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Abstract—Threats to user privacy in Web 2.0 are abundant and
can arise from various sources, including texts, geoinformation,
images, videos, or combinations of these. To alert users of
potential threats, it is crucial to gather all relevant information.
However, aggregating user-specific information from various web
platforms, including social networks, can be challenging due to
the vast amount of data available, as well as issues with data
quality and the numerous possible variants. This paper examines
the capability of current Vision-Language Models to accurately
identify relevant image data and extract sensitive information.
To accomplish this, we developed our own dataset with diverse
expressions for privacy attributes, based on the VISPR dataset.
Furthermore, we address the challenge of synthetic images of
people and its impact on our approach. Our findings suggest
that these models are effective in pre-selecting relevant images,
but there are limitations in information extraction.
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I. INTRODUCTION

In our previous study [1], we introduced a new dataset
and proposed the use of Vision-Language Models (VLMs) to
extract sensitive information from images. This current study
expands on our previous work in two ways. Firstly, we evaluate
two other State-Of-The-Art (SOTA) VLMs, BLIP-2 [2] and
InstructBLIP [3]. Secondly, we analyze the models’ ability to
follow prompts and generate constrained answers.

Users leave active and passive footprints through nearly
every activity on the Web [4]. This includes quite obvious in-
formation, such as images, texts, and videos that are knowingly
uploaded by the users, as well as information that is passed
on without the user’s intervention, such as the IP addresses of
the end devices or the user agent string. Furthermore, inherent
information hidden in texts and images that are unknowingly
published is difficult for users to keep track of.

In the past, this has been demonstrated several times in
an impressive and media-effective manner, such as by the
automatic identification of vacation announcements and the
extraction of hidden Global Positioning System (GPS) image
data on Twitter, which could, for example, be used to scout
vacant properties for burglaries [5] or to reveal the running
routes of soldiers on secret army bases, whose publication on
sports portals revealed the exact location of the military instal-
lations [6]. It turns out that even small amounts of information
can be dangerous in combination with other information [7].

In this paper, we focus on images with human attributes and
documents that are shared on the Web by users on different

platforms and due to different motivations. Some of these
images are meant to highlight a tweet, others are vacation
or profile photos, and some are simply memes or photos of
animals. From this fact comes the first challenge: Every day,
millions of images are uploaded that pose no risk to users’
privacy. Finding relevant images that display human attributes
and personal identification documents, revealing the complex
dynamics of privacy and data exposure on the internet, is a
challenging task in this vast and ever-growing dataset. Since
we want to relate all the knowledge we get from an image to
each other in order to extract reliable information, most clas-
sical image classification and segmentation methods fall short
(e.g., limited domain, no extraction of class instances). We
need an efficient, technical approach that enables sequential
information extraction from images. For example, obviously,
it is not sufficient to determine that a person has eyes and an
eye color; rather, the specific eye color must also be reliably
extracted (s. Figure 1).

We analyze existing datasets to expand and explore tech-
niques for understanding vision and language. Recent de-
velopments in this field can assist in extracting information
from images, including sensitive information. Our focus is
on techniques that enable Visual Question Answering (VQA)
and chat-based functionality, allowing the user to engage in a
back-and-forth conversation with an image while maintaining
context. Textual responses enable sequential questions and val-
idations, including in-depth and control questions, to generate
structured data for further processing. The primary goal is
to create a comprehensive dataset that is suitable for privacy
analysis with VQA. The dataset is used to evaluate the current
SOTA VLM models, employing various specifically crafted
prompts, in order to get optimal outcomes for extracting
privacy-related variables.

All of these considerations are taking place as part of the
Authority-Dependent Risk Identification and Analysis in on-
line Networks (ADRIAN) research project, which is dedicated
to exploring and developing machine-learning-based methods
for detecting potential threats to individuals based on online
datasets and Digital Twins (DT). For this purpose, we discuss
related work in Section II and describe the research concept
(Section III and Section IV) and results of our privacy VQA
approach in Section V. Finally, we discuss our findings in
Section VI and draw our conclusions in Section VII.
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Fig. 1. Attribute extraction approach using VLMs.

II. RELATED WORK

Here, we discuss the notion of DTs (s. Section II-A) in the
context of cyber threats and present related privacy research
and image datasets (s. Section II-B). Furthermore, we give an
insight into VLMs (s. Section II-C).

A. Digital Twins in the context of cyber threats

The term DT is ambiguous and is used in a variety of areas
in research and practice. It can be found in mechanical engi-
neering, medicine, and computer science [8]. Developments in
the field of Artificial Intelligence (AI) have given the term a
wider usage. More generally, “DTs can be defined as (physical
and/or virtual) machines or computer-based models that are
simulating, emulating, mirroring, or ‘twinning’ the life of a
physical entity, which may be an object, a process, a human,
or a human-related feature” [8]. There are three levels of
integration for DTs [8]: (a) Digital Model, (b) Digital Shadow
and (c) Digital Twin. A Digital Model is the basic represen-
tation of a physical object or system in the virtual world,
without any automatic information flow between the virtual
and physical worlds. Changes in the physical object must be
manually updated in the digital model. A Digital Shadow takes
this further and involves a unidirectional automatic information
flow from the physical world to the virtual world. Sensors mea-
sure information from the physical model and transmit signals
to the virtual model. A complete DT exists when the virtual
and physical environments communicate bidirectionally, with
information flowing automatically between both environments.
This allows the DT to accurately reflect the current state and
development of its physical counterpart.

