
Security Test Approach for Automated Detection of Vulnerabilities of SIP-based

VoIP Softphones

Christian Schanes, Stefan Taber, Karin Popp, Florian Fankhauser, Thomas Grechenig

Vienna University of Technology

Industrial Software (INSO)

1040 Vienna, Austria

E-mail: christian.schanes,stefan.taber,karin.popp,

florian.fankhauser,thomas.grechenig@inso.tuwien.ac.at

Abstract—Voice over Internet Protocol based systems replace
phone lines in many scenarios and are in wide use today.
Automated security tests of such systems are required to
detect implementation and configuration mistakes early and
in an efficient way. In this paper we present a plugin for our

fuzzer framework fuzzolution to automatically detect security
vulnerabilities in Session Initiation Protocol based Voice over
Internet Protocol softphones, which are examples for endpoints
in such telephone systems. The presented approach automates
the interaction with the Graphical User Interface of the
softphones during test execution and also observes the behavior
of the softphones using multiple metrics. Results of testing
two open source softphones by using our fuzzer showed that
various unknown vulnerabilities could be identified with the
implemented plugin for our fuzzing framework.

Keywords-Software testing; Computer network security;
Graphical user interfaces; Internet telephony; Fuzzing.

I. INTRODUCTION

Voice over IP (VoIP) is in wide use in homes, educational

institutions and businesses, extending or replacing Public

Switched Telephone Network (PSTN) based phone lines.

VoIP provides a way of sending phone calls over Internet

Protocol (IP) based networks. This allows the use of one

type of wiring for both computers and phones in office

buildings, making management simpler and changes in the

setup faster. However, moving from separate phone lines

to commonly used IP based networks increases the attack

surface and by this the risk for attacks. Therefore, a secure

VoIP infrastructure is required where all components in the

infrastructure are robust against attacks. This also includes

the VoIP clients as shown in our previous work in [1].

Today, Session Initiation Protocol (SIP) is a widely

used protocol to control communication between two VoIP

components like initiation and termination of calls. It was

introduced in 1999 by the Internet Engineering Task Force

(IETF) in RFC 3261 [2]. It is a stateful text based signaling

protocol, which defines two main components for commu-

nication: the User Agent (UA) and the Server. A UA can be

a soft- or hardphone and initiates or terminates sessions.

A Server offers services to UAs, e.g., to register and to

relay calls. Phones are reachable by other phones to allow

communication and, therefore, a vulnerability within VoIP

phones can be remotely exploited by attackers. Our approach

shows the possibility to test VoIP phones by using simulated

attacks to detect vulnerabilities to make the software more

robust.

Fuzzing as a dynamic method to detect vulnerabilities

by fault injection was used early by Miller et al. [3], [4]

to detect security vulnerabilities in different applications.

Since then, fuzzing has become a widely used method to

test software robustness and security of different applications

[5], [6]. In this paper we focus on testing SIP interfaces of

Graphical User Interface (GUI)-based UAs using fuzzing

techniques to automatically detect security vulnerabilities

by monitoring multiple interfaces of the UAs. For this we

present an extension for the fuzzer framework fuzzolution

[7].

Thompson [8] defines security failures as side effects

of the software which are not specified and make security

testing hard. Fuzzing provides a solution for detecting side

effects by automatically executing test cases with many data

variations based on critical well known attacks and randomly

generated values. The introduced fuzzer framework supports

the rules presented by Chen and Itho [9] to generate SIP

test data. Therefore, an intelligent template based approach

[10] with random attack data generation and predefined well

known attack values is used. Additionally, with the used state

machine it is possible to test different valid and invalid SIP

states of softphones.

Automatically triggering GUI events, e.g., accepting or

rejecting VoIP calls, is required to test SIP-based softphones

because automatic GUI interaction makes it possible to ex-

plore a significant portion of the state space. The framework

supports all kinds of mouse and key events to interact with

the GUI. To improve accuracy of error detection in our

approach we monitored multiple interfaces of the GUI-based

softphone. One used metric was a GUI monitor on the client

side, which allows for detection of error dialogs and changes

in the application windows. Other used metrics are log files

of softphones, text analysis of the content of open windows

on the client side, analyzing the response, monitoring CPU

95

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and memory usage and monitoring the availability of the

application by using the network ports of the softphones.

