
53International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Can Secure Software be Developed in Rust?
On Vulnerabilities and Secure Coding Guidelines

Tiago Espinha Gasiba
T CST SEL-DE

Siemens AG
Munich, Germany

tiago.gasiba@siemens.com

Sathwik Amburi
T CST SEL-DE, Siemens AG

Technical University of Munich
Munich, Germany

sathwik.amburi@{siemens.com, tum.de}

Andrei-Cristian Iosif
T CST SEL-DE

Siemens AG
Munich, Germany

andrei-cristian.iosif@siemens.com

Abstract—Since the Rust programming language was accepted
into the Linux Kernel, it has gained significant attention from the
software developer community and the industry. Rust has been
developed to address many traditional software problems, such as
memory safety and concurrency. Consequently, software written
in Rust is expected to have fewer vulnerabilities and be more
secure. However, a systematic analysis of the security of software
developed in Rust is still missing. The present work aims to
close this gap by analyzing how Rust deals with typical software
vulnerabilities. We compare Rust to C, C++, and Java, three
widely used programming languages in the industry, regarding
potential software vulnerabilities. We also highlight ten common
security pitfalls in Rust programming that we think software
developers and stakeholders alike should be wary of. Our results
are based on a literature review and interviews with industrial
cybersecurity experts. We conclude that, while Rust improves
the status quo compared to the other programming languages,
writing vulnerable software in Rust is still possible. Our research
contributes to academia by enhancing the existing knowledge
of software vulnerabilities. Furthermore, industrial practitioners
can benefit from this study when evaluating the use of different
programming languages in their projects.

Index Terms—Cybersecurity; Software development; Industry;
Software; Vulnerabilities; Rust Programming Language.

I. INTRODUCTION

Rust, a systems programming language that originated in
2010, has significantly increased in popularity over the past
decade. Rust distinguishes itself from other programming
languages through several key features. Firstly, it ensures
memory safety without needing a garbage collector, utiliz-
ing an ownership system with rules about borrowing and
lifetimes. This feature helps prevent common bugs such as
null pointer dereferencing and dangling pointers prevalent
in languages like C and C++. Secondly, Rust’s concurrency
model is designed to make concurrent programming safer and
more straightforward, with the ownership and type systems
enforcing thread safety and preventing data races at compile
time. Additionally, Rust provides performance comparable to
C and C++ due to its low-level control over system resources
and zero-cost abstractions. Unlike higher-level languages such
as Java, which rely on a virtual machine, Rust compiles
directly to machine code, offering predictable performance
and minimal runtime overhead. Rust’s expressive type system
supports advanced features like algebraic data types, pattern

matching, and traits (Rust’s version of interfaces), enabling
developers to write robust and maintainable code. Moreover,
Rust’s tooling and ecosystem, including the Cargo package
manager, facilitate dependency management and project build-
ing, making the development process smoother and more
efficient. The Rust community is also known for its welcoming
nature and comprehensive documentation, providing extensive
learning materials for developers.

This paper extends the authors’ previous work presented
at the CYBER 2023 [1], which covered the initial findings
and methodologies. The current study includes some additional
insights into the Rust programming language and common
security pitfalls.

According to a market overview survey by Yalantis [2],
which conducted more than 9,300 interviews, 89% of develop-
ers prefer Rust over other widespread programming languages
like C and C++ due to its robust security properties. Despite
its steep learning curve, industry professionals argue that the
time invested in learning Rust yields added benefits and fosters
better programming skills [3]. Stack Overflow notes that de-
velopers appreciate Rust’s focus on system-level details, which
helps prevent null and dangling pointers, and its memory
safety without the need for a garbage collector [4]. These
factors contribute to its growing adoption in the industry. This
sentiment is echoed by the industry’s push toward adopting
the Rust programming language. Furthermore, according to
Stack Overflow Developer Surveys, Rust has been the most
loved and admired language since 2016. In the most recent
Stack Overflow 2023 Developer Survey [5], Rust secured the
position of the most admired language, with over 80% of the
87,510 responses favoring it.

Due to its focus on memory safety and concurrency, Rust
has become the language of choice for many tools developed
for Linux, FreeBSD, and other operating systems. Notably,
Rust’s adoption in Linux Kernel development [6], [7] un-
derscores its growing significance in an industrial context,
including space systems [8]. Rust meets the critical require-
ments for such applications in several key aspects. First, its
design enables code to operate close to the kernel, facilitating
tight interactions with both software and hardware. Second, it
supports determinism, ensuring consistent timing of outputs.
Third, Rust does not use a garbage collector, which is crucial

54International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for manual memory management and reclaiming memory
without automatic interference. These characteristics ensure
reliable and predictable outcomes, vital for space systems
[8] and other critical industrial systems. Despite these advan-
tages, Rust’s proven effectiveness in space systems remains
to be fully demonstrated. Developing toolchains, workforce
education, and case studies in field applications are vital
to validating the utility of memory-safe languages in such
demanding environments [8].

Major platforms, such as Google, have started including
Rust in their systems, including Android [9], demonstrating
its broad applicability. Additionally, forums like RustSec [10]
offer real-time updates and insights into the current state of
Rust security, reflecting its critical role in secure computing.
Recognizing these advantages, governments, including the US,
have begun recommending memory-safe languages like Rust
[11], further emphasizing its importance in terrestrial and
extraterrestrial computing environments.

Rust promotes itself as being safer than traditional lan-
guages, such as C and C++, which are widely used in an
industrial context, by borrowing many aspects from functional
languages like Haskell. However, in the realm of industry,
particularly in critical infrastructures, safety is not synonymous
with security. As the industry is obliged to follow secure
development standards, such as IEC 62443 [12], [13], the
notion of safety in Rust must be understood not only from
a memory management perspective but also from a security
standpoint [14]. Rust was developed to address memory-
related vulnerabilities, which constitute only 19.5% of the
most exploited vulnerabilities in 2023, according to The
Cybersecurity & Infrastructure Security Agency (CISA) [15].
Exploits related to routing and path abuse tied for second
place with memory vulnerabilities, followed by default se-
crets (4.9%), request smuggling (4.9%), and weak encryption
(2.4%). The most prevalent exploit was insecure exposed
functions (IEF), accounting for 48.8% of incidents. This has
led to the saying, ”Rust won’t save us, but its ideas will,”
emphasizing the importance of adopting Rust’s safety and
security principles beyond its direct application [16].

Developing industrial products and services follows strict
guidelines, especially for those products and services aimed at
critical infrastructures. In these cases, cybersecurity incidents
can severely negatively impact companies and society in
general. Therefore, the security of industrial products must
be tightly controlled. Consequently, Rust is considered a good
candidate for industrial software development.

While Rust has been celebrated for its safety features [17],
[18], less research has been conducted on its security aspects.
This lack of research is primarily because this programming
language is still relatively young compared to longstanding
players in the industry, such as C, C++, and Java. Further-
more, developers and users often conflate safety with security,
potentially leading to software vulnerabilities. Therefore, this
paper aims to understand to what extent vulnerable software
can be written in Rust. We approach this topic in two ways:

1) Evaluating the difficulty of writing vulnerable software

based on industry-recognized security standards like the
SysAdmin, Audit, Network, Security (SANS) Institute
TOP 25 [19], the Open Web Application Security Project
(OWASP) TOP 10 [20], and the 19 Deadly Sins [21],
and

2) Identifying ten common pitfalls in Rust that we feel
developers should be aware of.

This study’s contributions are as follows: firstly, through
the present work, the authors aim to raise awareness, as
defined by Gasiba et al. [22], about Rust security and its
pitfalls within the industry (for both industrial practitioners
and academia); secondly, our work provides expert opinions
from industry security experts on how to mitigate such issues
when developing software with Rust; furthermore, our work
contributes to academic research and the body of knowledge
on Rust security by adding new insights and fostering a deeper
understanding of Rust security; finally, our work serves as
motivation for further studies in this area.

The rest of this paper is organized as follows: Section II
discusses previous work that is either related to or served
as inspiration for our study. Section III briefly discusses the
methodology followed in this work to address the research
questions. In Section IV, we provide a summary of our results,
and in Section V, we conduct a critical discussion of these
results. Finally, in Section VI, we conclude our work and
outline future research.

II. RELATED WORK

A significant contribution to understanding Rust’s security
model comes from Sible et al. [23]. Their work offers a
thorough analysis of Rust’s security model, focusing on its
memory and concurrency safety features. However, they also
highlight Rust’s limitations, such as handling memory leaks.
While Rust offers robust protections, the authors emphasize
that these protections represent only a subset of the broader
software security requirements. Their insights are invaluable
for understanding both the strengths and limitations of Rust’s
security model. Wassermann et al. [24] presented a detailed
exploration of Rust’s security features and potential vulner-
abilities. They highlighted issues when design assumptions
do not align with real-world data. The authors stress the
importance of understanding vulnerabilities from the perspec-
tive of Rust program users. They advocate for tools that can
analyze these vulnerabilities, even without access to the source
code. Discussions also touched upon the maturity of the Rust
software ecosystem and its potential impact on future security
responses. They suggest that the Rust community could benefit
from the Rust Foundation either acting as or establishing a
related CVE Numbering Authority (CNA). Their study further
enriches the understanding of Rust’s security model.

Qin et al. [25] conducted a comprehensive study revealing
that unsafe code is widely used in the Rust software they
examined. This usage is often motivated by performance opti-
mization and code reuse. They observed that while developers
aim to minimize the use of unsafe code, all memory-safety
bugs involve it. Most of these bugs also involve safe code,

55International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

suggesting that errors can arise when safe code does not
account for the implications of associated unsafe code. The re-
searchers identified Rust’s ’lifetime’ concept, especially when
combined with unsafe code, as a frequent source of confusion.
This misunderstanding often leads to memory-safety issues.
Their findings underscore the importance of fully grasping and
correctly implementing Rust’s safety mechanisms.

Zheng et al. [26] surveyed the Rust ecosystem for se-
curity risks by analyzing a dataset of 433 vulnerabilities,
300 vulnerable code repositories, and 218 vulnerability fix
commits over 7 years. They investigated the characteristics
of vulnerabilities, vulnerable packages, and the methods used
for vulnerability fixes. Key findings reveal that memory safety
and concurrency issues constitute two-thirds of the vulner-
abilities, with a notable delay (averaging over two years)
before vulnerabilities are publicly disclosed. Additionally, they
observed an increasing trend in package-level security risks
over time despite a decrease in code-level risks since August
2020. Moreover, popular Rust packages tend to have a higher
number of vulnerabilities, and vulnerability fixes often involve
localized changes. This study contributes to the understanding
of security risks in the Rust ecosystem by providing a dataset
for future research, summarizing patterns in vulnerability fixes,
and discussing implications for securing Rust packages.