In the ADRIAN research project, we understand the term
to mean the digital representation of a real person instantiated
by information available on the Web [6]. In this context, the
DT can never reflect the entire complexity of a real person
but reproduces features that, alone or in combination with
other attributes, can pose a threat to the real person. In this
way, the DT makes it possible to model the vulnerability
of a person and make it measurable. The modeling of DTs
is based on freely available standards of the semantic web,
such as Schema.org [9] and Friend Of A Friend (FOAF)

[10]. This allows us to connect and extend DTs. At the same
time, the sheer number of possible sources of information,
the quality of the data, and a multitude of contradictory data
make modeling challenging. However, studies show that a
large amount of relevant information is knowingly and, to a
large extent, unknowingly revealed by users themselves [7],
[11]. It is precisely this fact that knowingly and unknowingly
shared information on the Web can be merged and thus pose
a threat to users, which we aim to highlight [6].

B. Privacy research and image datasets

According to DataReportal [12], the average number of
social media accounts per Internet user worldwide was 7.5
in 2022. The various Online Social Networks (OSNs) use
mechanisms to protect the privacy of users. For user-generated
content, such as user profiles (e.g., on Facebook), or geo-
information (e.g., on Twitter), there are settings that can help
protect this data. With regard to images, there are so far barely
any options for protecting private visual information [13].

That said, DeHart et al. [14] processed Twitter data by
analyzing texts and images in a privacy context. Their study
examines how users perceive privacy, how often privacy vio-
lations occur, and what threats exist on Twitter. As for image
analysis, the images were classified into three risk categories:
“severe”, ”moderate”, and “no risk”. As a result, images in
the high-risk category were found to contain primarily license
plates, job offers, and car keys. Moderate-risk images are
mainly images of job references, school information, and
promotion letters. The study confirms that, depending on
age, users are differently concerned about explicit websites,
financial theft, identity theft, and stalking. It also confirms that
female and male participants are differently concerned about
burglaries, explicit websites, and identity theft.

Work already exists here that aims to help users preserve
their own privacy. For example, Orekondy et al. [13] proposed
a so-called Visual Privacy Advisor. This tool aims to assist
users in enforcing their privacy preferences and preventing the
disclosure of private information. They first create a dataset by
annotating 68 personal information in images based on the EU
Data Protection Directive 95/46/EC [15] and the US Privacy
Act of 1974. Next, they conduct a user study to understand
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the privacy preferences of different users with respect to these
attributes. They publish the Visual Privacy (VISPR) Dataset,
which contains 22,167 images with a total of 115,742 labels.
Finally, they extract visual features using CaffeNet [16] and
GoogleNet [17], and train a linear Support Vector Machine
(SVM) model [18]. A final comparison between human and
machine predictions of privacy risks on images shows an
improvement in their model over human estimation.

In later work, Orekondy et al. [19] selected a subset of
images from their VISPR dataset for pixel-level annotation.
This time, they focus on attributes that can be used for
redaction, so that the image is still useful. Reduction of a large
building, such as a church, can make the image unusable. They
propose the Visual Redactions Dataset, with 8,473 images an-
notated with 47,600 instances for 24 attributes. The attributes
are divided into three categories: textual, visual, and multi-
modal, which are then annotated. They also apply Optical
Character Recognition (OCR) [20] from the Google Cloud
Vision API to locate the text-based attributes. Furthermore,
they apply Named Entity Recognition (NER) [21] to recognize
entity classes from the texts. As for visual attributes, they
apply models such as the Fully Convolutional Instance-Aware
Semantic Segmentation Method (FCIS) [22] and OpenALPR
to localize objects such as faces, persons, and license plates.
Multi-modal attributes are a combination of visual and textual
information. Due to the limited number of training examples
and the large range of these attributes, they treat this as a
classification problem. As a result, they propose a first model
for automatic redaction of different private information.

Another system is presented by Spyromitros-Xioufis et al.
[23]. This system performs privacy-aware classification of im-
ages. They created a dataset called YourAlert by asking users
to provide privacy annotations for photos of their personal
collections. The authors applied Latent Dirichlet Allocation
(LDA) [24] to their corpus to identify the themes within
annotations. In total, there were six topics related to privacy:
“Children”, “Drinking”, “Eroticism”, “Relatives”, ”Vacation”,
and “Wedding”. They make the dataset publicly available,
with a total of 1,511 images, covering 444 private and 1,067
public images. Finally, the VGG-16 model is applied to extract
features, and then they compute a modified version of the
semfeat descriptor. The trained semi-personalized models lead
to performance improvements over a generic model trained on
a random subset of the PicAlert dataset.