We present the results of our proof of concept approach

applied to two open source softphone implementations. We

found several previously unknown vulnerabilities. We also

tested older releases and found known vulnerabilities, which

have already been fixed in newer versions.

The remainder of this paper is structured as follows:

Section II discusses related work. Section III introduces the

architecture of the test environment and the used fuzzing

framework. Section IV gives details about the implemen-

tation of test generation and the monitoring of the System

Under Test (SUT) to automatically detect errors. The imple-

mented fuzzing framework and detection techniques were

evaluated by testing SIP implementations in a VoIP test

environment, which are presented in Section V. The paper

finishes with a discussion in Section VI and a conclusion

and ideas for future work in Section VII.

II. RELATED WORK

Various partly overlapping technologies have been intro-

duced to cover different aspects of VoIP calls, e.g., signaling

standards (that take care of the setup of a voice channel).

Several signaling technologies are in use today: H.323,

Media Gateway Control Protocol (MGCP), SIP as well as

proprietary solutions, e.g., InterAsterisk eXchange (IAX)

protocol. SIP is probably the most widely adapted protocol

[11] and, therefore, in focus of our presented security

test approach. As shown by different authors (e.g., [12]–

[14]), many attacks against SIP implementations are readily

available and conducted in deployed VoIP infrastructures.

Fuzzing is a test technique to find vulnerabilities in

different applications [3]–[5] and, therefore, also in SIP-

based VoIP applications [15], [16].

Several frameworks have been proposed to address spe-

cific aspects of SIP security, for example, the PROTOS

SIP Test Suite [15], [17], [18], which has more than

4500 predefined malformed SIP-Invite messages to test

the robustness of SIP implementations. However, it only

supports stateless testing of SIP phones, which reduces

the possibility to test further SIP states like Calling or

Ringing. Additionally, PROTOS does not support client

testing by triggering GUI actions. Another approach is the

one followed by Aitel with SPIKE [19] which introduces

the concept of block-based fuzzing. This is based on the

fact that protocols are mostly composed of invariants, blocks

and variants. SPIKE fills the blocks with fuzzed data and

keeps intact the invariants. SPIKE is too low level, so it

becomes highly effort-consuming when applied to complex

protocols. Banks et al. [20] described SNOOZE, which is

a generic fuzzer framework based on user defined scenarios

and protocol specifications. Currently only a limited number

of primitives to generate malformed data are implemented.

However, the authors showed how to use SNOOZE to

fuzz SIP implementations and find security vulnerabilities.

Another stateful fuzzer is KiF, described by Abdelnur et

al. [16], [21]. KiF uses Augmented Backus Naur Form

(ABNF) grammar to describe the syntax of messages. KiF

automatically generates new crafted messages by using rules

defined by the grammar, information of the current protocol

state and state tracking information. The authors showed

how to test different states of SIP. A drawback is the analysis

for detecting errors, which is only based on the responses of

the SIP implementations. Nevertheless, with the described

approach several vulnerabilities were found. This includes

bad input handling and state based vulnerabilities, where

the robustness of the implementation failed by using various

valid/invalid state paths.

Alrahem et al. [22], [23] presented a fuzzer with the name

INTERSTATE. The fuzzer provides the possibility to interact

with the GUI of softphones and, therefore, allows, for exam-

ple, to automatically accept calls. During test execution the

fuzzer can send sequences of SIP messages and GUI events

to the SUT, which provides the possibility to test a larger

range of implemented states of softphones automatically. In

contrast to the approach provided in this work, however, the

analysis to detect errors is only based on the response and

does not consider the behavior of the softphone GUI.

White-box fuzzing is another approach of using internal

information of an implementation as, for example, presented

by Ganesh et al. [24], by Godefroid et al. [5], [25] or by

Neystadt et al. [26]. However, it is not always possible

to get the internals of an implementation. For example, if

hardphones are being tested, the software is often closed

source and only black-box tests are possible. Therefore, we

focused on implementing black-box tests for our approach.

These can be used for testing a broader number of VoIP

clients.

GUI automatization is already used for functional testing

of applications as, for example, presented by Feng et al.