Balasubramanian et al.’s research [27] delves deeper into
Rust’s security aspects by leveraging its linear type system
for enhanced safety in system programming. They demonstrate
how Rust’s safety mechanisms, which incur no runtime cost
and eschew garbage collection, are applied to bolster software
fault isolation, enforce static information flow control, and
facilitate automatic checkpointing. These areas, crucial for
security, are shown to benefit from Rust’s design, which
simplifies the implementation of complex security features.
The paper underscores Rust’s potential to significantly impact
system programming by making high-level security features
more attainable without compromising performance. The dis-
cussion also acknowledges the learning curve and paradigm
shift required to fully utilize Rust’s advantages, positioning
these as necessary investments for achieving superior safety
and security in system programming applications.

A. Security Standards and Guidelines

Various security standards and guidelines can be applied to
Rust programming. The International Electrotechnical Com-
mission Technical Report (IEC TR) 24772 [28] standard,
”Secure Coding Guidelines Language Independent,” provides
guidelines suitable for multiple programming languages, in-
cluding Rust. ISO/IEC 62443 [12], especially sections 4-1 and
4-2, sets the industry standard for secure software development
[13]. The Common Weakness Enumeration (CWE) by MITRE
[29] offers a unified set of software weaknesses.

The French Government’s National Agency for the Security
of Information Systems (ANSSI) has published a guide titled
”Programming Rules to Develop Secure Applications with
Rust” [30], which is a valuable resource for developers.

B. Security Documentation and Tools

Rust’s safety guarantees and performance have led to its
growing adoption across various domains. Notably, Google
has integrated Rust into the Android Open Source Project
(AOSP) to mitigate memory safety bugs, a significant source of
Android’s security vulnerabilities [9]. Updates and discussions
about Rust security are frequently shared on blogs, forums, and
other platforms.

Several Static Application Security Testing (SAST) tools are
available for Rust, such as those listed on the Analysis Tools
platform [31]. These tools play a crucial role in the secure
software development lifecycle.

Community-driven initiatives like RustSec [10] offer ad-
visories on vulnerabilities in Rust crates (A crate is the
smallest amount of code that the Rust compiler considers at a
time). Real-time updates from RustSec and other platforms are
invaluable for developers to stay updated on potential security
issues in Rust packages.

C. Secure Coding Guidelines

The paper ”Secure Coding Guidelines - (un)decidability” by
Bagnara et al. [32] delves into the challenges of secure coding.
It mainly focuses on the undecidability of specific rules,
such as ”Improper Input Validation”. The authors argue that
determining adherence to specific secure coding guidelines can
be complex due to factors like context.

D. Secure Code Awareness

Secure code awareness is crucial, especially in critical in-
frastructures. A study by Gasiba et al. [33] explored the factors
influencing developers’ adherence to secure coding guidelines.
While developers showed intent to follow these guidelines,
there was a noticeable gap in their practical knowledge. This
highlights the need for targeted, secure coding awareness
campaigns. The authors introduced a game, the CyberSecurity
Challenges, inspired by the Capture The Flag (CTF) genre, as
an effective method to raise awareness.

The Sifu platform [34] was developed in line with these
challenges. The platform promotes secure coding awareness
among developers by combining serious gaming techniques
with cybersecurity and secure coding guidelines. It also uses
artificial intelligence to offer solution-guiding hints. Sifu’s
successful deployment in industrial settings showcases its
efficacy in enhancing secure coding awareness.

III. METHODOLOGY

Our research methodology, aimed at examining the security
in the Rust programming language compared to Java, C, and
C++, and its interaction with security assessment tools, was
composed as shown in Figure 1.

A. Literature Exploration

Due to the scarcity of academic resources, we commenced
with an integrated literature review, primarily focusing on gray
literature, such as reports and blog posts. We also conducted
an academic literature review using the ACM, IEEE Xplore,

56International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1. Methodology

and Google Scholar databases, with search terms including
”Rust Security”, ”Java Security”, ”C Security”, and ”Static
Application Security Testing”. The time frame was set from
2010 to early 2024.

B. Interviews with Security Experts

We held discussions with five industry security experts
with experience with Rust, Java, C, and security assessment
tools. The experts from the industry are consultants with
more than ten years of experience and work on the topic
of secure software development. Their insights contributed
significantly to our understanding and interpretation of the lit-
erature. Additionally, we conducted informal surveys with two
students who regularly use Rust and contribute to open-source
projects developed in the same programming language. The
student’s background is a master’s in computer science with
five years of programming experience with Rust. The informal
interviews with industry experts and computer science students
commenced in August 2023 and lasted about thirty minutes.

C. Mapping to CWE/SANS, OWASP, and 19 Deadly Sins

In this phase, we categorized Rust security issues according
to the Common Weakness Enumeration (CWE), SANS Top
25, and OWASP 10 and 19 deadly sins. This step helped in
classifying and understanding the security threats relevant to
Rust.

D. Analysis with Rust/SAST Tools

A comparative study was undertaken with Rust and Static
Application Security Testing (SAST) tools to assess the effec-
tiveness of these tools in identifying Rust’s security vulnera-
bilities.

E. Identifying 10 Common Pitfalls

After our mapping and analysis, we have identified 10
common security pitfalls that developers and stakeholders
should be aware of. These pitfalls are not exhaustive but serve
as a starting point for stakeholders to consider security as
an application-specific issue rather than merely a language-
specific concern.

F. Definitions

In our research, we employed three categories to assess the
level of security protection against specific issues in Rust: Rare
and Difficult (RD), Safeguarded (SG), and Unprotected (UP).

• Rare and Difficult (RD): This category refers to security
issues Rust’s inbuilt features or mechanisms can fully
mitigate or prevent. The language itself provides robust
protection against such issues. Security vulnerabilities
falling into this category are rare and difficult to spot.
They occur infrequently, making it challenging to en-
counter them. Rust’s inherent protections are usually
effective in addressing these issues, unless unsafe blocks
are used. These issues are often not commonly observed
and may require specific circumstances or careful analy-
sis, often associated with a Common Vulnerabilities and
Exposures (CVE) identifier.

• Safeguarded (SG): Issues falling under this category
benefit from protective measures provided by Rust. The
programming language offers safeguards to mitigate these
issues, reducing their likelihood or impact. However,
additional precautions or interventions may be necessary
in specific scenarios.

• Unprotected (UP): This category encompasses security
issues that the language does not inherently guard against
or if the CWE does not apply to the language. The
language lacks built-in mechanisms to protect against
these issues. Addressing them requires utilizing external
libraries or tools or a comprehensive understanding of
the language and underlying systems. In cases where a
particular CWE is irrelevant to the language, it is also
categorized as UP.

We utilized this methodology to evaluate the SANS Top
25, OWASP Top 10, and 19 Deadly Sins of Software Security
within the context of Rust. Additionally, we created Proof-
of-Concept (PoC) Rust code [35] to validate its feasibility,

57International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

containing vulnerabilities for the following weaknesses: Com-
mand Injection, Integer Overflow, Resource Leakage, SQL
Injection, and Time-of-Check-Time-of-Use (TOCTOU).

IV. RESULTS

A. SANS 25 (2022)

This section presents the findings of our analysis concerning
vulnerabilities in Rust, with a particular focus on evaluating
vulnerable software based on the SANS Top 25 list. Table I
summarizes the protection levels for different CWE vulnera-
bilities in Rust. These are categorized into three groups: Rare
and Difficult (RD), Safeguarded (SG), and Unprotected (UP).
It is crucial to note that complete protection is extended to all
code that does not use ’unsafe’ blocks.

Among the analyzed CWE vulnerabilities, the following
are identified as having Full Protection in Rust: CWE-787,
CWE-125, CWE-416, CWE-476, CWE-362, and CWE-119.
This finding suggests that Rust offers robust protection against
these vulnerabilities, thereby minimizing the likelihood of their
occurrence in Rust-based software, provided the code does not
employ ’unsafe’ blocks.

Conversely, several vulnerabilities, including CWE-79,
CWE-22, CWE-352, CWE-434, CWE-502, CWE-287, CWE-
798, CWE-862, CWE-306, CWE-276, CWE-918, and CWE-
611, exhibit No Protection in Rust. This finding implies that
Rust lacks built-in mechanisms to prevent or mitigate these
vulnerabilities, even when ’unsafe’ blocks are not in use. It is
vital for developers working with Rust to be cognizant of these
vulnerabilities and implement additional security measures to
counteract them.

For certain vulnerabilities, such as CWE-79, CWE-20,
CWE-78, CWE-190, CWE-77, CWE-400, and CWE-94, Rust
provides some protection and safeguards. This result indicates
that Rust incorporates certain features or constructs that can
help diminish the likelihood of these vulnerabilities. However,
additional precautions may still be necessary to mitigate the
associated risks fully.

These findings underscore the importance of understanding
the vulnerabilities inherent in Rust and implementing suitable
security measures. While Rust provides strong protection
against specific CWE vulnerabilities, there are areas where
additional precautions are necessary. Developers should ex-
ercise caution when dealing with vulnerabilities categorized
as UnProtected, as these require meticulous attention and
specialized security practices.

In addition to analyzing the vulnerabilities in Rust, it is
insightful to contrast the protection levels Rust offers with
those provided by other prominent programming languages,
such as C, C++, and Java. Table II facilitates a side-by-
side comparison across these languages. In this table, the
protection levels are denoted as follows: Rare and Difficult
(RD), Safeguarded (SG), and Unprotected (UP) for C, C++,
and Java.

Upon examining Table II, it is evident that C, being an older
language, demonstrates fewer protections compared to C++
and Java, especially regarding memory-related vulnerabilities

like CWE-787. For instance, C does not provide safeguards for
CWE-787 [36], while C++ and Java offer robust protections.

Java, owing to its managed memory model and sandboxed
execution environment, shows strong defenses against some
vulnerabilities that are particularly problematic in C and C++,
such as CWE-416.

Interestingly, for some vulnerabilities like CWE-79 and
CWE-22, all three languages - C, C++, and Java - display
limited or no protection. This observation accentuates the
importance of following secure coding practices irrespective
of the language used.

Furthermore, C++ seems to find a middle ground between C
and Java regarding protection levels, which could be attributed
to its evolution from C and its incorporation of modern
language features.

Developers must be cognizant of these variations in protec-
tion levels across languages and carefully weigh the security
aspects alongside other factors, such as performance and
ecosystem, when choosing a language for their projects.

