflow or if it could even be integrated
into their processes. We also explained the intention of SAM
to facilitate the exchange between security experts, software
architects and software engineers and asked, if it serves this
purpose. We tried to find out if SAM is a suitable solution
for the industry and whether or not it solves current industry
questions. Finally, for this category, we wanted to know if SAM
is ready for the development of autonomous vehicle systems
and what could be missing. The following is a summary of the
experts’ answers:

Both experts agreed that they could use SAM because it is a
good way of making attacks comparable. A missing process is
that items have to be seen in a way that potentially there has to
be an attack for each item at the time of module specification.
The main problem is that the process is actually driven only
once during development. Attacks, however, only happen during
maintenance. A visualization (like SAM models) would help,
however. A possible solution of integration SAM would be
using SAM models like bug reports for security. With SAM,
they would already have the constraints available. The current

process currently only entails development and delivery. Teams
would need a kind of “response team for security”. Someone
who monitors the whole systems and knows what kind of
hardware-software combinations are rolled out and what kind
of errors there are, e.g., SPECTRE [51]. This could suddenly
affect a huge portion of products that are out in the field. The
response team could classify attacks like this with SAM.

Integrating SAM into workflows is rather difficult for service
providers, but on OEM side it would very well possible.
Analogue to considering ASIL levels, i.e. according to ISO
26262, SAM could be well integrated on the OEM side. SAM
increases transparency and simplifies understanding attacks.
After a training of the team members, SAM would definitely
help and make communication easier, especially because there
are no alternatives. It can be, however, that one could not
understand a bad SAM model without additional textual
description.

Regarding suitability for autonomous driving, the experts
were unsure if this is even possible to answer at this point.
SAM would first have to prove itself in practice and people
would have to work with it so that it could be finally used.
Even if systems would become simpler, software development
would probably become more complex, because there would be
many more lines of code. Moreover, security has to guarantee
that the safety mechanisms still work and that there is a balance
of availability, security and safety. If a car goes into fail-safe
mode with the slightest security suspicion, autonomous driving
is not possible in this scenario.

According to one expert, some modeling entities for
machine learning components could be useful. This is rather
challenging, though, as machine learning components are black
boxes.

C. Comprehensibility
We asked the industry experts if something about SAM is

difficult to understand. Although they understood everything,
an introduction with examples would help beginners getting
started, because SAM is not that formal, rather practical.

D. Scalability
For this category we evaluated for what complexity or size

of a software project SAM is best suited and how developers
would ideally use SAM in practice.

Here, the industry partners disagreed. Although one could
easily create multiple SAM models for more complex scenarios,
one expert believes that SAM might not scale well for bigger
projects. There would be no way to see the overall security
for, e.g., a whole vehicle. To scale it, one would have to
link several SAM models together. Overall models could get
confusing because everything always depends on one item and
vehicles are very complex. However, he said, SAM would be
the right approach for smaller projects.

According to one expert, automotive engineers definitely
have to allocate time for security engineering. SAM would help
with that, because in the end, it would save time if everyone
speaks the same language. There would have to be support
for security techniques. Central offices that have an overview
of which products, which software and which hardware are
currently in the field could use SAM to determine that.

232

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 4. SAM model of Function Unlock Attack—CVSS v3.0 Vector String: CVSS:3.0/AV:L/AC:H/PR:H/UI:R/S:C/C:N/I:H/A:N/E:U/RC:U

In contrary, developers might not want to use SAM because
it is on a relatively high level of abstraction. Fortunately, SAM
has close familiarity to UML and developers could get used
to it quickly. Traceability over requirements would be a good
approach to make them adopt SAM, because they work very
strongly according to requirements and the V-Model and they
can validate their requirements.

E. Completeness
To make sure that SAM is indeed complete, we asked if

the explanations and attributes are complete or what could
be deleted from SAM. Moreover, we asked what a possible
solution would look like for how to add tests to SAM.