[24] or by Xiaochun et al. [27]. Bo et al. [28] presented

a black-box test approach for mobile phones using Optical

Character Recognition (OCR) to analyze the GUI behavior.

To improve automatization for testing SIP-based softphones,

interaction with the GUI of phones is required as already

shown by Alrahem et al. [22], [23]. In our implementation

we integrated the automatic GUI interaction. Additionally,

we present a basic approach for observing GUI behavior and

using the gathered information to reduce the false-negative

rate.

III. ARCHITECTURE FOR AUTOMATED VOIP

SOFTPHONE TESTING

The implemented fuzzer is a generic framework to test

and monitor different application interfaces similar to other

fuzzers. For testing SIP-based softphones, a template based

message generation method was chosen. The fuzzer includes

96

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Test Environment of Fuzzer Framework for SIP Softphones

a configurable SIP state machine which allows stateful

testing of phones by interacting with the GUI.

Fig. 1 shows the test environment and the interaction

between the fuzzer and the SUT. The fuzzer provides the

possibility to automatically control and monitor the SUT

by its GUI using a GUI Actor and a GUI Monitor. The

state machine can trigger GUI events in the SUT using

the GUI Actor. Additionally, the GUI Monitor provides

information about the GUI to the analyzer which integrates

the information to determine pass/fail of tests.

The test environment at the host of the SUT consists

of the components softphone (SUT), GUI Actor, the GUI

Monitor, the log files produced by the SUT, CPU and

memory monitoring and a screenshot component as can be

seen in Fig. 1.

A. Fuzzer Framework

As framework for executing SIP softphone tests the fuzzer

framework fuzzolution [7] was used. This framework pro-

vides the possibility to add plugins for specific protocols.

We implemented a state based SIP plugin and extended the

framework with various analyzers to monitor the behavior

of the SUT.

The main parts of the fuzzer framework, as can be seen

in Fig. 1, are the FuzzerRunner, which controls test

execution, a Handler to generate the messages to send, the

Connector, which includes the protocol to communicate

with the SUT, the AnalyzeManager, which builds the

final test result based on all controlled Analyzers, and

a set of TestDataGenerators which provide the used

test values.

The implemented StateMachine for SIP contains the

SIP states and the interaction with the GUI and the SIP

interface of the SUT. The framework is independent about

stateful or stateless connector implementations. The used

StateMachine for SIP inherits from the Connector

type which allows transparent integration into the frame-

work. Based on a configuration file it is possible to configure

the various SIP state transitions. Additionally, it supports

Figure 2. Example of a State Definition

configuration of invalid state transitions to test the be-

havior of the SUT by using unspecified transitions. The

state machine has a sequence of states to execute during

initialization, before sending the test data, and after sending

the test data.

The StateMachine establishes a connection either

directly with the SUT or via a proxy, sends generated

SIP messages and receives responses from the proxy or

the SUT. Additionally, StateObserver can be registered

to the StateMachine. The StateMachine notifies all

registered StateObservers before and after state tran-

sitions. By the usage of the StateObserver additional

functionality can be executed, e.g., to interact with the GUI

of the softphone.

The Handler is controlled by the StateMachine

and is responsible for the generation of valid as well as

malformed messages. Additionally, information from the

state machine can be used to generate different parts of the

message, e.g., the ID. Multiple handler implementations are

used for test execution depending on the tested parts of the

SUT.

For generating test data various

TestDataGenerators will be used. It is possible

to extend the framework by implementing customized

generators. Different implementations are used for

generating the test values. They are based on well known

attack vectors, random generation and intelligent generation.

For more details about generation of test values see Section

IV.

For a test case the configuration of state transitions and

GUI interactions is called a state scenario. State scenarios

are integrated in the fuzzer framework at different execution

points: before and after the test run and before and after a

single test case. Based on the managed state information, the

97

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

StateMachine prepares the SIP softphone, i.e., it brings

the softphone into the required SIP state for a test case. For

example, a valid registration state scenario can be defined

before the test run to register the fuzzer to a SIP registrar

and, after the test run, cleanup by de-registering the fuzzer.