TABLE I
SANS TOP 25 CWE VS. PROTECTION LEVELS IN RUST

CWE ID Short Description RD SG UP
CWE-787 Out-of-bounds Write •
CWE-79 Cross-site Scripting •
CWE-89 SQL Injection •
CWE-20 Improper Input Validation •
CWE-125 Out-of-bounds Read •
CWE-78 OS Command Injection •
CWE-416 Use After Free •
CWE-22 Path Traversal •
CWE-352 Cross-Site Request Forgery •
CWE-434 Unrestricted Dangerous File Upload •
CWE-476 NULL Pointer Dereference •
CWE-502 Deserialization of Untrusted Data •
CWE-190 Integer Overflow or Wraparound •
CWE-287 Improper Authentication •
CWE-798 Use of Hard-coded Credentials •
CWE-862 Missing Authorization •
CWE-77 Command Injection •
CWE-306 Missing Critical Function Authentication •
CWE-119 Buffer Overflow •
CWE-276 Incorrect Default Permissions •
CWE-918 Server-Side Request Forgery •
CWE-362 Race Condition •
CWE-400 Uncontrolled Resource Consumption •
CWE-611 Improper Restriction of XXE •
CWE-94 Code Injection •

24% 28% 48%

B. OWASP 10

The OWASP Top 10 is a standard awareness document for
developers and web application security. It represents a broad
consensus about web applications’ most critical security risks.
The following is an assessment (summarized in Table III)
of how the Rust language can offer protection against these
vulnerabilities, according to the OWASP standard from 2021:

• A01-Broken Access Control (SG): While Rust does
not inherently provide web application access control, its
strong type system and ownership model can help prevent
logical errors that might lead to such vulnerabilities.

58International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II
SANS TOP 25 CWE VS. PROTECTION LEVELS IN C, C++, AND

JAVA

CWE C C++ Java
RD SG UP RD SG UP RD SG UP

CWE-787 • • •
CWE-79 • • •
CWE-89 • • •
CWE-20 • • •

CWE-125 • • •
CWE-78 • • •

CWE-416 • • •
CWE-22 • • •

CWE-352 • • •
CWE-434 • • •
CWE-476 • • •
CWE-502 • • •
CWE-190 • • •
CWE-287 • • •
CWE-798 • • •
CWE-862 • • •
CWE-77 • • •

CWE-306 • • •
CWE-119 • • •
CWE-276 • • •
CWE-918 • • •
CWE-362 • • •
CWE-400 • • •
CWE-611 • • •
CWE-94 • • •

0% 0% 100% 0% 24% 76% 20% 28% 52%

• A02-Cryptographic Failures (SG): Although Rust does
not provide built-in cryptographic features, it has high-
quality cryptographic libraries that can help mitigate these
failures to some extent.

• A03-Injection (SG): Rust’s strong type system and ap-
proach to handling strings can help prevent injection
attacks. However, poor programming practices may still
result in these attacks; see PoC code in [35].

• A04-Insecure Design (UP): This vulnerability is more
about the design of the application rather than the lan-
guage itself. While Rust offers memory safety [37], it
does not inherently protect against insecure design, which
encompasses many issues.

• A05-Security Misconfiguration (UP): This vulnerability
is more about the application and environment configu-
ration than the language itself.

• A06-Vulnerable and Outdated Components (SG):
Rust’s package manager, Cargo, and its ecosystem can
help manage dependencies and their updates.

• A07-Identification and Authentication Failures (UP):
Rust does not inherently provide user authentication and
session management features.

• A08-Software and Data Integrity Failures (UP): Rust’s
ownership model and type system can help ensure data
integrity, but it is up to the programmer to leverage these
features effectively.

• A09-Security Logging and Monitoring Failures (UP):
This vulnerability is more about the application’s logging
and monitoring capabilities than the language itself.

• A10-Server-Side Request Forgery (SSRF) (UP): Rust
does not inherently protect against SSRF attacks. Pro-

grammers must validate and sanitize all URLs and re-
strict the server’s ability to interact only with whitelisted
endpoints [38].

We note that in literature, the numbering of the OWASP
vulnerabilities can also appear together with the date of the
OWASP standard, e.g., A01:2021.

TABLE III
MAPPING OF OWASP TOP 10 FROM 2021 TO RUST PROTECTION

LEVELS

OWASP Vulnerability RD SG UP
A01-Broken Access Control •
A02-Cryptographic Failures •
A03-Injection •
A04-Insecure Design •
A05-Security Misconfiguration •
A06-Vulnerable and Outdated Components •
A07-Identification and Authentication Failures •
A08-Software and Data Integrity Failures •
A09-Security Logging and Monitoring Failures •
A10-Server-Side Request Forgery •

0% 50% 50%

C. 19 Deadly Sins of Software Security

The book ”19 Deadly Sins of Software Security: Program-
ming Flaws and How to Fix Them” identifies and guides how
to fix 19 common security flaws in software programming
(see Table IV for a summary). Rust, a programming language,
is designed to prevent some of the most common security
vulnerabilities. Below is a brief analysis of how Rust addresses
the 19 sins:

TABLE IV
MAPPING OF NINETEEN DEADLY SINS OF SOFTWARE

SECURITY TO RUST PROTECTION LEVELS

Security Flaw RD SG UP
Buffer Overflows •
Format String Problems •
Integer Overflows •
SQL Injection •
Command Injection •
Cross-Site Scripting (XSS) •
Race Conditions •
Error Handling •
Poor Logging •
Insecure Configuration •
Weak Cryptography •
Weak Random Numbers •
Using Known Vulnerable Components •
Unvalidated Redirects and Forwards •
Injection •
Insecure Storage •
Denial of Service •
Insecure Third-Party Interfaces •
Cross-Site Request Forgery (CSRF) •

21% 47% 32%

• Buffer Overflows (RD): Rust has built-in protection
against buffer overflow errors. It enforces strict bounds

59International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

checking, preventing programs from accessing memory
they should not.

• Format String Problems (SG): Rust does not support
format strings in the same way as languages like C,
thereby reducing the risk of this issue. It provides strong
protection against format string problems through its
type-safe formatting mechanism. The std::fmt module in
Rust offers a rich set of formatting capabilities while
enforcing compile-time safety.

• Integer Overflows (SG): In Rust, integer overflow is
considered a ”fail-fast” error. By default, when an integer
overflow occurs during an operation, Rust will panic
and terminate the program. This behavior helps catch
bugs early in development and prevents potential security
vulnerabilities. It also offers ways to handle integer
overflows gracefully.

• SQL Injection (SG): Rust itself doesn’t inherently pro-
tect against SQL injection. This protection is usually
provided by libraries that parameterize SQL queries, such
as rusqlite; see PoC code in [35].

• Command Injection (SG): Rust offers strong protec-
tions against command injection vulnerabilities through
its string handling and execution mechanisms. The lan-
guage’s emphasis on memory safety and control over
system resources helps mitigate the risk of command
injection; see PoC code in [35].

• Cross-Site Scripting (XSS) (UP): Rust does not provide
inherent protection against XSS. However, web frame-
works in Rust, such as Rocket and Actix, have features
to mitigate XSS.

• Race Conditions (RD): Rust’s ownership model and type
system are designed to prevent data races at compile time.

• Error Handling (RD): Rust encourages using the Result
type for error handling, which requires explicit handling
of errors.

• Poor Logging (SG): Poor logging is more of a design
problem than a language issue. Rust offers powerful
logging libraries, such as log and env logger.

• Insecure Configuration (UP): Although Rust’s strong
typing can catch some configuration errors at compile
time, it does not offer direct protections against insecure
configurations.

• Weak Cryptography (SG): Rust has libraries that sup-
port strong, modern cryptography. However, the correct
implementation depends on the developer.

• Weak Random Numbers (RD): Rust’s standard library
includes a secure random number generator.

• Using Components with Known Vulnerabilities (SG):
This is more related to the ecosystem than the language
itself. Rust’s package manager, Cargo, simplifies updating
dependencies.

• Unvalidated Redirects and Forwards (UP): Protection
against this is usually provided by web frameworks.

• Injection (SG): Rust’s strong typing and absence of eval-
like functions lower the risk of code injection.

• Insecure Storage (UP): Not directly related to the lan-

guage itself.
• Denial of Service (SG): Rust’s memory safety and

control over low-level details can help build resilient
systems, but it does not inherently protect against all types
of DoS attacks.

• Insecure Third-Party Interfaces (UP): This issue is
usually independent of the programming language.

• Cross-Site Request Forgery (CSRF) (UP): Typically, it
is handled by web frameworks rather than the language
itself.

In summary, Rust provides strong protections against several
of the ”19 deadly sins”, particularly those related to memory
safety and data races. However, some issues, particularly
those related to web development or design decisions, are not
directly addressed.

D. 10 Common Security Pitfalls in Rust Programming

In our exploration of the security aspects of Rust program-
ming, we have identified several vulnerabilities and potential
issues. Beyond the vulnerabilities discussed earlier, it is crucial
to highlight general security pitfalls that Rust programmers of-
ten encounter. While Rust’s safety features significantly reduce
certain security risks, awareness and avoidance of common
pitfalls are essential for secure coding practices. We outline
below 10 common security pitfalls in Rust programming (in
Figure 2):

• Injection Attacks: Rust’s type system can mitigate some
risks, but vulnerabilities can arise from improperly han-
dled user input in commands or queries.

• Integer Overflow and Underflow: Although Rust pro-
vides some level of protection, developers must be vigi-
lant against integer-related vulnerabilities.

• Request Forgery Attacks: Rust does not inherently
protect against request forgery attacks; developers are
responsible for ensuring proper safeguards.

• Cross-Site Scripting (XSS) Attacks: In web applica-
tions, handling user input safely is vital to preventing
XSS vulnerabilities, especially in rendering web pages.

• Insecure Design: Despite Rust’s advanced features, se-
curity vulnerabilities can still result from poor design
decisions. It’s essential to integrate security considera-
tions into the architectural design. However, these issues
are generally independent of Rust and are related to
overall security-aware design principles, applicable to any
software development.

• Faulty Access Control: Inadequate or improperly imple-
mented access control mechanisms can lead to unautho-
rized access to resources in Rust applications.

• Logging and Monitoring Failures: Adequate logging
and monitoring are crucial for security, yet often over-
looked or poorly implemented in Rust applications, lead-
ing to challenges in detecting and responding to security
incidents.

• Security Misconfiguration: Configuring security set-
tings inadequately in both Rust applications and deploy-
ment environments can expose them to risks.

60International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 2. Ten Common Security Pitfalls in Rust Programming, without Ranking

• Insecure Third-Party Interfaces: Relying on third-party
libraries or interfaces without proper security vetting can
introduce vulnerabilities in Rust applications.

• Misuse of Unsafe Code Blocks: Improper use of ’unsafe’
code blocks in Rust can compromise the language’s
inherent safety features, leading to security risks.

This section serves as a guide for common pitfalls and
reinforces the importance of comprehensive security practices
in Rust development. These insights are intended to support
programmers in recognizing and addressing these challenges,
thereby enhancing the overall security of software developed
in Rust.