Another relevant dataset is VizWiz-Priv [25]. The dataset
consists of images taken by people who are blind to better
understand the disclosure of their data. This dataset is used
to develop algorithms that can decide first whether an image
contains private information and second whether a question
about an image requires information about the private content
of the image. A total of 8,862 regions, including private
content, were tagged in the 5,537 images. When annotating
the images, a distinction was made between private objects
and objects that usually show private text. Images that show
private objects consist of five categories, while images that
contain private text consist of 14 categories.

C. VLM and LLMs

In recent years, several VLMs, such as Vision Transformer
(ViT) [26], Contrastive Language-Image Pre-Training (CLIP)
[27], and Bootstrapping Language-Image Pre-Training (BLIP)
[28], have been published for multi-modal deep learning.
These models can be used to address various challenges
in Computer Vision (CV) and Natural Language Processing
(NLP). ViT is a type of neural network architecture designed
specifically for image classification tasks [26]. It is based on
the transformer architecture used in NLP models and uses
self-attention mechanisms to process the image pixels in a
parallel manner, allowing it to learn a rich representation of
the relationships between different regions of the image [26].
ViTs have shown promising results in a variety of image clas-
sification tasks and have also been applied to other computer
vision tasks, such as object detection and segmentation.

CLIP is a deep learning model for cross-modal represen-
tation learning. It learns a representation between natural
language text and visual input (e.g., images) by comparing
the similarity of the different image-text pairs [27]. The model
has been trained on a dataset of 400 million image-text pairs
collected from publicly available sources on the Internet [27].

The goal of CLIP is to create a representation that can
be used for a variety of tasks, such as image captioning,
VQA, and text-to-image synthesis. CLIP is pre-trained on
large amounts of text-image data and then fine-tuned on
smaller task-specific datasets. This pre-training step helps the
model learn a robust representation of the relationship between
text and image, which can lead to improved performance on
downstream tasks.

CLIP consists of two encoders: a text encoder and an
image encoder. The text encoder takes in a natural language
text and produces a high-dimensional representation of the
text. The text representation is generated by passing the
text through a pre-trained language model. In CLIP, the
text encoder is initialized with the pre-trained Bidirectional
Encoder Representations from Transformers (BERT) weights
[29]. The image encoder takes in an image and produces
a high-dimensional representation of the image. The image
representation is generated by passing the image through a
pre-trained Convolutional Neural Network (CNN) [30]. Here,
CLIP uses a ViT or ResNet, depending on the task. The
contrastive loss is used to train the encoders to generate similar
representations for semantically related image-text pairs and
dissimilar representations for semantically unrelated image-
text pairs.

The authors of BLIP propose a new method to process noisy
web data by bootstrapping the captions. It is called Captioning
and Filtering (CapFilt) and improves the quality of the training
data. Furthermore, they propose a multi-modal Mixture of
Encoder-Decoders (MED), a multi-task model that can operate
in one of three functionalities: unimodal encoder, image-
grounded text encoder, and image-grounded text decoder [28].
The unimodel encoder for text and image is trained with an
Image-Text Contrastive (ITC) loss. This functionality is the
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same as for the CLIP model pre-training. The image-grounded
text encoder uses additional cross-attention layers to describe
the interactions between image and speech and is trained with
an Image-Text Matching (ITM) loss to distinguish between
positive and negative image-text pairs [28]. Image-grounded
text decoders replace bidirectional self-attention layers with
causal self-attention layers and use the same cross-attention
layers and feed-forward networks as encoders. For those given
images, the decoder is trained with a Language Modeling
(LM) loss to generate labels [28].

BLIP-2 and InstructBLIP are able to combine current VLMs
with current Large Language Models (LLM). BLIP-2 inte-
grates frozen image encoders with LLMs for pre-training
purposes. BLIP-2’s architecture is built around the Query-
ing Transformer (Q-Former), which effectively bridges the
modality gap between the visual and linguistic components. Q-
Former enables the leveraging of pre-trained, powerful vision
and language models for downstream tasks like visual question
answering and image-text generation without the need to up-
date their weights. Its carefully designed two-stage pre-training
procedure results in unparalleled effectiveness across various
vision-language tasks, including visual question answering,
image captioning, and image-text retrieval. The model’s ability
to perform zero-shot image-to-text generation with natural
language instructions highlights its usefulness in situations
requiring adaptive, multi-modal interaction. In addition, it has
a significantly smaller number of trainable parameters than its
predecessors. This functionality allows the model to engage in
a back-and-forth conversation, generating responses to textual
prompts in a context-aware manner. When using language
models such as OPT and T5, the context length limitation in
BLIP-2 is restricted to 512 tokens. It is important to take this
limitation into account when developing detailed prompts and
their possible responses. In addition, it is crucial to optimize
responses for conciseness and relevance to prevent information
truncation, as this can quickly affect the results of the model.