Fig. 2 shows an example of a state configuration where as

init states the fuzzer registers to a SIP registrar (in the test

environment to the proxy). Therefore, the StateMachine

sends a Register message and expects receiving an Unautho-

rized message. The StateMachine resends the message

together with a valid authentication header and finally ex-

pects an Ok message. After this initial registration for each

test case the fuzzer will execute the PreStates before

sending the test data and the PostStates after sending

it.

A state scenario before a single test case can be used,

e.g., to initiate a call from the SUT to the fuzzer by sending

a GUI profile to the GUI Actor which initiates the call by

executing the GUI profile.

B. Simulating the SIP Registrar

SIP can establish a call directly between two UAs but

many SIP phones are registered on a SIP registrar and

send all responses to this registrar which acts as proxy and

forwards the messages to the destination UA.

When using such a proxy, it is required that the proxy does

not filter invalid SIP messages. Therefore, we implemented

a specific SIP registrar and proxy as part of the framework

which is robust and forwards the manipulated test messages

to the SUT without modifications.

The used version of the implemented SIP registrar sup-

ports the used SIP scenarios. It accepts all registration

requests of any UA and internally stores the registration

information, e.g., the username and the address of the UA

for further communication.

The SIP registrar supports several parallel UAs. It allows

forwarding SIP messages between every registered UAs

without further checks. The proxy determines the receiver

of the message by the callid or by the username in the

To header field or Request header of the incoming mes-

sage automatically. Additionally, it is possible to manually

configure the host and port of the two communicating UAs

– in the test setup the fuzzer and the SUT. This also allows

to test the To and Request header.

Requests to UAs which are not registered will be handled

by sending a Not Found message to the requesting UA.

The proxy will respond to every request addressing the proxy

with a valid Ok message which occurs often for Option

messages.

C. GUI Interaction with the Softphone

The utilization of GUI events is essential to automatically

achieve all possible states of the SIP softphone. The provided

framework supports the definition of input sequences with

SIP messages and GUI events, which are remotely applied

to the SUT.

On the side of the SUT an additional service called GUI

Actor is running. The GUI Actor is a Java tool, which

uses the java.awt.Robot implementation to interact

with GUI elements by executing GUI events in the SUT.

Using the GUI Actor, automated test execution for GUI-

based SUTs is possible.

The fuzzer communicates via network with the GUI Actor

using GUI event profiles which are part of state scenarios. A

GUI event profile is a sequence of GUI events and an unique

identifier to identify the profile. In the current version, mouse

and keyboard events are supported. Delays in the sequence

can also be configured. This is, e.g., required to wait for

opening dialogs in the application before interacting with

the GUI.

During initialization the fuzzer registers all required GUI

event profiles with the unique identifier at the GUI Actor

running in the SUT. For the profiles simple text files with

key/value pairs are used. The key is the action, e.g., left

mouse click or key press, and as value specific parameters

for the action are used, e.g., coordinates for clicking or

specific keys to press.

The GUI Actor can handle several profiles simultaneously.

By using the profile identifier the fuzzer can execute every

registered profile by sending the execute command and the

profile identifier to the GUI Actor.

D. Observing System Under Test Behavior

To reduce the false-negative rate, the introduced frame-

work uses multiple metrics of the SUT to build the final

test result. For this the fuzzer framework supports the

combination of various Analyzers.

One analyzer was used to verify if the arrived response

from the SUT is valid (e.g., the expected message for

this state transition) and if it contains specific keywords

indicating a failure, e.g., Exception or Error. A second

analyzer monitors the SUT by verifying if the port of the

application is available after executing a test. If the port is

not available it indicates a possible crash of the application.

Both analyzers can be used for black-box tests without

access to the host where the SUT is running.

An analyzer was used to analyze the log files of the

SUT and determine important log entries using keywords.

For this the log files will be transferred using a Secure

SHell (SSH) connection. The analyzer uses only the entries

produced during executing the test case by building the

delta of the log file before and after the test execution.

The analyzer uses the detected log entries and based on

a predefined list of weighted critical keywords returns the

build probability combining the number of keywords and the

associated weight.