During the discussion with the experts it became clear that
some entities cover redundant information at that time. The
current version presented in this paper, however, includes the
latest changes, even the refined changes taken into account after
the interviews. Furthermore, one expert had the opinion that
the score entity might be redundant because all the relevant
information is already in the entities’ properties and could
also be calculated that way. This is theoretically redundant
information. If one would have a modeling tool now, it would
display it permanently and calculate it in the background. It
would not have to exist as an entity. As of right now, it is
shown in its own separate entity.

Overall feedback showed that if users of SAM are already
familiar with security, one could understand all the terms and

explanations presented in SAM. SAM is doing a good job of
illustrating the weak points. So one can deduce test cases from
the model, make them more concrete and test countermeasures
to achieve a certain CVSS score. One could use the score
to adapt the tests and cover the fact that, for example, an
attack is no longer possible and, if necessary, derive further test
cases. However, SAM would actually only show the problem
to engineers: the attack scenario. The resulting actions would
be twofold: Fixing and testing the bug. After the bug is found,
something in the architecture must be changed. Reusability is
an important factor. Someone would have to test the change
and then has to make sure that this bug will not happen again in
future models or products. Someone could consider whether he
can make the test abstract so that it will be fired in the future.
However, one would need a lot more details to automatically
turn it into a test. The tester should, however, be able to look
at the model and write a test from it himself.

F. Tool Support
There is no seamless tool support from SAM/EAST-ADL

to AUTOSAR as of right now. We asked whether or not it is
needed. Furthermore, we asked if an automatic generation of
SAM models (e.g., from tests or code) would be useful. Finally,
we asked for remaining comments, hints and feedback.

One expert was not sure if SAM must fit directly to
AUTOSAR. SAM would be useful for modeling attacks,
AUTOSAR is used for modeling software. Tool support, where

233

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



one could create SAM models with, or where the score is
calculated automatically would be helpful, though, and improve
usability. If SAM is easy to use and a suitable tool would exist,
developers would use it for sure.

The other expert disagreed and told us that an automatic
generation of SAM models would not be necessary at the
moment. He also said that the industry does not know whether
it will stay with AUTOSAR or not. However, SAM can be used
independently at the moment. His experience with AUTOSAR
told him that he would not build too much onto it. One
could automatically generate or update SAM models as post-
processing after modeling, just as one can already generate
code or header files, templates, etc. Leaving SAM the way it
is right now, i.e., without automatic generation, someone has
to think about security himself. It has to be thought of from
the beginning.

General advice we received, suggested a “Getting Started”
or “HowTo” document. This would be helpful for acceptance
in practice. Finally, SAM should be used more on the OEM
side, because vehicles are very complex products and only the
product owner currently have a complete overview over the
vehicle’s components. With SAM, someone can sufficiently
document security thoughts and research, including evaluation.

G. Overall Results
Our industrial evaluation has shown that SAM is indeed

suitable as a solution approach and integration of the methods
used into industry processes is feasible. Moreover, SAM is easy
to understand according to our interviewed industry experts.
Although SAM might not scale for bigger software projects, it
establishes a process to get started with on a smaller scale. Also,
our evaluation shows that SAM is indeed complete and offers
enough tools, methods and descriptions for threat modeling and
attack rating. Evaluation results regarding tool support were
twofold. Further investigations on a practical tool support are
necessary.

Table II shows a summary of the evaluation results. The
symbol keys are explained in Table I.

TABLE I. Symbol key for the evaluation results table

Symbol Meaning

++ High agreement or interest (E1 and E2 agreed)
+ Notable agreement or interest (E1 or E2 agreed)
o Moderate agreement or interest (neither E1 or E1 showed interest)
- Limited agreement or interest (E1 or E2 disagreed)
-- Low agreement or interest (E1 and E2 disagreed)

+/- Mixed agreement or interest (E1 and E1 were of different opinion)

VII. CONCLUSION AND FUTURE WORK

We have presented a detailed description of the Security
Abstraction Model, including all of its metamodel entities. We
have indications that the approch is feasible. The security tech-
nique has been evaluated with industry experts and a grounded
theory analysis. The resulting analyses of the evaluation show
that SAM puts the security-by-design principle into practice by
enabling collaboration between automotive system engineers
and security experts. Future work will concentrate on the
bottom-up approach, i.e., improving embedded security and
network security on the application layer and cryptographic
protocol design, e.g., utilizing PHE. Next steps need to develop