InstructBLIP enhances the capabilities of the pre-trained
BLIP-2 model through a technique known as instruction tun-
ing. This process leverages instruction-aware feature extraction
facilitated by the Q-Former, effectively transforming data from
26 datasets into an instruction-based format. Additionally,
InstructBLIP employs a strategy of balanced training dataset
sampling to optimize learning. This approach improves zero-
shot performance and, when fine-tuned for specific tasks, leads
to SOTA results. InstructBLIP is compatible with models like
Vicuna [31], which has been fine-tuned using the Llama base
model [32].

Llama focuses on advancing pretraining and fine-tuning
methods to boost both performance and safety in language
models. It introduces innovative training strategies such as
Supervised Fine-Tuning (SFT) and Reinforcement Learning
with Human Feedback (RLHF), aimed at aligning model
outputs more closely with human preferences [33]. Llama’s
development focuses on safety and ethical use, achieving top
performance in open-source LLMs while ensuring responsible
deployment practices.

III. METHODOLOGY

Our privacy VQA approach (s. Figure 2) follows a structured
approach starting with the VISPR dataset, leading through: (1)
Data Preparation, (2) Modeling, and (3) Evaluation.

VISPR
Dataset

Data Preparation

Prompt Engineering

Data Selection

Document Analysis

Modelling

Person Analysis

Data Annotation

Evaluation

Visual-Question-Answering

Fig. 2. Privacy analysis approach for images.

In (1), we initiate our study with the VISPR dataset, which
encompasses a diverse range of privacy-sensitive attributes
across 67 labels. This dataset serves as the foundation for
our exploration into privacy-preserving VQA techniques [19].
We begin by selecting a subset of labels, as not all labels are
suitable for VQA processing. For instance, textual information
such as full names or places of birth is excluded. Our primary
focus is on directly visible personal attributes. Additionally,
we aim to evaluate how different types of documents can
be identified using VQA. The selected list of attributes and
documents is presented in Table I.
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Data annotation follows data selection, where we use La-
belStudio to manually annotate all chosen personal attributes
and documents. We also define possible values for each
attribute, as shown in Table I. In an initial experiment, we
tested several alternative answer candidates and realized that if
too many predictions are differentiated, such as “middle-aged”
and “old-aged” adults, the annotation becomes very difficult
because age can be very subjective. This phase also involves
augmenting each category with an equal number of non-
relevant images to enhance model robustness against unrelated
prompts. For the documents, we grouped all images and used
only one prompt and all documents available in the dataset as
answer candidates. To analyze the attributes of a person in the
context of yes-or-no answers, we added to each category the
same number of images that did not belong to that label. To do
this, we used images from the VISPR dataset with “a0 safe”
labels, which indicate images that do not belong to any of
the existing labels. It is equally important to see how well the
model performs on images that are unrelated to the prompt.
The final step is to evaluate the VQA performance.

In (2), the focus is on prompt engineering, which is in-
tegral to the VQA part [34]. In the context of VQA, we
utilize BLIP, BLIP-2, and InstructBLIP to detect and analyze
personal attributes and documents. For BLIP, we maintain
the ranking-style Question-Answering (QA) approach used
in our previous study [1]. This approach utilizes a set of
predefined answers and measures the degree of matching
between visual information and candidate answers to output
the final answer that is relevant to the image contents [35]. For
BLIP-2 and InstructBLIP, we use various prompts to evaluate
their impact on the zero-shot performance of VQA models.
According to Jin et al. [28], prompts significantly affect zero-
shot performance. We test different prompts, from simple
ones like “Identify the hair color: black, red, gray, blond, or
brown?” to more detailed ones like “Examine the person’s
hair in the image and determine the color. Options are black,
red, gray, blond, or brown. Choose the one that accurately
describes the hair color.” This involves testing variations in
language to understand their influence on model accuracy
for extracting personal attributes and identifying documents.
We use the prompts listed in Table I and their corresponding
answer candidates are presented in Table II.

In (3), for person analysis, it is crucial to determine how
many people are present in the image. The selected attributes
can only be reliably extracted from images containing only
one person. To do this, we use the following prompts: (I) “Are
there people in the picture?”, (II) “How many people are in
the picture?”, and (III) “Is the face of the person visible?”
By identifying the images we are able to process with further
analysis, we combine our annotated dataset with the results
from the models. Person analysis involves evaluating our VQA
performance through meticulous person analysis, assessing the
model’s accuracy in identifying personal attributes and the
presence of individuals in images. Document analysis involves
an examination of our model’s capability to accurately identify
and classify various document types.

IV. DATASET

For our privacy analysis, we need to define the categories
for the analyzed attributes. Our annotation process for images
is defined with a focus on simplicity and clarity to ensure
consistency and reliability. We categorize the attribute “age”
based on the guidelines proposed by Geifman et al. [36], using
three broad categories: “child” for individuals up to about 16
years of age, “adult” for individuals up to about 55 years of
age, and “elderly” for individuals aged 55 years and over.
We deliberately exclude more detailed age descriptors such as
“middle-aged” and “old-aged” adults because the perception
of age can be highly subjective and such granularity could
complicate the annotation process.