Another observed behavior of the SIP softphones is the

GUI. Applications visualize error information in different

98

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

elements of the GUI, e.g., dialogs. The analyzer monitors

the GUI of the SUT and identifies changes of open windows

in the host after the test case in comparison to the windows

before executing the test case. For all newly opened and

closed windows, the analyzer estimates the relevance by

using the name of the title and relation of the window to

the SUT. The relevance of a window in the SIP softphone

is higher than the relevance of other applications in the host.

Examples of changes are new open error (or similar) dialogs

or disappeared windows, e.g., after a crash of the SUT. Both

analyzers require access to the host running the SUT.

In addition to the window structure the framework uses

the visualized text information for error detection. For this

OCR is used for a screenshot of the SUT to extract the

text information displayed on the screen. The screenshot

will be taken before and after executing the test case. With

OCR the text will be extracted and analyzed using a list of

critical keywords. The screenshot analyzer can, therefore,

also detect errors displayed directly in the main window

without opening a new sub window.

The framework also analyzes CPU and memory usage

of the softphone process in the SUT to detect heavy load

during/after executing a test which could indicate a Denial

of Service (DoS) attack.

The GUI Monitor, the screenshot analyzer, softphone log

file analyzer and CPU/memory monitor require access to the

SUT to start a service to transfer the information to the host

running the fuzzer. Both services wait for a connection from

the fuzzer and the fuzzer has to trigger the services to get

the information.

IV. FRAMEWORK FOR IMPLEMENTING SECURITY TEST

CASES FOR SIP-BASED VOIP SOFTPHONES

The fuzzer framework with the SIP plugin provides vari-

ous possibilities to configure tests for SIP implementations

and especially for GUI-based softphones. Within the fuzzer

framework the following notation is used for the test con-

figuration which also builds the further structure within this

section:

Test Scenario: the scenario is a specific sequence of state

transitions, e.g., send an Invite message to the SUT. We

executed the fuzzer for each scenario.

Test Case: we define the different fields within a single

message as test case. These fields will be replaced by

generated values, e.g., an Invite message has several

fields and each field indicates one test case.

Data Variation: data variations are the different values

used for filling the fields in test cases. We use many

data variations for each test case.

Chen and Itho [9] describe five rules that can break robust-

ness of SIP-based VoIP systems by manipulated messages:

• Incorrect Grammar

• Oversized Field Values

Figure 3. Generic SIP Message Parsing and Processing by SIP Imple-
mentations

• Invalid Message or Field Name

• Redundant or Repetitive Header Field

• Invalid Semantic

All of these five rules are considered for testing the SIP

softphones with the defined test scenarios, test cases and

data variations in our test setup.

Analyzing the attack surface of an application is im-

portant for conducting security tests. The attack surface

shows possible interfaces with associated risks for exploiting

vulnerabilities in the interfaces. Fig. 3 shows a general attack

surface for SIP-based softphones. For the current work we

considered remote attacks using the network interface of

the application. The figure also shows relevant modules

within the application which are involved in processing SIP

messages.

A. Test Scenarios for SIP

The fuzzer provides the possibility to configure different

test scenarios for testing SIP-based VoIP softphones. Each

scenario is a single test run of the fuzzer tool. In the current

version of the implementation we defined different scenarios

to show that the proof of concept of GUI interaction and

monitoring of the SUT was working. The analysis is based

on various defined SIP scenarios as presented by Johnston

et al. in RFC 3665 [29].

Fig. 4 presents the main test scenarios used for the test

execution. The first scenario presented is stateless and has

already been tested repeatedly using different fuzzers as,

for example, PROTOS. The fuzzer sends malformed Invite

and malformed Cancel messages to the SUT. Many DoS

attacks are based on such a scenario, because no additional

conditions are required, e.g., a valid SIP account, to send

a message to the SUT. The second scenario represents a

typical SIP call flow where the fuzzer calls the UA (SUT).

The call flow is a RFC conform state transition. The fuzzer

uses the final ACK message to construct test messages. In

comparison to the second scenario, in the third scenario

the SUT initiates the call. The fuzzer triggers this by the

GUI Actor and the SUT calls the fuzzer, which replies with

99

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a Trying, Ringing and Ok. The fuzzer terminates the call

without waiting for the required ACK message from the SUT

by sending a Bye message. Each message sent by the fuzzer

in this scenario is used for the test execution to include the

test data. This scenario tests the robustness during the call

initiation phase of the UA. The fuzzer initiates a call in

the fourth scenario. After receiving the Ok message from

the SUT the fuzzer sends a manipulated Cancel message.