TABLE II. Summary of the evaluation results

Categories and codes Results

General
Process: Along the V-Model ++
Missing process for security ++
Suitability
Processes can use SAM ++
Integration in process ++
Exchange between security experts, architects and engineers ++
Solves relevant industry challenges o
Ready for autonomous driving (AD) +
Is something missing for AD? +/-
Comprehensibility
SAM is easy to understand ++
Scalability
Scales for all sizes of projects +/-
Developers have time to use SAM +/-
Completeness
Nothing should be removed from SAM o
Descriptions and entities are complete ++
Use SAM for testing ++
Tool Support
AUTOSAR tool support +/-
Automatic generation of SAM models --

automotive software solutions to actually be included in the
security concept. Our research focuses particularly on a PHE
authentication scheme for secure authentication in autonomous
car sharing scenarios and fingerprint entry systems. Our work
aims to support security by design in the automotive industry
and SAM offers the necessary insights and fundamentals to
continue conducting relevant research in this domain.

ACKNOWLEDGMENT

This work is funded by the Bavarian State Ministry
of Science and the Arts in the framework of the Centre
Digitisation.Bavaria (ZD.B).

M.Z. was supported by the BayWISS Consortium Digitiza-
tion.

REFERENCES

[1] M. Zoppelt and R. Tavakoli Kolagari, “UnCle SAM : Modeling Cloud
Attacks with the Automotive Security Abstraction Model,” in CLOUD
COMPUTING 2019, The Tenth International Conference on Cloud
Computing, GRIDs, and Virtualization, Venice, Italy, 2019, pp. 67–72.

[2] S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, and L. Kilmartin,
“Intra-Vehicle Networks: A Review,” pp. 534–545, 2015.

[3] W. Zeng, M. A. Khalid, and S. Chowdhury, “In-vehicle networks outlook:
Achievements and challenges,” IEEE Communications Surveys and
Tutorials, vol. 18, no. 3, 2016, pp. 1552–1571.

[4] ISO/IEC, “ISO/IEC 15408-1:2009 - Evaluation Criteria for IT Security,”
vol. 2009, 2009, p. 64.

[5] A. Happel and C. Ebert, “Security in vehicle networks of connected
cars,” 15. Internationales Stuttgarter Symposium: Automobil- und
Motorentechnik, no. March, 2015, pp. 233–246.

[6] M. Zoppelt and R. Tavakoli Kolagari, “What Today’s Serious Cyber
Attacks on Cars Tell Us: Consequences for Automotive Security and
Dependability,” in International Symposium on Model-Based Safety
and Assessment, M. Papadopoulos, Yiannis and Aslansefat, Koorosh
and Katsaros, Panagiotis and Bozzano, Ed., Springer. Springer
International Publishing, 2019, pp. 270–285. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-32872-6 18

[7] M. Zoppelt and R. Tavakoli Kolagari, “SAM: A Security Abstraction
Model for Automotive Software Systems,” in Security and Safety
Interplay of Intelligent Software Systems. Springer, 2018, pp. 59–
74.

234

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[8] H. Blom, H. Lönn, F. Hagl, Y. Papadopoulos, M. Reiser,
C. Sjöstedt, D. Chen, and R. Tavakoli Kolagari, “EAST-
ADL–An Architecture Description Language for Automotive
Software-Intensive Systems–White Paper Version 2.1. 12,”
Hyperlink: http://www.maenad.eu/public/conceptpresentations/EAST-
ADL WhitePaper M2 [retrieved: December 2018], vol. 1.

[9] ISO/SAE, “ISO/SAE CD 21434 - ROAD VEHICLES – CYBERSECU-
RITY ENGINEERING,” https://www.iso.org/standard/70918.html.

[10] W. Dröschel, W. Heuser, and R. Midderhoff, Inkrementelle und objekto-
rientierte Vorgehensweise mit dem V-Modell 97. München: Oldenbourg,
1998.