1) Injection Attacks: Injection attacks are a prevalent threat
in software development, and Rust is not immune to them
despite its strong type system and memory safety features.
These attacks typically occur when an application unsafely
integrates user input into a command or query. While Rust’s
type system aids in mitigating some risks, vulnerabilities can
still arise from improperly validated or sanitized user inputs.
This is especially relevant in scenarios involving database
queries, command-line arguments, or URL construction, where
attackers can exploit unfiltered inputs. Let’s examine a specific
case of injection attacks: SQL injection.

a) Vulnerable SQL Query in Rust: The following Rust
code snippet (Figure 3) demonstrates a vulnerable approach to
constructing SQL queries by directly incorporating user input
without sanitization:

pub fn get_user_by_id(conn: &Connection,
user_id: &str) -> Result<Vec<User>> {
// Vulnerable SQL query due to direct
concatenation of user input
let query = format!("SELECT id, name, age
FROM users WHERE id = ’{}’", user_id);
let mut stmt = conn.prepare(&query)?;
let user_iter = stmt.query_map([], |row| {

Ok(User {
id: row.get(0)?,
name: row.get(1)?,
age: row.get(2)?,

})
})?;
let mut users = vec![];
for user in user_iter {

users.push(user?);
}
Ok(users)

}

Fig. 3. Vulnerable Code: SQL Injection

This code is prone to SQL injection because it cre-
ates a query string by concatenating a user-provided string
(‘user id‘) directly into the SQL command. An attacker could
manipulate ‘user id‘ to alter the structure of the SQL com-
mand and execute unintended database operations.

61International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

b) Secured SQL Query in Rust: In contrast, the secure
version (Figure 4) uses parameterized queries to safely handle
user input, effectively preventing SQL injection:

fn get_user_by_id_safe(conn: &Connection,
user_id: &str) -> Result<Vec<User>> {
let query = "SELECT id, name, age FROM
users WHERE id = ?";
let mut stmt = conn.prepare(query)?;
let user_iter = stmt.query_map([user_id],
|row| {

Ok(User {
id: row.get(0)?,
name: row.get(1)?,
age: row.get(2)?,

})
})?;

let mut users = vec![];
for user in user_iter {

users.push(user?);
}

Ok(users)
}

Fig. 4. Safe Code: Prevents SQL Injection

In the secure example, ‘?‘ placeholders are used in the
SQL query. These placeholders are then filled with the actual
‘user id‘ in a way that the database engine understands as
data, not as part of the SQL command. This approach ensures
that even if ‘user id‘ contains malicious content, it will not
be executed as SQL code.

Similarly, for command injections, it is crucial to avoid
using user inputs to construct command strings dynamically
[39]. Instead, Rust’s standard library offers functions to pass
arguments to commands in a way that prevents injection,
ensuring that inputs are treated as literal text and not as
executable code.

This example underscores the importance of carefully han-
dling user inputs in Rust applications. Despite Rust’s memory
safety features, developers must remain vigilant against vul-
nerabilities like injection attacks, emphasizing the need for
proper input validation and secure coding practices, such as
parameterized queries, to maintain application security.

2) Integer Overflow/Underflow: Integer overflow and un-
derflow represent a class of critical vulnerabilities in software
applications where arithmetic operations exceed the maximum
or minimum limits of the data type being used. Rust provides
some level of protection against these vulnerabilities by in-
cluding checks in the debug mode that cause a panic when an
overflow or underflow occurs. However, in release builds, these
checks are not enforced by default for performance, which can
lead to silent wrapping and potential security risks.

a) Vulnerable Integer Arithmetic in Rust: The following
Rust code snippet (in Figure 5) demonstrates an unsafe ap-
proach to integer arithmetic, which can lead to overflow or
underflow without any warnings or errors in release builds:

pub fn withdrawal(balance: u32, amount: u32)
-> u32 {
let mut balance = balance;
balance -= amount;
balance

}

Fig. 5. Vulnerable Code: Integer Overflow/Underflow

In this code, subtracting a larger ‘amount‘ from ‘balance‘
can cause an underflow, which in release mode would wrap
around to a very large number due to the unsigned integer
type. This could lead to logical errors in the program and
potentially severe security vulnerabilities, such as incorrectly
authorizing a financial transaction.

b) Secured Integer Arithmetic in Rust: To prevent such
issues, Rust offers built-in methods for safe arithmetic that
return a ‘Result‘ or an ‘Option‘ type, which can be explicitly
handled. Here is a secure version (in Figure 6) of the function
that correctly handles underflow using ‘checked sub‘:

pub fn withdrawal(balance: u32, amount: u32)
-> Result<u32, &’static str> {
match balance.checked_sub(amount) {

Some(new_balance) => Ok(new_balance),
None => Err("Withdrawal not possible:

insufficient funds"),
}

}

Fig. 6. Safe Code: Prevents Integer Overflow/Underflow

In this secure example, ‘checked sub‘ is used for sub-
traction, which returns ‘None‘ if underflow occurs. Using a
‘match‘ statement, the code can handle the underflow case
safely, either by returning an error message indicating that
the withdrawal is impossible due to insufficient funds or by
implementing alternative logic as needed.

This example highlights the need for developers to be aware
of the integer arithmetic behavior in their chosen programming
language, particularly in a systems language like Rust, often
used for low-level tasks. By utilizing Rust’s safe arithmetic
functions and adequately handling their results, applications
can be more robust and secure against integer overflow and
underflow vulnerabilities.

3) Request Forgery Attacks: Request Forgery Attacks, such
as Cross-Site Request Forgery (CSRF) and Server-Side Re-
quest Forgery (SSRF), represent significant security threats
to web applications. These attacks exploit a service’s trust in
the user or the server itself. While Rust’s memory safety and
concurrency features are commendable, they offer no inherent
protection against these web-specific attack vectors.

a) Cross-Site Request Forgery (CSRF): CSRF attacks
deceive a web browser into executing an unwanted action
on a trusted application where the user is authenticated.
In the context of Rust web applications using frameworks
like Rocket, such vulnerabilities emerge when state-changing

62International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

operations do not require explicit user consent beyond the
initial authentication [40].

Consider the example of a Rust application (in Figure
7) with an endpoint to change a user’s password, which is
vulnerable to CSRF attacks:

use rocket::form::Form;

#[derive(FromForm)]
struct PasswordChangeForm {

new_password: String,
}

#[post("/change_password", data =
"<password_form>")]

fn change_password(password_form:
Form<PasswordChangeForm>, user: User) ->
String {
// Implement code to change the user’s
password in the database
// Ensure ’user’ is the currently
authenticated user
// This code is still CSRF vulnerable
"Password changed
successfully".to_string()

}

Fig. 7. Vulnerable Code: CSRF

This endpoint is vulnerable because it processes the pass-
word change request without verifying the origin of the
request, making it susceptible to CSRF attacks. An attacker
could craft a malicious website with a form that, when
submitted, sends a POST request to this endpoint. If the victim
is logged into the Rust application in the same browser, the
browser automatically includes the session cookies with the
request, leading to an unauthorized password change.

To mitigate CSRF, a token-based strategy is typically em-
ployed. As of Rocket version 0.5, automatic CSRF protection
was still under discussion, with improvements expected in
future versions (See the GitHub issue for the discussion on
CSRF protection in Rocket v0.6 [41]).

b) Server-Side Request Forgery (SSRF): SSRF attacks
occur when an attacker can induce the server-side application
to make requests to arbitrary domains, leading to unauthorized
actions or data exposure. Unlike CSRF, SSRF exploits the trust
a server has within its own system or between internal services.

In Rust web applications, SSRF can typically occur when
user-supplied URLs are used without proper validation to
make server-side requests. For instance, fetching a user-
specified URL without checking if it points to an internal
service or sensitive resource can be exploited.

To prevent SSRF, developers must validate and sanitize all
URLs and restrict the server’s ability to interact only with
whitelisted endpoints. Additionally, following the principle of
least privilege when granting network capabilities to the server
can mitigate the impact of SSRF attacks.

Request forgery attacks, both CSRF and SSRF, require de-
velopers to be proactive in their defense strategies. Employing

robust validation, leveraging security features provided by
web frameworks, and adhering to security best practices are
crucial in protecting Rust web applications from these types
of vulnerabilities.

4) Cross-Site Scripting (XSS): Cross-Site Scripting (XSS)
attacks are a significant concern in web applications, including
those developed in Rust. XSS attacks involve the injection
of malicious scripts into webpages viewed by other users,
exploiting a user’s trust in a particular site.

a) Rust and XSS Vulnerability: Although Rust is known
for its robust safety features, it does not inherently protect
against XSS attacks [42], [43]. These attacks are primarily
concerned with the layer where HTML is generated or manip-
ulated. Rust applications using web frameworks for frontend
development, like Rocket, are susceptible to the same XSS
vulnerabilities as applications written in other languages.

b) Example of XSS Vulnerability in Rust: Consider a
Rust web application that allows users to input data directly
displayed on a webpage. An attacker could inject malicious
JavaScript code if the application does not properly escape
or sanitize the user input. This code could be executed in
the browsers of other site users, leading to data theft, session
hijacking, or other malicious activities.

c) Protecting Against XSS in Rust: To mitigate XSS risks
in Rust applications, developers need to:

• Escape User Input: Ensure that user inputs are correctly
escaped before rendering on web pages. This prevents
malicious scripts from being executed [44].

• Use Safe Frameworks and Libraries: Employ frame-
works and libraries that automatically handle escaping.
For instance, the Ammonia crate in Rust sanitizes HTML
to prevent XSS by filtering out harmful tags and attributes
(Sometimes even crates like Ammonia have XSS vulnera-
bilities [43], so developers should always keep themselves
informed about such vulnerabilities).

• Content Security Policy (CSP): Implement a strong
CSP to reduce the severity of any XSS vulnerabilities by
restricting where scripts can be loaded from and executed
[44].

• Validate and Sanitize Input: Rigorously validate and
sanitize all user input, especially data that will be in-
cluded in HTML output.

• Regular Security Audits: Conduct regular security re-
views and testing, including dynamic application security
testing (DAST) and penetration testing, to identify and fix
XSS vulnerabilities [44].

While Rust provides significant advantages regarding mem-
ory safety, developers must still be diligent in protecting
against XSS and other web-based vulnerabilities. Implement-
ing best practices for input handling and utilizing security-
focused libraries and frameworks are essential steps in creating
secure Rust web applications.

5) Insecure Design: Insecure design in software develop-
ment refers to flaws that arise not from specific coding errors
but from fundamental issues in the software’s architecture and
design decisions. Even in a language like Rust, known for

63International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

its emphasis on safety and security, an application’s overall
security is significantly influenced by its design. We explore
common design pitfalls in Rust programming and recommend
strategies to foster secure software design.

a) Impact of Insecure Design: While Rust provides
strong guarantees against memory safety issues, it does not
inherently address higher-level design vulnerabilities such as
authentication flaws, inadequate data protection, or insecure
communication protocols. These vulnerabilities are often the
result of oversight during the design phase and can lead to sig-
nificant security risks, including data breaches, unauthorized
access, and system compromises.

b) Common Design Flaws in Rust Applications:
• Insufficient Authentication and Authorization: Over-

looking robust authentication and authorization mecha-
nisms can lead to unauthorized access. Rust applications,
especially those interfacing with web services, must im-
plement strong authentication protocols and ensure user
privileges are correctly managed.