Similar to the third scenario the SUT calls the fuzzer,

which responds with a valid Trying and Ringing. After

that the fuzzer sends a malformed Unauthorized message.

This Unauthorized message is not expected by the SUT.

Therefore, we test how the softphone deals with unexpected

and manipulated messages.

For all scenarios except the first one, access to the GUI of

the SUT is required for automatic testing in order to initiate,

accept and close calls.

The fuzzer supports valid scenarios with RFC conform

state transitions and invalid scenarios. Valid scenarios are

required to bypass message validation functionality to inject

the test values in the application logic as can be seen in Fig.

3. If the validation is not successful the message will be

rejected and testing of the application logic is not possible.

With invalid scenarios the validation logic within the SIP

softphone can be tested.

B. Test Case Design for SIP

Test cases in the fuzzer framework are messages which

are part of a test scenario. For the tests a template based

approach was used. The template defines the message struc-

ture and defines placeholders which indicate the single test

cases within a test scenario. The Handler within the fuzzer

framework is responsible to prepare the final message by

replacing the placeholder of the current test case with the

attack value of the data variation. All other placeholders are

filled by using valid default values which can be predefined

static values or generated values, e.g., unique identifiers or

timestamps. The Handler must also support handling spe-

cific values, e.g., the Content-Length header. Otherwise

the UA will eventually drop parts of messages.

The messages are constructed according to the SIP RFC

to provide a valid structure and only use test data within

the fields to test application logic as can be seen in Fig.

3. Moreover, tests with invalid structures are used, e.g.,

randomly modified orders of SIP headers, duplicate, ran-

domly injected characters or invalid header fields. These

tests are required to test robustness issues of the SIP message

validation functionality.

The fuzzer framework supports cascaded Handler con-

figurations, e.g., use the template handler to prepare the

message and afterwards use a handler to manipulate message

structure.

Figure 4. Definition of Used Test Scenarios for SIP Softphone

C. Automated Test Data Generation

Several test cases with several thousand data variations are

defined based on the rules mentioned by Chen and Itho [9].

For the applied fault injection approach well known attack

vectors and randomly generated data can be used. For the

tests an optimized list with about 1200 known critical values

as attack vectors are used. This includes various security

attacks, e.g., buffer overflows, Structured Query Language

(SQL) injections and path traversal attacks.

Additionally, generators are used to generate test data. The

fuzzer framework allows integration of additional generator

implementations to test specific values. For the test execution

randomly generated bytes with random length are used.

D. Automated Error Detection

The fuzzer framework uses multiple analyzers to deter-

mine pass/fail of tests. Different analyzers are used for

testing the softphones and with each analyzer it is possible to

detect different vulnerabilities. For coordinating the results

of these analyzers an AnalyzeManager is used which

collects the results of all analyzers to calculate the final result

100

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for one data variation by summing up the results. In this step

it is also possible to change the weight of the results based

on predefined rules.

Before starting with the tests the fuzzer initiates a learning

phase. In this phase valid data variations are used to deter-

mine how the application behaves with valid requests so that

differences can be detected when using attacks. During the

learning phase, analyzers store information about the found

error indicators, so that they can be seen as normal behavior

of the SUT and not used for further error detection. For

example, the log file analyzer stores the information of how

many times each keyword can be found for a valid request

in the learning phase. The analyzer only uses keywords for

the test execution which occur more often than the initially

learned number of found keywords in the log file. This is

required because depending on the error handling keywords

like ”Exception” can also be included in the log file for valid

requests.

Several analyzers are used to monitor the SUT as de-

scribed in Section III-D. The port analyzer checks if the

port, where the SIP softphone is listening, is still available

by connecting to the port. The weight of this analyzer is

very high and indicates that an error was detected certainly

when the application cannot be reached any more.

The GUI analyzer uses the list of open windows in the

SUT. We implemented the GUI Monitor prototype running

on the SUT. The GUI analyzer retrieves the required in-

formation by a network connection from the GUI Monitor

which uses the xwininfo utility for X to read window

information. In an operating system a tree with one root

window is available and every other window has exactly

one parent window. Our GUI Monitor parses the output from

xwininfo and stores the information in a tree structure.