[11] SAE, “SAE J 3061 - Cybersecurity Guidebook for Cyber-Physical
Vehicle Systems,” https://www.sae.org/standards/content/j3061/.

[12] N. Bißmeyer, S. Mauthofer, J. Petit, M. Lange, M. Moser, D. Estor,
M. Sall, M. Feiri, R. Moalla, M. Lagana, and F. Kargl, “PREparing
SEcuRe VEhicle-to-X Communication Systems,” 2014.

[13] O. Henniger, L. Apvrille, A. Fuchs, Y. Roudier, A. Ruddle, and
B. Weyl, “Security requirements for automotive on-board networks,”
in 2009 9th International Conference on Intelligent Transport Systems
Telecommunications, ITST 2009. IEEE, 2009, pp. 641–646.

[14] H. Holm, M. Ekstedt, T. Sommestad, and M. Korman, “A Manual for
the Cyber Security Modeling Language,” 2013, p. 110.

[15] J. Jürjens, “UMLsec: Extending UML for Secure Systems Develop-
ment,” in International Conference on The Unified Modeling Language.
Springer, 2002, pp. 412–425.

[16] INCOSE, “Systems Engineering Handbook,” in Systems Engineering,
no. August, 2000.

[17] R. Ross, M. McEvilley, and J. Carrier Oren, “Systems Security
Engineering: Considerations for a Multidisciplinary Approach in the
Engineering of Trustworthy Secure Systems,” vol. 160, no. November
2016, 2016.

[18] J. Lee, B. Bagheri, and H.-a. Kao, “A Cyber-Physical Systems architec-
ture for Industry 4 . 0-based manufacturing systems,” Manufacturing
Letters, vol. 3, 2015, pp. 18–23.

[19] S. P. Kadhirvelan and A. Söderberg-Rivkin, “Threat Modelling and
Risk Assessment Within Vehicular Systems,” Chalmers University of
Technology, no. August, 2014, p. 52.

[20] V. L. Thing and J. Wu, “Autonomous Vehicle Security: A Taxonomy
of Attacks and Defences,” in Proceedings - 2016 IEEE International
Conference on Internet of Things; IEEE Green Computing and Communi-
cations; IEEE Cyber, Physical, and Social Computing; IEEE Smart Data,
iThings-GreenCom-CPSCom-Smart Data 2016, 2017, pp. 164–170.

[21] Common Vulnerability Scoring System [retrieved: April, 2019]. [Online].
Available: https://www.first.org/cvss/

[22] G. Macher, A. Höller, H. Sporer, E. Armengaud, and C. Kreiner,
“A combined safety-hazards and security-threat analysis method for
automotive systems,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 9338, 2015, pp. 237–250.

[23] Bosch, “CAN Specification,” Robert Bosch GmbH, 1991.
[24] C. Miller and C. Valasek, “Remote Exploitation of an Unaltered

Passenger Vehicle,” Defcon 23, vol. 2015, 2015, pp. 1–91.
[25] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE

transactions on Information Theory, vol. 22, no. 6, 1976, pp. 644–654.
[26] R. W. F. Lai, C. Egger, M. Reinert, S. S. M. Chow, M. Maffei, and

D. Schröder, “Simple Password-Hardened Encryption Services,” in 27th
{USENIX} Security Symposium ({USENIX} Security 18). Baltimore,
MD: {USENIX} Association, 2018, pp. 1405–1421. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/lai

[27] F. D. Garcia, D. Oswald, T. Kasper, and P. Pavlidès, “Lock It and Still
Lose It—On the (In)Security of Automotive Remote Keyless Entry
Systems,” Proceedings of the 25th USENIX Security Symposium, 2016,
pp. 929—-944.

[28] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot:
Mirai and other botnets,” Computer, vol. 50, no. 7, 2017, pp. 80–84.

[29] C. Valasek and C. Miller, “Adventures in Automotive Networks and
Control Units,” Technical White Paper, vol. 21, 2013, p. 99.