TABLE I
SELECTED VISPR DATASET ATTRIBUTES.

Attribute Category # of Img.
a1 age approx [child, adult, elderly] 1,711
a4 gender [male, female] 1,863
a5 eye color [blue, green, gray, brown] 1,348
a6 hair color [black, blond, brown, gray, red] 1,759
a11 tattoo [yes, no] 45
a12 semi nudity [yes, no] 247
a13 full nudity [yes, no] 11
a17 color [black, brown, white] 1,914
a29 ausweis, [national identification card, 47
a30 credit card, credit card, 97
a31 passport, passport, 263
a32 drivers license, driver’s licence, 70
a33 student id student ID] 70
a39 disability physical [yes, no] 41

Regarding skin and hair color, our classifications follow the
categorizations described by Jablonski et al. [37]. We aim
to maintain simplicity in our annotations; hence, we do not
include excessively detailed or specific color values that could
lead to ambiguity or inconsistency.

For the annotation of eye color, we rely on the classifications
provided by Frost [38], ensuring that our categorizations
are both accurate and straightforward. In summary, for all
attributes, including age, skin color, hair color, and eye color,
our approach is to use broad, well-defined categories. This
method helps to avoid the potential complexity and subjectiv-
ity involved in more detailed classifications, thereby enhancing
the consistency and reliability of our image annotation process.
Also, for the color values, we keep it simple and leave out all
values that are very uncommon.

As for the distribution of the images, the age group, gender,
eye color, hair color, and skin color have a large number of
images, with an average of 1,719 images. Following the five
documents consisting of a national identification card, credit
card, passport, driver’s license, and student ID, there are much
fewer images, with an average of 109. Further attributes of a
person, such as tattoos, nudity, and physical disabilities, are
the least covered, with an average of 86 images. To determine
the categories, we create prompts for the VLMs (s. Table II).

Our approach involves identifying prompts and evaluating
whether detailed prompts lead to better results. Additionally,
we aim to determine how a model like Llama, with a focus
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TABLE II
ILLUSTRATIONS OF THE SPECIFIED PROMPTS.

Attributes and Prompts
a1 age approx
P1: How old is the person?
P2: What is the approximate age category of the person in the image?
a4 gender
P1: What is the gender of the person?
P2: What gender does the person in the image appear to be?
a5 eye color
P1: Which color are the eyes of the person?
P2: What is the predominant color of the person’s skin in the image?
a6 hair color
P1: Which color is the hair of the person?
P2: What is the hair color of the person in the image?
a11 tattoo
P1: Does the person have a tattoo?
P2: Is there a tattoo visible on the person in the image?
a12 semi nudity
P1: Is the person partially nude?
P2: Does the image depict the person as being semi-nude?
a13 full nudity
P1: Is the person fully nude?
P2: Does the image depict the person as being semi-nude?
a17 color
P1: What is the skin color of the person?
P2: What is the predominant color of the person’s skin in the image?
a29 ausweis, a30 credit card, a31 passport, a32 drivers license,
a33 student id
P1: Which document is in this picture?
P2: Can you identify the type of document or card shown in the image?
a39 disability physical
P1: Does the person have a physical disability?
P2: Can you identify any physical disability in the person depicted in
the image?

on security, ensures this through evaluations and mitigation
strategies for responsible interactions. This work also includes
an assessment of our ability to use a model like Llama for
processing privacy-related information. Prompt engineering is
essential here, as it involves crafting queries that improve
the VLMs’ ability to accurately extract and classify infor-
mation from images. We experiment with different prompt
formulations to assess their efficacy in eliciting detailed and
precise responses, thus enhancing the model’s performance.
In addition, we experimented with detailed prompts, which
are not included in Table II for the sake of brevity. For each
prompt, we included defined categories as potential answers
to ensure clear and specific responses.

V. RESULTS AND EVALUATION

To evaluate the privacy VQA performance of BLIP, BLIP-2,
and InstructBLIP, we used the precision, recall, and F1 scores.
As hardware, we used an A6000 graphics card. BLIP is the
smallest model with a size of 1.54 GB, followed by BLIP-
2 (flan-t5-xxl version) with 49.44 GB and the InstructBLIP
model (Vicuna-13b version) with 49.49 GB. In terms of
processing speed, BLIP was the fastest model, processing each
attribute with three different prompts in 1:06 hours. BLIP-2
came in second at 2:26 hours, and InstructBLIP came in third
at 3:15 hours. Regarding prompt evaluation, we found that
BLIP-2 performed better with simple and concise prompts,
while InstructBLIP showed better results with more detailed

prompts. The following results are based on the prompt that
achieved the highest F1-score. The person detection results are
shown in Table III. Our dataset for person detection consisted
of 1,000 images, of which 46 were excluded due to ambiguity,
such as not being visible in specific scenarios like driving
a racing car. The performance for detecting persons was
highly reliable, with an F1-score of 0.9658, as shown by the
InstructBLIP model. However, detecting a single individual
was the least effective, with an F1-score of around 0.9021.
For person detection, the models exhibit high precision and
recall scores, indicating effective person identification. How-
ever, slight differences in performance emphasize the need
for careful model selection based on specific requirements.
InstructBLIP’s superior performance in this category high-
lights its enhanced capability for accurately identifying and
classifying people in varied imaging conditions.