• Lack of Data Encryption: Failing to encrypt sensitive
data at rest and in transit can expose it to interception
and misuse. Rust applications handling confidential in-
formation should utilize strong encryption algorithms and
libraries to secure data.

• Ignoring Secure Communication Protocols: Neglecting
to use secure communication channels like HTTPS can
make Rust applications vulnerable to man-in-the-middle
attacks. Ensuring encrypted communication is critical,
especially for web-based applications.
c) Best Practices for Secure Design: To mitigate the risks

associated with insecure design, the following best practices
are recommended:

• Threat Modeling: Early in the design process, conduct
threat modeling to identify potential security threats. This
proactive approach helps in designing systems that are
resilient against identified risks [45], [46].

• Principle of Least Privilege: Design systems where
components operate with the minimum privileges neces-
sary. This reduces the impact of a potential compromise
[47].

• Secure Defaults: Ensure that the application’s default
configuration is secure. This includes settings for user
access, data processing, and communication protocols
[46].

• Regular Security Audits: Conduct regular security re-
views and audits of the design to identify and address
new and evolving security threats [46].

• Staying Informed: Keep abreast of the latest security
trends and best practices in software design. Applying up-
to-date knowledge can significantly enhance the security
posture of Rust applications.

In Rust development, as in any software development en-
deavor, secure design is just as crucial as secure coding. An
application’s architecture and design decisions lay the foun-
dation for its overall security. By adhering to best practices in

secure design and being mindful of common design pitfalls,
Rust developers can significantly reduce the risk of security
vulnerabilities in their applications.

6) Faulty Access Control: Faulty access control is a critical
security issue that can lead to unauthorized access and data
breaches. In the context of Rust programming, while the
language offers strong memory safety features, access control
largely depends on the application’s design and the use of
libraries. This section discusses the common challenges and
best practices in implementing robust access control in Rust
applications.

a) Challenges in Access Control: Access control mecha-
nisms are essential for defining and enforcing who can access
what resources in an application. In Rust, the challenges in
implementing access control often stem from:

• Complex User Permissions: Managing complex user
permissions and roles can be challenging, especially in
applications with multiple user levels and diverse access
needs.

• Dependency on External Libraries: Rust’s standard
library does not provide specific features for access
control, leading developers to rely on external libraries,
which might vary in their security robustness.

• Inadequate Session Management: Implementing secure
session management is crucial for web applications.
Faulty session management can lead to vulnerabilities
like session hijacking and fixation.
b) Best Practices for Access Control: To ensure effective

access control in Rust applications, consider the following best
practices:

• Role-Based Access Control (RBAC): Implement RBAC
to manage user permissions efficiently. RBAC allows for
grouping permissions into roles, which can be assigned
to users, simplifying the management of user privileges.

• Use of Vetted Libraries: When relying on external
libraries for access control features, choose well-vetted
libraries with a strong security track record. Regularly
update these libraries to incorporate security patches.

• Secure Authentication and Session Management: Im-
plement strong authentication mechanisms and ensure
that session management is secure. This includes using
secure tokens, implementing session timeouts, and pro-
tecting against common session attacks.

• Regular Access Reviews: Regularly review and update
access control policies to ensure they align with the
current organizational structure and user roles.

• Audit and Logging: Maintain comprehensive audit logs
for access control events. Monitoring and analyzing these
logs can help detect unauthorized access attempts and
improve the overall security posture.

Faulty access control can have severe implications for
the security of a Rust application. While Rust provides the
tools for building safe and concurrent applications, access
control relies more on the application’s design and the secure
implementation of libraries and frameworks. By adopting

64International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

robust access control practices and staying vigilant in their
application, developers can significantly enhance the security
of their Rust applications.

7) Logging and Monitoring Failures: Effective logging and
monitoring are crucial for the security and stability of any
software application, including those developed in Rust. While
Rust’s language features promote safety and concurrency,
they do not inherently provide solutions for logging and
monitoring. This section addresses common pitfalls in logging
and monitoring Rust applications and suggests best practices
to mitigate these issues.

a) Importance of Logging and Monitoring: Logging and
monitoring are pivotal in detecting, diagnosing, and respond-
ing to security incidents and system failures. In Rust applica-
tions, ineffective logging and monitoring can lead to:

• Inadequate Detection of Security Incidents: Without
proper logging, malicious activities or security breaches
may go unnoticed, increasing the risk of damage.

• Difficulty in Troubleshooting and Debugging: Insuffi-
cient logging can hinder the identification and resolution
of bugs or performance issues, affecting the reliability
and efficiency of the application.

• Compliance Issues: Failure to maintain adequate logs
can lead to non-compliance with regulatory requirements,
especially in industries where logging is mandated for
audit trails.
b) Best Practices for Logging and Monitoring: Imple-

menting effective logging and monitoring in Rust applications
involves several best practices:

• Comprehensive Logging Strategy: Develop a logging
strategy that covers what to log, at what level, and how to
securely store and manage logs. Ensure that logs capture
essential information for security and operational insights.

• Use of Robust Logging Frameworks: Utilize mature
and well-supported logging frameworks in Rust, such as
log and env_logger, which provide flexibility and
ease of integration.

• Real-time Monitoring and Alerting: Implement real-
time monitoring tools to promptly detect and alert on
abnormal activities or performance issues.

• Log Analysis and Correlation: Regularly analyze logs
to identify patterns or anomalies. Correlate logs from
different sources to gain a comprehensive understanding
of events.

• Secure and Compliant Log Management: Ensure logs
are stored securely, with access controls in place. Logs
should be managed in compliance with data protection
regulations.

Effective logging and monitoring are vital for maintaining
the security and integrity of Rust applications. By implement-
ing a robust logging and monitoring strategy and utilizing
appropriate tools and practices, developers can significantly
enhance their ability to detect, diagnose, and respond to
Rust application issues, reinforcing their overall security and
reliability.

8) Security Misconfiguration: Security misconfiguration is
one of the most common vulnerabilities in software applica-
tions, arising from improper setup or default configurations
that are not secure. In Rust applications, as with any other
technology, attention to configuration details is crucial for en-
suring system security. This section highlights the typical areas
where security misconfiguration can occur in Rust applications
and provides guidelines to prevent such vulnerabilities.

a) Typical Areas of Misconfiguration: Security miscon-
figurations in Rust applications can manifest in various ways:

• Default Settings: Leaving default settings unchanged, es-
pecially those related to security, can expose applications
to known vulnerabilities [48].

• Insecure Database Configurations: Inadequately se-
cured database connections or default credentials can lead
to unauthorized access [48].

• Improper File Permissions: Incorrect file and directory
permissions can give attackers access to sensitive data or
system files [48].

• Exposed Sensitive Information: Exposing sensitive in-
formation like debug details, stack traces, or crypto-
graphic keys through error messages or logs [48].

• Lack of Security Features in External Libraries:
Using external libraries without properly configuring their
security features.

b) Best Practices to Prevent Security Misconfiguration:
Implementing the following best practices can significantly re-
duce the risk of security misconfiguration in Rust applications:

• Regular Configuration Reviews: Conduct regular re-
views of application configurations, particularly after
updates or changes, to ensure security settings are ap-
propriate and up to date.

• Minimal Necessary Permissions: Apply the principle of
least privilege to file, database, and network permissions.
Only grant access levels necessary for the operation.

• Secure Default Settings: Customize default settings to
enforce security, including turning off unnecessary fea-
tures and services.

• Manage Sensitive Information: Ensure sensitive in-
formation like keys, credentials, and personal data is
securely managed and not exposed in logs or error
messages.

• Update and Patch Libraries: Regularly update external
libraries to incorporate security patches and review their
configurations for security implications.

• Security Hardening Guides and Checklists: Utilize
security hardening guides and checklists to systematically
address potential misconfigurations.

Security misconfiguration can lead to severe vulnerabilities
in Rust applications. By being vigilant about configuration
details, regularly reviewing and updating settings, and follow-
ing best practices for security management, developers can
significantly enhance the security posture of their applications,
mitigating the risks associated with misconfiguration.

65International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

9) Misuse of Unsafe Code: The Rust programming lan-
guage is lauded for its emphasis on safety, particularly memory
safety. However, Rust also provides an ‘unsafe‘ keyword, al-
lowing developers to opt out of some of these safety guarantees
for various reasons [49], such as interfacing with low-level
system components or optimizing performance [50]. While
powerful, the misuse of ‘unsafe‘ code can introduce significant
security vulnerabilities. This section discusses the responsible
use of ‘unsafe‘ code in Rust and strategies to minimize its
risks.

a) Risks Associated with Unsafe Code in Rust: ‘Unsafe‘
code in Rust bypasses the compiler’s safety checks, which can
lead to several risks:

• Memory Safety Violations: ‘Unsafe‘ code can lead
to issues like dereferencing null or dangling pointers,
leading to undefined behavior or security vulnerabilities
such as buffer overflows [50], [51].

• Concurrency Issues: Incorrect handling of concurrent
operations in ‘unsafe‘ code can result in data races and
undefined behavior [51].

• Violations of Rust’s Ownership Model: ‘Unsafe‘ code
can violate Rust’s ownership rules, potentially leading to
memory leaks or double-free errors [50], [51].

Consider a scenario depicted in Figure 8, where an un-
safe block executes low-level operations, such as opening
a file through direct system calls. In these instances, the
safety mechanisms of Rust, designed to prevent memory and
resource leaks, are circumvented. Should the programmer
fail to explicitly close the file descriptor acquired via these
operations, it may result in resource leakage. This differs
from memory leaks, which involve un-freed allocated memory.
Here, resource leakage denotes the depletion of available
file descriptors, a limited system resource. Such oversight
can lead to the application’s inability to open new files or
sockets upon reaching the open file descriptor limit, potentially
causing broader system issues if not adequately addressed.
Consequently, ensuring that every file descriptor opened within
an unsafe block is properly closed is imperative, thereby
maintaining system stability and averting resource leakage.

b) Best Practices for Using Unsafe Code in Rust: To
mitigate the risks associated with ‘unsafe‘ code, consider the
following best practices:

• Minimize Use of Unsafe Code: Limit the use of ‘un-
safe‘ code to situations where it is necessary, such as
interfacing with hardware or legacy C code [51].

• Isolate Unsafe Code: Encapsulate ‘unsafe‘ code in small,
well-defined modules or functions. This isolation makes
it easier to audit and test the unsafe portions of your
codebase.

• Document Unsafe Code: Clearly document the reason-
ing behind the use of ‘unsafe‘ code and the precautions
taken to uphold safety guarantees.