[30] C. Miller and C. Valasek, “CAN Message Injection,” 2016, pp. 1–29.
[Online]. Available: http://illmatics.com/can message injection.pdf

[31] can-utils repository on GitHub [retrieved: April, 2019]. [Online].
Available: https://github.com/linux-can/can-utils

[32] T. Bécsi, S. Aradi, and P. Gáspár, “Security issues and vulnerabilities
in connected car systems,” in 2015 International Conference on Models
and Technologies for Intelligent Transportation Systems, MT-ITS 2015,
2015, pp. 477–482.

[33] S. Nie, L. Liu, Y. Du, and W. Zhang, “Over-the-Air : How We Remotely
Compromised the Gateway , Bcm , and Autopilot Ecus of Tesla Cars,”
Defcon, vol. 1, 2018.

[34] T. Zhang, H. Antunes, and S. Aggarwal, “Defending connected vehicles
against malware: Challenges and a solution framework,” IEEE Internet
of Things Journal, vol. 1, no. 1, 2014, pp. 10–21.

[35] Tencent Keen Security Lab, “Experimental Security Research of Tesla
Autopilot,” 2019, p. 38.

[36] C. Smith and S. Francisco, THE CAR HACKER ’ S HANDBOOK A
Guide for the Penetration Tester About the Contributing Author About
the Technical Reviewer, 2016.

[37] S. Nie, L. Liu, and Y. Du, “Free-fall: hacking tesla from wireless to can
bus,” Defcon, 2017, pp. 1–16.

[38] Tencent Keen Security Lab, “Experimental Security Assessment of BMW
Cars: A Summary Report,” 2018.

[39] J. den Herrewegen and F. D. Garcia, “Beneath the Bonnet: A Breakdown
of Diagnostic Security,” in European Symposium on Research in
Computer Security. Springer, 2018, pp. 305–324.

[40] Y. Zhang, B. Ge, X. Li, B. Shi, and B. Li, “Controlling a Car Through
OBD Injection,” in Proceedings - 3rd IEEE International Conference on
Cyber Security and Cloud Computing, CSCloud 2016 and 2nd IEEE
International Conference of Scalable and Smart Cloud, SSC 2016, 2016,
pp. 26–29.

[41] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast and
Vulnerable: A Story of Telematic Failures,” 9th USENIX Workshop on
Offensive Technologies (WOOT 15), 2015.

[42] A. Palanca, E. Evenchick, F. Maggi, and S. Zanero, “A stealth,
selective, link-layer denial-of-service attack against automotive networks,”
in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
M. Polychronakis and M. Meier, Eds. Cham: Springer International
Publishing, 2017, vol. 10327 LNCS, pp. 185–206.

[43] T. Ring, “Connected cars - The next target for hackers,” Network Security,
vol. 2015, no. 11, 2015, pp. 11–16.

[44] SAM repository on Bitbucket [retrieved: April, 2019]. [Online].
Available: https://bitbucket.org/east-adl/sam

[45] AUTOSAR Enabling continuous innovations https://www.autosar.org
[retrieved: July, 2019]. [Online]. Available: https://www.autosar.org/

[46] J. Hayes and G. Danezis, “Machine Learning as an Adversarial Service:
Learning Black-Box Adversarial Examples,” vol. 2, 2017.

[47] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in Machine
Learning: From Phenomena to Black-Box Attacks Using Adversarial
Samples,” 2016.

[48] F. Dalpiaz, E. Paja, and P. Giorgini, “Security requirements engineering
via commitments,” in 2011 1st Workshop on Socio-Technical Aspects
in Security and Trust (STAST). IEEE, 2011, pp. 1–8. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6059249

[49] H. C. A. Van Tilborg and S. Jajodia, Encyclopedia of Cryptography
and Security. Springer Science & Business Media, 2011. [Online].
Available: http://link.springer.com/10.1007/978-1-4419-5906-5

[50] B. G. Glaser, A. L. Strauss, and E. Strutzel, “The discovery of grounded
theory; strategies for qualitative research.” Nursing research, vol. 17,
no. 4, 1968, p. 364.

[51] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy (S&P’19), 2019.

235

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