TABLE III
PERSON DETECTION RESULTS.

Precision Recall F1-score Support
Person Detection

BLIP 0.9602 0.9602 0.9602 954
BLIP-2 0.9503 0.9599 0.9551 954

InstructBLIP 0.9608 0.9707 0.9658 954

TABLE IV
PERSON ATTRIBUTE RESULTS.

Precision Recall F1-score Support
Age

BLIP 0.9137 0.9345 0.9240 1,666
BLIP-2 0.9079 0.9286 0.9181 1,666

InstructBLIP 0.8838 0.9040 0.8937 1,666
Gender

BLIP 0.9725 0.9824 0.9774 1,766
BLIP-2 0.9719 0.9807 0.9763 1,766

InstructBLIP 0.9697 0.9796 0.9746 1,766
Eye Color

BLIP 0.8132 0.8391 0.8260 628
BLIP-2 0.7708 0.7879 0.7792 628

InstructBLIP 0.7404 0.7608 0.7504 628
Hair Color

BLIP 0.8798 0.8865 0.8831 1,577
BLIP-2 0.7202 0.7231 0.7216 1,577

InstructBLIP 0.7988 0.8032 0.8010 1,577
Skin Color

BLIP 0.9501 0.9645 0.9573 1,858
BLIP-2 0.8787 0.8889 0.8838 1,858

InstructBLIP 0.7637 0.7692 0.7665 1,858
Tattoo

BLIP 0.8222 0.8222 0.8222 90
BLIP-2 0.8222 0.8222 0.8222 90

InstructBLIP 0.8555 0.8555 0.8555 90
Semi Nudity

BLIP 0.7974 0.8009 0.7991 462
BLIP-2 0.8297 0.8333 0.8315 462

InstructBLIP 0.7780 0.7814 0.7797 462
Full Nudity

BLIP 0.9545 0.9545 0.9545 22
BLIP-2 0.9090 0.9090 0.9090 22

InstructBLIP 0.9545 0.9545 0.9545 22
Disability Physical

BLIP 0.7439 0.7439 0.7439 82
BLIP-2 0.8048 0.8048 0.8048 82

InstructBLIP 0.8293 0.8293 0.8293 82
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For attribute classification, gender recognition showed re-
markably high F1 scores, especially for the BLIP model. This
suggests that gender attributes are clearly represented and
easier to recognize by these models. Conversely, attributes
such as eye color and hair color presented more challenges, yet
the scores were reasonably high, pointing towards the efficacy
of these models in extracting and classifying detailed features.
The tasks of detecting tattoos, semi-nudity, and full nudity
showed varied results, with certain models like InstructBLIP
demonstrating higher accuracy in tattoo recognition. This
variability may stem from the inherently diverse nature of
these attributes in real-world images, which can significantly
affect model performance. Physical disability detection had
the lowest F1-score among the attributes, which could indicate
the need for more specialized training or more representative
data to improve model performance in this area. The relatively
lower scores in this category highlight the challenges and the
necessity for advanced model training techniques and more
comprehensive datasets.

For document analysis, we utilized a dataset comprising
536 images of various documents. The InstructBLIP model
struggled to generate structured answers, which were crucial
for computing our evaluation metrics. This limitation appears
to be related to the Llama model’s inability to process personal
data due to privacy restrictions. This issue arises because
the images, such as driver’s licenses or passports, contain
sensitive information. The BLIP model performed worse than
both BLIP-2. The results from the BLIP model, as shown in
Table V, illustrate a varied performance across different types
of documents. The model demonstrates reasonable accuracy
with passports and credit cards but shows limitations when
processing driver’s licenses and national identification cards.

TABLE V
DETAILED RESULTS FOR DOCUMENTS BY BLIP MODEL.

Precision Recall F1-score Support
Documents

Credit Card 0.8557 0.8384 0.8468 99
Driver’s License 0.5000 0.3723 0.4268 94
Nat. Ident. Card 0.2979 0.3043 0.3011 46

Passport 0.7719 0.9531 0.8529 213
Student ID 0.8000 0.8595 0.6788 95

A detailed breakdown of the performance metrics for the
BLIP-2 model is provided in Table VI, further illustrating the
advancements in document analysis technology.

TABLE VI
DETAILED RESULTS FOR DOCUMENTS BY BLIP-2 MODEL.