• Peer Review: Unsafe code should undergo rigorous peer
review by experienced Rust developers, focusing on the
necessity and safety of the ‘unsafe‘ operations.

use libc::{c_char, c_int, open, read,
O_RDONLY};

use std::{ffi::CString, thread,
time::Duration};

fn read_file(filename: &str) ->
Result<String, String> {
let c_filename =
CString::new(filename).expect("CString::new
failed");
let fd: c_int = unsafe {
open(c_filename.as_ptr() as *const
c_char, O_RDONLY) };

if fd < 0 {
return Err("Unable to open

file".to_string());
}

let mut buffer = vec![0u8; 1024];
let bytes_read = unsafe { read(fd,
buffer.as_mut_ptr() as *mut libc::c_void,
buffer.len()) };

if bytes_read < 0 {
return Err("Unable to read

file".to_string());
}

// Remove extra null bytes from the buffer
buffer.resize(bytes_read as usize, 0);

// Failing to close the file descriptor
results in resource leakage.
// unsafe { close(fd); }

Ok(String::from_utf8_lossy(&buffer).into_owned())
}

fn main() {
let filename = "test.txt";
loop {

println!("Reading file...");
match read_file(filename) {

Ok(contents) => println!("File
contents: {}", contents),

Err(err) => println!("Error: {}",
err),

}

thread::sleep(Duration::from_millis(50));
}

}

Fig. 8. Vulnerable Code: Resource Leak with Unsafe Rust

• Automated Testing: Implement comprehensive auto-
mated testing, including fuzz testing, to uncover potential
issues in ‘unsafe‘ code [14].

• Stay Informed: Keep up-to-date with best practices and
guidelines from the Rust community regarding the use of
‘unsafe‘ code.

The use of ‘unsafe‘ code in Rust, while sometimes nec-

66International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

essary, should be approached with caution. By minimizing
its use, isolating it, documenting it, and rigorously testing it,
developers can mitigate the risks associated with bypassing the
compiler’s safety checks. Responsible use of ‘unsafe‘ code is
essential for maintaining the security and reliability of Rust
applications.

10) Insecure Third-Party Interfaces: In today’s software
development ecosystem, reliance on third-party interfaces and
libraries is commonplace. While this approach boosts effi-
ciency and productivity, it also introduces potential security
risks, especially if these third-party components are insecure
or misconfigured. Rust applications are no exception to this,
and developers must be vigilant about the third-party inter-
faces they integrate. This section explores the challenges and
best practices related to using third-party interfaces in Rust
applications.

a) Challenges with Third-Party Interfaces: Integrating
third-party interfaces in Rust applications can present several
challenges:

• Dependency Vulnerabilities: Libraries and interfaces
may contain vulnerabilities that can be exploited, com-
promising the security of the entire application.

• Lack of Control: Using third-party components often
means relinquishing control over certain aspects of the
application, which might lead to security lapses if these
components are not adequately maintained.

• Incompatibilities: Incompatibilities between different li-
braries or between libraries and the Rust runtime can lead
to unexpected behavior and potential security issues.

• Outdated Components: Using outdated versions of li-
braries and interfaces can expose applications to known
vulnerabilities that have been fixed in later versions.
b) Best Practices for Secure Use of Third-Party In-

terfaces: To safely integrate third-party interfaces in Rust
applications, consider the following best practices:

• Vet Third-Party Libraries: Before integrating a third-
party library, vet it for security. Check its reputation,
maintenance history, and community feedback.

• Keep Dependencies Updated: Regularly update third-
party libraries to the latest versions to ensure you have
the most recent security patches and features.

• Monitor for Vulnerabilities: Use tools to monitor depen-
dencies for known vulnerabilities. Automated vulnerabil-
ity scanning tools can be integrated into the development
workflow.

• Understand the Code: As much as possible, understand
the code of third-party libraries, at least those parts you
integrate into your application. This understanding can be
crucial for identifying potential security risks [52].

• Limit Dependencies: Minimize the number of third-
party dependencies. The more dependencies your project
has, the larger the attack surface.

• Isolate Critical Components: Isolate critical compo-
nents of your application from third-party code. This iso-
lation can prevent cascading failures or security breaches
from affecting core functionalities [52].

While third-party interfaces are invaluable in modern soft-
ware development, their integration must be cautiously ap-
proached, especially in the context of Rust applications. By
carefully selecting, monitoring, and managing these third-
party components, developers can mitigate potential security
risks and maintain the integrity and security of their Rust
applications.

In the following sections, we will delve deeper into the
analysis of past vulnerabilities in the Rust language and its
ecosystem and shed light on the time taken to address these
vulnerabilities and the current open issues in the Rust security
landscape. This comprehensive analysis aims to provide a
better understanding of the vulnerabilities in Rust and guide
developers and researchers in effectively addressing security
concerns in Rust-based software.

E. CVEs Addressed by Rust Security Advisory

A quick search on CVE Mitre with the keyword ”Rust”
returns over 400 vulnerabilities at the time of writing. Various
researchers have analyzed the CVEs, and the Rust community
actively fix them once discovered [10], [53]. However, Rust’s
security advisory only addresses some of these vulnerabilities:
CVE-2021-42574 [54], CVE-2022-21658 [55], CVE-2022-
24713 [56], CVE-2022-36113 [57], CVE-2022-36114 [57],
CVE-2022-46176 [58], CVE-2023-38497 [59] and CVE-2024-
24576 [60].

One of the CVEs acknowledged by the Rust security advi-
sory on their blog is CVE-2022-46176 [58]. This vulnerability,
found in Cargo’s Rust package manager, could allow for man-
in-the-middle (MITM) attacks due to a lack of SSH host
key verification when cloning indexes and dependencies via
SSH. All Rust versions containing Cargo before 1.66.1 are
vulnerable. Rust version 1.66.1 was released to mitigate this,
which checks the SSH host key and aborts the connection if
the server’s public key is not already trusted.

F. Comparison of Rust Static Analysis Tools with Python,
Java, and C++

Rust has been gaining traction due to its focus on safety and
performance. As a young language, Rust’s ecosystem of static
analysis tools is still in rapid development. The primary tool
for static analysis in Rust is the Rust compiler, which includes
a robust type system and borrow checker that prevents many
bugs at compile time. Moreover, tools like Clippy [61] and
Mirchecker [62] provide lints to catch common mistakes and
improve Rust code.

In contrast, languages like Python, Java, and C++ have been
around for a considerable time and have a mature set of static
analysis tools. Python, a dynamically typed language, relies
on tools like PyLint, PyFlakes, and Bandit for static analysis.
With its static type system, Java uses tools like FindBugs,
PMD, and Checkstyle. C++, known for its complexity and
flexibility, employs tools like cppcheck and Clang Static
Analyzer.

While each language has its unique set of static analysis
tools, the effectiveness of these tools can vary based on the

67International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

language’s features and characteristics. The rapidly evolving
Rust ecosystem is a testament to the language’s growing
popularity and commitment to safety and performance. On
the other hand, the mature toolsets of Python, Java, and
C++ provide robust support for detecting potential bugs and
improving code quality, backed by years of development and
refinement.

V. DISCUSSION

In this study, we have explored the security implications
of using the Rust programming language, which is gaining
traction in the software industry due to its claims of safety and
security. Our findings indicate that while Rust offers certain
security advantages, it is not immune to vulnerabilities, and
there are areas where it falls short compared to other, more
mature languages.

A. Rust Security Model and Its Attributes

The Rust programming language incorporates a comprehen-
sive security model to facilitate safe systems programming.
The attributes of this model are integral to its capability to
minimize common security vulnerabilities. These attributes of
Rust are also the reason why many people love the language
so much [63]. Figure 9 provides a visual representation of
these attributes, each contributing to the overall robustness of
the language’s approach to security.

1) Key Attributes of the Rust Security Model:
a) Ownership and Borrowing: Central to Rust’s memory

safety guarantees are the principles of ownership and bor-
rowing. These mechanisms ensure that memory is properly
allocated and deallocated, preventing common vulnerabilities
such as buffer overflows and dangling pointers.

b) Lifetime Tracking: Rust’s compiler enforces lifetime
annotations, which specify the scope of validity for references.
This prevents memory leaks and unauthorized memory access,
which are typical in systems programming.

c) Public/Private Module Management: By allowing de-
velopers to define public or private modules, Rust ensures
encapsulation and control over data exposure, mitigating the
risks associated with unauthorized access (by default modules
are private).

d) Safe and Unsafe Code: While Rust defaults to safe
code, it provides the ‘unsafe‘ keyword to perform certain low-
level operations. This dichotomy allows for flexibility where
necessary yet maintains strict safety checks by default.

e) Memory Safety Without Garbage Collection: Rust
provides memory safety guarantees without a garbage col-
lector, offering deterministic performance critical in systems
programming.

f) Zero-Cost Abstractions: Rust’s zero-cost abstractions
allow developers to write high-level abstractions without per-
formance penalties, often associated with high-level languages.

g) Type System and Concurrency: The language’s type
system and concurrency model prevent data races and ensure
safe concurrent programming, a common source of vulnera-
bilities in multi-threaded applications.

h) Compile-Time Memory Management: Rust’s ability to
manage memory at compile time prevents a class of bugs
that can be exploited at runtime, enhancing the security and
performance of applications.

i) Error Handling: Rust uses the ‘Result‘ and ‘Option‘
types for error handling, which prevents crashes due to un-
handled errors and exceptions, enhancing the reliability of the
application.

j) Cargo Package Manager and Dependency Manage-
ment: Rust’s package manager, Cargo, assists in managing
dependencies securely and facilitates easy maintenance and
updates, ensuring that security updates are seamlessly inte-
grated into the development process.

B. Mapping of SANS TOP 25, OWASP TOP 10 and 19 Deadly
Sins

Our research has shown that writing vulnerable software in
Rust is possible. This finding is essential, as it challenges the
perception that Rust is inherently secure. While Rust’s design
does make some types of vulnerabilities harder to introduce,
it is not a panacea. Other security aspects are as problematic
in Rust as in any other language. This point underscores the
fact that while language choice can influence the security of
a software system, it is not the only factor. Good security
practices are essential, regardless of the language used.

Some vulnerabilities are hard or impossible to solve through
an improved programming language as these belong to a ”non-
decidable” category. Therefore, writing a compiler or defining
a programming language that identifies and eliminates such
problems is impossible. However, we have observed that Rust
does offer improvements over other languages in handling
these issues, which is a positive sign.

One of the challenges we encountered in our research is
the relative immaturity of Rust compared to other languages.
There are fewer studies on Rust security, and the tools and
support for secure development are not as robust. For example,
SonarQube [64], a popular tool for static analysis of code to
detect bugs, code smells, and security vulnerabilities, does not
currently support Rust. This lack of tooling can significantly
impede Rust’s adoption in an industrial context, where such
tools are critical for finding vulnerabilities and passing cyber-
security certifications.

Our discussions with industry experts found that Rust’s
high learning curve is another potential barrier to its adop-
tion. More investigation is needed to understand the security
consequences of this compared to other languages that might
be easier to learn. The lack of a ”competent” workforce skilled
in Rust is another challenge that needs to be addressed.

In our analysis of the SANS Top 25, Rust provides inherent
protections against 24% of the vulnerabilities, some safeguards
against 28% of vulnerabilities, and does not offer protection or
does not apply to 48% of the vulnerabilities. We made notable
observations when comparing Rust with other programming
languages like C, C++, and Java. C does not offer any
inherent protections against the vulnerabilities listed in the
SANS Top 25, as it was designed to be minimal and efficient.