Precision Recall F1-score Support
Documents

Credit Card 0.9773 0.9053 0.9399 99
Driver’s License 1.0000 0.6418 0.7818 94
Nat. Ident. Card 0.2866 0.9574 0.4412 46

Passport 0.9951 0.7739 0.8707 213
Student ID 1.0000 0.6818 0.8108 95

Regarding document analysis, the highest performance was
achieved for credit cards, passports, student IDs, and driver’s

licenses, with F1-scores of 0.9399, 0.8708, 0.8108, and 0.7818,
respectively. However, the analysis of national identification
cards resulted in a significantly lower F1-score of 0.4412. The
BLIP-2 model demonstrates superior performance across most
document types when compared to the BLIP model. This is
particularly notable in the precision and F1-scores for driver’s
licenses.

Overall, the BLIP model, using the ranking QA style,
achieved the highest scores for 6 out of 11 evaluated attributes.
This demonstrates its efficiency and effectiveness, as it allows
for predefined answers to be provided and ranked. However,
it cannot perform detailed analysis in a chat-based setting,
like the other two models. InstructBLIP excelled at identifying
complex attributes such as tattoos, nudity, and disabilities,
highlighting the strength of its advanced architecture and larger
model size. BLIP-2 performed on the “semi nudity” attribute.

VI. DISCUSSION

All in all, the results show that our naive approach already
leads to useful results, which can accelerate and improve the
selection of relevant images. In particular, the important step
of person detection has yielded good results. In the following,
we discuss positive and negative examples (s. Figure 3, a–d).
As can be noted, there are some positive hits where it could
be difficult for an AI model to identify the exact number of
people that are present in the image. Examples are Figure 3 (a),
which shows a woman standing in front of a large mural of
Michael Jackson, and Figure 3 (b), in which a little girl is
standing in front of a mirror. In both cases, the image was
classified as “1 person”. As for the negative examples, there
are many images of statues or emblems that, for example, were
classified as images with one (s. Figure 3 , c) or more persons
(s. Figure 3 , d). While this can be considered a not completely
wrong classification, further experiments are necessary to find
out how well real people can be distinguished from statues,
for example.

For the personal attributes, all cases achieved very good and
usable results. It should be noted here that the attributes “age”
and “hair color” are very difficult to annotate. For “age”, for
example, it is very difficult to distinguish between an older
adult and an elderly person without further knowledge. For
“eye color”, the annotators had to skip almost half of the
images, despite the zoom function and high resolution of the
images, because it was not possible to reliably determine the
person’s eye color. For the attributes with yes/no answers,
“nudity” gave very good results, and “tattoos” gave decent
results. Both of these attributes are fairly easy to annotate. In
the case of “semi-nudity”, it is difficult to determine where
semi-nudity starts and where it ends. For example, according
to the VISPR annotations, a man with a naked torso is semi-
nudity; the applied BLIP model mostly did not detect these
cases.

For document identification task, “passport” and “credit
card” are well detected as they do not differ much between
countries. “Driver’s licences” and “national identification
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TABLE IV: Person attribute results

Precision Recall F1-score Support
Person Detection

No person 0.9977 0.9363 0.9660 455
1 person 0.8269 0.9923 0.9021 130

> 1 person 0.9730 0.9783 0.9757 369
Accuracy – – 0.9602 –

Age
Adult 0.9853 0.9313 0.9575 1295
Child 0.9607 0.9293 0.9448 184

Elderly 0.6818 0.9626 0.7982 187
Accuracy – – 0.9346 –

Gender
Female 0.9865 0.9787 0.9826 894

Male 0.9784 0.9862 0.9823 872
Accuracy – – 0.9824 –

Eye Color
Blue 0.7415 0.7958 0.7677 191

Brown 0.8876 0.8791 0.8833 422
Gray 0.0000 0.0000 0.0000 1

Green 0.8000 0.2857 0.4211 14
Accuracy – – 0.8392 –

Hair Color
Black 0.9749 0.9637 0.9692 523
Blond 1.0000 0.3457 0.5138 188
Brown 0.8416 0.9825 0.9066 687

Gray 0.8870 0.8160 0.8500 125
Red 0.6667 0.9630 0.7879 54

Accuracy – – 0.8865 –
Skin Color

Black 0.8554 0.8256 0.8402 86
Brown 0.8015 0.7956 0.7985 137
White 0.9835 0.9859 0.9847 1635

Accuracy – – 0.9643 –
Tattoo

no 0.8974 0.7447 0.8140 47
yes 0.7647 0.9070 0.8298 43

Accuracy – – 0.8222 –
Semi-Nudity

no 0.8065 0.9375 0.8671 320
yes 0.7778 0.4930 0.6034 142

Accuracy – – 0.8009 –
Full Nudity

no 0.9091 1.0000 0.9524 12
yes 1.0000 0.9167 0.9565 10

Accuracy – – 0.9542 –
Disability Physical

no 0.6852 0.9024 0.7789 41
yes 0.8571 0.5854 0.6957 41

Accuracy – – 0.7439 –

TABLE V: Document results

Precision Recall F1-score Support
Documents

Credit Card 0.8557 0.8384 0.8468 99
Driver’s License 0.5000 0.3723 0.4268 94
Nat. Ident. Card 0.2979 0.3043 0.3011 46

Passport 0.7719 0.9531 0.8529 213
Student ID 0.8000 0.8595 0.6788 95

Accuracy – – 0.7148 –

(a) Positive Example #1 (b) Positive Example #2

(c) Negative Example #1 (d) Negative Example #2

Fig. 3: Positive and negative examples

IV. DISCUSSION

All in all, the results show that our naive approach already
leads to useful results, which can accelerate and improve the
selection of relevant images. In particular, the important step
of person detection has yielded good results. In the following,
we discuss positive and negative examples (see Figure 3, a–
d). As can be noted, there are some positive detections where
it could be difficult for an AI model to identify the exact
number of people that are present in the image. Examples
are Figure 3 (a), which shows a woman standing in front of
a large mural of Michael Jackson and Figure 3 (b), in which
a little girl is standing in front of a mirror. In both cases,
the image was classified as “1 person”. As for the negative
examples, there are many images of statues or emblems,
that, for example, were classified as images with one (see
Figure 3 , c) or more persons (see Figure 3 , d). While this can
be considered as a not completely wrong classification, further
experiments are necessary to find out how well real persons
can be distinguished from statues, for example.

For the personal attributes, all cases achieved very good and

Fig. 3. Positive and negative examples.

cards” were very poorly identified by the model. Here, a de-
tailed observation reveals a high variance in the representation
of these documents across countries. We are currently working
on an approach that currently only takes German documents
into account in order to be able to develop country-specific
approaches in further work, if necessary. However, we assume
that in these cases a fine tuning of the models is necessary.

The overall recognition precision is an important indicator
of the success of the approach described here. However,
there is one limitation that has not yet been sufficiently
considered: AI-generated fake images of people, or, to put
it another way, synthetic data [39]. Synthetic images are
artificial images that are generated with the help of algorithms.
There are various methods for generating synthetic images,
which offer different advantages and challenges depending
on the application and objective. Some common methods are
GANs, diffusion models, VAEs, and neural style transfer [40].
These synthetic images must be detected [41] and ignored
before the approach presented in this paper is applied, as this

would significantly corrupt the resulting DTs. Next to that, the
recognition of artificially generated privacy-relevant images is
of great importance to ensure security on social media and
to detect and prevent criminal activities that arise from these
new technologies more quickly. We are giving high priority
to the topic of synthetic data in further research work, as
the influence of synthetic images on the quality of DTs is
immense.

VII. CONCLUSION

This study presents valuable findings in the field of VLMs,
demonstrating the efficiency of BLIP-based models in captur-
ing and extracting predefined privacy attributes from images
using a newly created dataset for privacy analysis. The evalu-
ation shows that the model can extract attributes from images
with high accuracy, achieving high micro-average values for
person detection, attribute classification, and document anal-
ysis. Additionally, this study aimed to investigate whether an
exemplar-based method for visual question answering (VQA)
can assist in pre-selecting relevant images from a given dataset
and extracting specific human attributes. This could be a
crucial pre-processing step in our research project ADRIAN,
which seeks to extract pertinent attributes for various OSN
users and initiate a DT.

IntructBLIP and BLIP-2 were able to identify complex
identifications of nudity, tattoos, and physical disability. We
were able to show that the BLIP-based models in their original
form, i.e., without further fine tuning, can already demonstrate
a very good detection rate for the number of people in an
image and also shine in the recognition of human attributes.
However, in terms of documents, the model is only suitable
for identifying specific documents, such as credit cards, and
fails to detect country-specific types of documents.

For the future, there are already new models to analyze,
such as CogVLM [42]. The promise of models like CogVLM
lies in the integration of visual and linguistic data. While
traditional VLMs often struggle with the challenge of deeply
fusing these two types of data, CogVLM represents a promis-
ing advance. It demonstrates how deep fusion of these data
can be achieved without compromising the performance of
a pre-trained large-scale language model. By being able to
identify and label objects in images and accurately extract
their coordinates, CogVLM opens up new perspectives for
processing and analyzing visual-linguistic information. This
could not only improve accuracy and efficiency in existing use
cases but also open the door to new applications in artificial
intelligence.

Building on these initial findings, we plan to develop richer
datasets to enhance the analysis of privacy vulnerabilities. For
instance, the VISPR dataset can detect images containing sen-
sitive elements, such as signatures, personal phone numbers,
identifiable landmarks, or street signs. After detection, the
next step involves extracting this sensitive information, which
is crucial for assessing privacy risks. Accurately identifying
specific data points, such as residential addresses, workplace
locations, and direct contact phone numbers, allows for the
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assessment of potential privacy threats. This detailed infor-
mation is particularly valuable in understanding the scope and
scale of social engineering attacks. The goal is to leverage this
enriched data to develop advanced predictive models that can
foresee and neutralize such threats before they materialize. By
taking this approach, we aim to proactively protect individuals
from privacy breaches and reduce the risks associated with
unauthorized data exploitation. This proactive approach is
crucial in the digital age, where data privacy and security are
of the utmost importance.
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