68International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 9. Rust Security Model

C++, on the other hand, provides safeguards against particular
vulnerabilities, such as CWE-787 and CWE-15. Examples of
language features that can protect against these vulnerabilities
include the C++ Standard Template Library (STL) and other
features. Nevertheless, the C++ programming language does
not inherently protect against them. In our study, we observe
that C++ safeguards against only 24% of the vulnerabilities in
the SANS Top 25. However, Java utilizes a garbage collector
that inherently protects against memory-related issues. This
feature puts Java closer to Rust in terms of protection [65].

Our analysis of the OWASP findings revealed that not a
single finding is of the type RD, which is to be expected, as
Rust is more a system-level programming language rather than
a programming language for web technologies. Compared to
C, C++, and Java, which are widely used in the industry, Rust
shows promise but has limitations.

Our analysis of the 19 Deadly Sins showed that Rust
provides inherent protections against 21% of these sins, offers
safeguards for 47% of them, and leaves 32% of the sins
unprotected.

We do not expect any current or future programming
language to be able to cover 100% of the vulnerabilities, as
many coding guidelines in CWE are non-decidable. However,
our work shows that Rust does a commendable job addressing
many CWE guidelines.

Our inspiration to use a three-point scale (RD, SG, and UP)
in our analysis is based on the work by Jacoby (1971) [66],
who argued that ”Three-point Likert scales are good enough.”

In addition to our Rust security vulnerabilities analysis,
we have also delineated 10 common security pitfalls that

developers should be vigilant about. This compilation is not
exhaustive but serves as a crucial starting point for Rust
developers to cultivate a security-first mindset. By highlighting
these pitfalls—ranging from Injection Attacks to the Misuse of
Unsafe Code—we aim to underscore the multifaceted nature
of security in Rust programming.

These pitfalls were selected based on their prevalence and
potential impact on the security of Rust applications. Pitfalls
are accompanied by examples and best practices, offering
developers concrete strategies to avoid or mitigate these risks.
This proactive approach is essential in a landscape where secu-
rity threats are continually evolving, and developer awareness
can significantly influence the resilience of software systems.

Furthermore, discussing these pitfalls complements our
broader research findings, providing a comprehensive
overview of the security considerations specific to Rust.
It acknowledges that while Rust’s design offers significant
safety features, security is a broader concern that extends
beyond the language’s inherent mechanisms. Developers must
remain cognizant of the various ways vulnerabilities can
manifest, whether through logical errors, misconfigurations,
or the integration of insecure third-party components.

Our exploration of common security pitfalls in Rust pro-
gramming serves as both a cautionary tale and a roadmap
for secure development practices. As the Rust ecosystem
continues to grow and evolve, so will the challenges and
strategies for ensuring the security of Rust applications. We
hope this guide will be a valuable resource for developers,
encouraging a holistic approach to security that integrates
seamlessly with Rust’s safety features.

69International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The authors consider the present work essential as Rust’s
usage for software development continues to grow. Without
awareness of potential vulnerabilities, we risk replacing one
problem with another. It is crucial to emphasize the security
limitations of Rust early on rather than treating security as
an add-on feature. Security should be prioritized from the
inception of every project. Furthermore, due to Rust being a
relatively new language, standardized testing tools for assess-
ing compliance with ISO/IEC security standards are not yet
available, or very few. This lack of tools makes it challenging
to introduce Rust into the industry.

The present work does not focus on finding novel soft-
ware weaknesses specific to the Rust programming language
but rather on comparing well-known vulnerabilities, e.g., as
present in secure programming standards, and their relation
to the Rust programming language. Additional investigation is
needed to understand potential vulnerabilities when developing
software in Rust which are caused by the language itself.

In conclusion, our work contributes to scientific knowledge
and industry practice by shedding light on the security im-
plications of using Rust. While Rust is rising in significance
and the industry is starting to adopt it, there is a lack of
studies on its security aspects. Our work closes this gap and
shows that while it is still possible to write vulnerabilities in
Rust, some problems are well-considered. As Rust continues
to grow in popularity, we hope our findings will help guide
its development in a direction that prioritizes security and that
our work will serve as a foundation for further research in this
area.

While the interviews carried out in the present work include
a limited number of participants, the results of the present
work are validated. The authors did not only confirm some
vulnerabilities with proof-of-concept code but also conducted
interviews with highly experienced security experts. Never-
theless, the mapping to protection levels, while dependent on
the authors’ and interviewees’ experience, can also change in
future releases of the Rust programming language.

VI. CONCLUSION AND FUTURE WORK

Our research provided valuable insights into the secu-
rity implications of the Rust programming language. While
Rust has significantly enhanced software security, we have
demonstrated that it is not immune to vulnerabilities. Our
findings challenge the notion that Rust is inherently secure
and highlight the need for robust security practices, regardless
of the language used.

Our study has also shed light on the challenges associated
with Rust’s relative immaturity compared to other, more estab-
lished languages. The lack of comprehensive studies on Rust
security, the absence of robust tooling for secure development,
and the high learning curve associated with Rust are all areas
that require attention. Furthermore, the shortage of a skilled
workforce in Rust is a significant barrier that needs to be
addressed to facilitate its broader adoption in the industry.

Despite these challenges, Rust shows promise. Its design
makes specific vulnerabilities harder to introduce and of-

fers improvements over other languages in handling ”non-
decidable” problems. As Rust continues gaining traction in
the software industry, it is crucial to investigate its security
implications and develop tools and practices to mitigate po-
tential vulnerabilities.

As the following steps, there are several avenues for future
work. One of the critical areas is the development of tools to
support secure development in Rust. These tools include static
application security testing tools like SonarQube, which are
critical for finding vulnerabilities and passing cybersecurity
certifications. Another area of focus is the development of
comprehensive training programs to lower Rust’s learning
curve and build a competent workforce skilled in Rust. Further
research should also focus on studying real-world examples of
security concerns in Rust applications to strengthen the points
made by the authors. Additionally, providing suggestions on
what Rust needs to improve, specifically in terms of the 10
common security pitfalls identified, will be essential. Com-
paring Rust with the Go programming language, particularly
regarding inherent security considerations, will also provide
valuable insights.

As more software is developed in Rust, it is crucial to
maintain a sense of urgency in highlighting its security short-
comings. Security should not be an afterthought but should
be integrated from the beginning of every project. We hope
our work will contribute to developing safer and more secure
software systems.

REFERENCES

[1] T. E. Gasiba and S. Amburi, “I Think This is the Beginning of a
Beautiful Friendship - On the Rust Programming Language and Secure
Software Development in the Industry,” in Proceedings of the Eighth
International Conference on Cyber-Technologies and Cyber-Systems
(CYBER 2023), IARIA. ThinkMind, September 2023, pp. 19–26.
[Online]. Available: https://www.thinkmind.org/index.php?view=article
&articleid=cyber 2023 1 40 80031

[2] Yalantis, “Rust Market Overview,” 2023, accessed: July 16, 2023.
[Online]. Available: https://yalantis.com/blog/rust-market-overview/

[3] E. D. C. Garcia, “Rust Makes Us Better Programmers,” 2023, accessed:
July 16, 2023. [Online]. Available: https://thenewstack.io/rust-makes-u
s-better-programmers/

[4] S. O. Ryan Donovan, “Why the developers who use Rust love it
so much,” Jun 2020, accessed: July 16, 2023. [Online]. Available:
https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rus
t-love-it-so-much/

[5] S. Overflow, “Stack Overflow Developer Survey 2023,”
https://survey.stackoverflow.co/2023/#section-admired-and-desired-
programming-scripting-and-markup-languages, 2023, accessed: July 16,
2023.

[6] J. Barron, “Rust’s Addition to the Linux Kernel Seen as ’Enormous Vote
of Confidence’ in the Language,” SD Times, Nov. 2022, accessed: July
16, 2023.

[7] Writing Linux Kernel Modules in Rust. [Online]. Available: https://ww
w.linuxfoundation.org/webinars/writing-linux-kernel-modules-in-rust

[8] Office of the National Cyber Director, “Title of the report,” White
House, Washington, D.C., Tech. Rep., 02 2024. [Online]. Available:
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONC
D-Technical-Report.pdf

[9] G. S. Team, “Memory-safe languages in Android 13,” 2022, accessed:
July 16, 2023. [Online]. Available: https://security.googleblog.com/20
22/12/memory-safe-languages-in-android-13.html

[10] “RustSec Advisory Database,” 2023, accessed: July 16, 2023. [Online].
Available: https://rustsec.org/advisories/

70International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[11] National Security Agency, “U.s. and international partners issue
recommendations to secure software products,” Press Release, 12 2023.
[Online]. Available: https://www.nsa.gov/Press-Room/Press-Releases-S
tatements/Press-Release-View/Article/3608324/us-and-international-p
artners-issue-recommendations-to-secure-software-products/

[12] “IEC 62443,” international Electrotechnical Commission (IEC) Stan-
dards.

[13] International Electrotechnical Commission, “Understanding IEC 62443,”
https://www.iec.ch/blog/understanding-iec-62443, accessed: July 16,
2023.

[14] S. Hu, B. Hua, and Y. Wang, “Comprehensiveness, automation and
lifecycle: A new perspective for rust security,” in 2022 IEEE 22nd
International Conference on Software Quality, Reliability and Security
(QRS), 2022, pp. 982–991.

[15] Z. Hanley, “Rust Won’t Save Us: An Analysis of 2023’s Known
Exploited Vulnerabilities,” Feb. 2024. [Online]. Available: https:
//www.horizon3.ai/attack-research/red-team/analysis-of-2023s-known-e
xploited-vulnerabilities/

[16] Glitchbyte, “Rust wont save us, but its ideas will,” Feb. 2024. [Online].
Available: https://glitchbyte.io/posts/rust-wont-save-us/

[17] J. Getreu, “Embedded System Security with Rust - Case Study of
Heartbleed.”

[18] “How Rust Prevents Out of Bound Reads/Writes.” [Online]. Available:
https://ancat.github.io//rust/2017/01/21/rust-out-of-bounds.html

[19] SANS Institute, “Top 25 Software Errors,” https://www.sans.org/top25
-software-errors/, accessed: July 16, 2023.

[20] OWASP Foundation, “OWASP Top Ten,” https://owasp.org/www-proje
ct-top-ten/, accessed: July 16, 2023.

[21] M. Howard, D. LeBlanc, and J. Viega, 19 Deadly Sins of Software
Security: Programming Flaws and How to Fix Them. New York:
McGraw-Hill, 2005, accessed: July 16, 2023.

[22] T. Espinha Gasiba, U. Lechner, M. Pinto-Albuquerque, and D. Méndez,
“Is Secure Coding Education in the Industry Needed? An Investigation
Through a Large Scale Survey,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering Education
and Training (ICSE-SEET), 2021, pp. 241–252, accessed: July 16, 2023.

[23] J. Sible and D. Svoboda, “Rust Software Security: A Current
State Assessment,” Carnegie Mellon University, Software Engineering
Institute’s Insights (blog), Dec 2022, accessed: July 16, 2023. [Online].
Available: https://doi.org/10.58012/0px4-9n81

[24] G. Wassermann and D. Svoboda, “Rust Vulnerability Analysis
and Maturity Challenges,” Carnegie Mellon University, Software
Engineering Institute’s Insights (blog), Jan 2023, accessed: July 16,
2023. [Online]. Available: https://doi.org/10.58012/t0m3-vb66

[25] B. Qin, Y. Chen, Z. Yu, L. Song, and Y. Zhang, “Understanding
Memory and Thread Safety Practices and Issues in Real-World Rust
Programs,” in Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI
2020. New York, NY, USA: Association for Computing Machinery,
2020, p. 763–779, accessed: July 16, 2023. [Online]. Available:
https://doi.org/10.1145/3385412.3386036

[26] X. Zheng, Z. Wan, Y. Zhang, R. Chang, and D. Lo, “A Closer Look
at the Security Risks in the Rust Ecosystem,” ACM Trans. Softw.
Eng. Methodol., vol. 33, no. 2, pp. 34:1–34:30, Dec. 2023. [Online].
Available: https://doi.org/10.1145/3624738

[27] A. Balasubramanian, M. S. Baranowski, A. Burtsev, A. Panda,
Z. Rakamarić, and L. Ryzhyk, “System programming in rust: Beyond
safety,” in Proceedings of the 16th Workshop on Hot Topics in
Operating Systems, ser. HotOS ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 156–161. [Online]. Available:
https://doi.org/10.1145/3102980.3103006

[28] I. J. S. 22, “ISO/IEC TR 24772-1:2019 - Programming languages —
Guidance to avoiding vulnerabilities in programming languages — Part
1: Language-independent guidance,” Online, 12 2019, accessed: July
16, 2023. [Online]. Available: https://www.iso.org/standard/71091.html

[29] T. M. Corporation, “Common Weakness Enumeration (CWE),” Online,
2023, accessed: July 16, 2023. [Online]. Available: https://cwe.mitre.org/

[30] ANSSI, “Publication: Programming Rules to Develop Secure Applica-
tions With Rust,” https://www.ssi.gouv.fr/guide/programming-rules-to-d
evelop-secure-applications-with-rust/, 2023, (accessed July 16, 2023).

[31] “Rust - Analysis Tools,” 2023, accessed: July 16, 2023. [Online].
Available: https://analysis-tools.dev/tag/rust

[32] R. Bagnara, A. Bagnara, and P. M. Hill, “Coding Guidelines and
Undecidability,” arXiv, Dec 2022, accessed: July 16, 2023. [Online].
Available: http://arxiv.org/abs/2212.13933

[33] T. Espinha Gasiba, U. Lechner, M. Pinto-Albuquerque, and
D. Mendez Fernandez, “Awareness of Secure Coding Guidelines
in the Industry - A First Data Analysis,” in 2020 IEEE 19th
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), 2020, pp. 345–352, accessed: July
16, 2023.

[34] T. Espinha Gasiba, U. Lechner, and M. Pinto-Albuquerque, “Sifu -
a Cybersecurity Awareness Platform with Challenge Assessment and
Intelligent Coach,” Cybersecurity, vol. 3, no. 1, p. 24, 12 2020, accessed:
July 16, 2023.

[35] S. Amburi, “Sathwik-Amburi/secure-software-development-with-rust:
Secure Software Development with Rust,” https://github.com/Sathw
ik-Amburi/secure-software-development-with-rust, Aug. 2023, last
accessed: 2023-08-14. [Online]. Available: https://doi.org/10.5281/zeno
do.8247155

[36] M. Noseda, F. Frei, A. Rüst, and S. Künzli, “Rust for secure
iot applications: why c is getting rusty,” in Embedded World
Conference. Nuremberg, Germany: WEKA, June 2022. [Online].
Available: https://digitalcollection.zhaw.ch/handle/11475/25046

[37] H. Xu, Z. Chen, M. Sun, Y. Zhou, and M. R. Lyu, “Memory-safety
challenge considered solved? an in-depth study with all rust cves,”
ACM Trans. Softw. Eng. Methodol., vol. 31, no. 1, sep 2021. [Online].
Available: https://doi.org/10.1145/3466642

[38] “National vulnerability database: Cve-2021-29922,” https://nvd.nist.gov
/vuln/detail/cve-2021-29922, May 2021, accessed: 2024-06-10.

[39] “Rust Command Injection: Examples and Prevention.” [Online].
Available: https://www.stackhawk.com/blog/rust-command-injection-e
xamples-and-prevention/

[40] “Rust CSRF Protection Guide: Examples and How to Enable It.”
[Online]. Available: https://www.stackhawk.com/blog/rust-csrf-protect
ion-guide-examples-and-how-to-enable-it/

[41] SergioBenitez, “Add (more) csrf protection,” https://github.com/rwf2/
Rocket/issues/14, 2016, accessed: 24th Feb.

[42] “Rust XSS Guide: Examples and Prevention.” [Online]. Available: https:
//www.stackhawk.com/blog/rust-xss-guide-examples-and-prevention/

[43] “Cross-site scripting (xss) affecting ammonia package.” [Online].
Available: https://security.snyk.io/vuln/SNYK-RUST-AMMONIA-292
9007

[44] OWASP Foundation, “Cross Site Scripting (XSS) Prevention Cheat
Sheet,” https://cheatsheetseries.owasp.org/cheatsheets/Cross Site S
cripting Prevention Cheat Sheet.html, Access Year.

[45] D. K. Sohr, “Architectural Aspects of Software Security.” [Online].
Available: https://user.informatik.uni-bremen.de/sohr/papers/HabilSyn.
pdf

[46] L. Futcher and R. von Solms, “Guidelines for secure software
development,” ACM, p. 56–65, 2008. [Online]. Available: https:
//doi.org/10.1145/1456659.1456667

[47] J. H. Saltzer and M. D. Schroeder, “The protection of information
in computer systems,” Communications of the ACM, vol. 17,
no. 7, 07 1974, presented at the Fourth ACM Symposium on
Operating System Principles (October 1973). [Online]. Available:
https://www.cs.virginia.edu/∼evans/cs551/saltzer/

[48] R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas, “Systematic
literature review on security risks and its practices in secure software
development,” IEEE Access, vol. 10, pp. 5456–5481, 2022.

[49] V. Astrauskas, C. Matheja, F. Poli, P. Müller, and A. J. Summers,
“How do programmers use unsafe rust?” Proc. ACM Program.
Lang., vol. 4, no. OOPSLA, nov 2020. [Online]. Available:
https://doi.org/10.1145/3428204

[50] K. Martin, I.-Y. Bang, J.-S. You, J.-W. Seo, and Y.-H. Paek, “A Study on
Security Issues Due to Foreign Function Interface in Rust,” Proceedings
of the Korea Information Processing Society Conference, pp. 151–154,
2021, publisher: Korea Information Processing Society. [Online].
Available: https://koreascience.kr/article/CFKO202125036382349.page

[51] A. N. Evans, B. Campbell, and M. L. Soffa, “Is rust used safely
by software developers?” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ser. ICSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
246–257. [Online]. Available: https://doi.org/10.1145/3377811.3380413

[52] H. Nina, J. A. Pow-Sang, and M. Villavicencio, “Systematic mapping
of the literature on secure software development,” IEEE Access, vol. 9,
pp. 36 852–36 867, 2021.

71International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/security/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[53] H. Xu, Z. Chen, M. Sun, Y. Zhou, and M. R. Lyu, “Memory-Safety
Challenge Considered Solved? An In-Depth Study with All Rust
CVEs,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 31, no. 1, sep 2021, accessed: July 16, 2023. [Online].
Available: https://doi.org/10.1145/3466642

[54] The Rust Security Response WG, “Security advisory for rustc (CVE-
2021-42574),” November 2021, accessed: July 16, 2023. [Online].
Available: https://blog.rust-lang.org/2022/01/20/cve-2022-21658.html

[55] ——, “Security advisory for the standard library (CVE-2022-
21658),” January 2022, accessed: July 16, 2023. [Online]. Available:
https://blog.rust-lang.org/2022/01/20/cve-2022-21658.html

[56] ——, “Security advisory for the regex crate (CVE-2022-24713),”
March 2022, accessed: July 16, 2023. [Online]. Available: https:
//blog.rust-lang.org/2022/03/08/cve-2022-24713.html

[57] ——, “Security advisories for Cargo (CVE-2022-36113, CVE-2022-
36114),” September 2022, accessed: July 16, 2023. [Online]. Available:
https://blog.rust-lang.org/2022/09/14/cargo-cves.html

[58] ——, “Security advisory for Cargo (CVE-2022-46176),” January 2023,
accessed: July 16, 2023. [Online]. Available: https://blog.rust-lang.org/
2023/01/10/cve-2022-46176.html

[59] ——, “Security advisory for Cargo (CVE-2023-38497),” August 2023,
accessed: June 10, 2024. [Online]. Available: https://blog.rust-lang.org/
2023/08/03/cve-2023-38497.html

[60] ——, “Security advisory for Cargo (CVE-2024-24576),” April 2024,
accessed: June 10, 2024. [Online]. Available: https://blog.rust-lang.org/

2024/04/09/cve-2024-24576.html
[61] The Rust Project Developers, “rust-clippy: A bunch of lints to

catch common mistakes and improve your rust code,” https:
//github.com/rust- lang/rust-clippy, 2024, rust language. [Online].
Available: https://github.com/rust-lang/rust-clippy

[62] Z. Li, J. Wang, M. Sun, and J. C. Lui, “Mirchecker: Detecting
bugs in rust programs via static analysis,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 2183–2196. [Online]. Available:
https://doi.org/10.1145/3460120.3484541

[63] K. R. Fulton, A. Chan, D. Votipka, M. Hicks, and M. L. Mazurek,
“Benefits and drawbacks of adopting a secure programming language:
Rust as a case study,” in Seventeenth Symposium on Usable Privacy
and Security (SOUPS 2021). USENIX Association, Aug. 2021, pp.
597–616. [Online]. Available: https://www.usenix.org/conference/soup
s2021/presentation/fulton

[64] SonarSource, “SonarQube,” https://www.sonarqube.org, [retrieved July
16, 2023]. [Online]. Available: https://www.sonarqube.org

[65] P. C. van Oorschot, “Memory errors and memory safety: A look at java
and rust,” IEEE Security & Privacy, vol. 21, no. 3, pp. 62–68, 2023.

[66] J. Jacoby and M. S. Matell, “Three-Point Likert Scales Are
Good Enough,” Journal of Marketing Research, vol. 8, no. 4,
pp. 495–500, 1971, accessed: July 16, 2023. [Online]. Available:
https://doi.org/10.1177/002224377100800414