For each test case this is done before and after executing the

test case.

In addition to the list of open windows we used an

OCR analyzer which extracts the displayed text from a

screenshot of the host desktop and uses a list of keywords for

error detection. As OCR engine we used the tesseract

command line tool. For taking the screenshot a service

is running on the SUT. The analyzer requests the image

using a network connection and extracts the text using

OCR. Example keywords used for the test execution are:

”exception”, ”error”, ”wrong”, ”fault”, ”failure” or ”debug”.

With a response analyzer the fuzzer analyzes the response

of the application and checks if certain keywords can be

found. The keywords are stored in a configuration file as

pairs of keyword and weight of the keyword. The analyzer

checks for each keyword if it is included in the response

and sums up all weights of the found keywords.

The log file analyzer is very similar to the response

analyzer, but uses log files instead of responses. The analyzer

determines the delta of a log file to use only log entries

logged during execution of the current test case. Example

keywords used for the test execution are: ”NullPointerEx-

ception”, ”IOException”, ”Exception”, ”Bad”, ”Missing”,

”error”, ”fatal” or ”segmentation fault”.

The CPU and memory analyzer monitors the softphone

process in the SUT. During the learning phase the analyzer

determines CPU and memory usage for valid requests. For

each test the analyzer determines the variance to the learned

behavior. Depending on the implementation increased CPU

or memory usage is possible due to internal reorganization

activities, e.g., reorganize or cleanup a cache.

The AnalyzeManager gets the probability of a de-

tected error from each analyzer. Each analyzer has a config-

ured weight and based on defined rules the analyzer manager

combines the final result using the computed probability of

the analyzers and the weights of the analyzers for the final

result.

Additionally, the analyze manager performs a final group-

ing of the result which supports possible required manual

checks and retests. The grouping is based on the assumption

that test cases with the same probability value have also

similar log file entries, similar response values, similar GUI

behavior etc. The group contains the list of test case IDs

and the detected problem, e.g., a specific exception in the

log file. For manual verification of the result to determine if

the reported error is a true error, often only one test case per

group has to be retested. Furthermore, the higher the result

value of the group the more likely it is, that the reported

error is a true one. Currently the implementation determines

pass/fail based on a configured threshold of the combined

probability.

V. RESULTS OF THE AUTOMATED TEST APPROACH

The fuzzing framework fuzzolution was used to test

two SIP-based VoIP softphones. This section describes the

softphones (SUT), the used VoIP test setup and the detected

vulnerabilities. A description of the evaluation of the ap-

proach is also included.

For the test execution the test scenarios defined in Section

IV were used. With each scenario various unknown vulner-

abilities could be identified. These include DoS, memory

corruption, improper validation of array index, use of unini-

tialized variables and a kind of Cross Site Scripting (XSS)

vulnerability in both tested softphones.

The test execution showed that every implemented ana-

lyzer has its strengths and weaknesses. The combination of

the analyzers significantly improves the overall test results.

A. VoIP Test Setup

For the test execution the VoIP test environment as

described in [30] has been used. The environment supports

various requirements for executing security tests:

Flexibility: Different virtual images provide basic func-

tions, e.g., a time server, a SIP registrar, Domain Name

System (DNS) server etc. which can be used as a basis

101

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for the test setup. This way we could concentrate on

configuring the relevant aspects for security testing the

VoIP softphones with the fuzzing framework which was

the objective of this work.

Scalability: The VoIP test environment is scalable. Fuzzing

softphones needs a lot of resources to test multiple

attack vectors. Especially for GUI-based applications

execution time is increased because display of the GUI

element and executing the action is asynchronous. To

reduce execution time, multiple virtual client images

were executed in parallel for the conducted tests. This

way the execution time for multiple test scenarios could

be significantly reduced.

Easy Analysis: A version control system is implemented

to provide an easy mechanism for managing, e.g., the

tested software versions, used configuration files, log

files or network dumps. This helps analyzing security

failures found during the security test process and

provides a mechanism for retesting test cases in case

of found security vulnerabilities.

Automation: Many aspects of the test process can be au-

tomated. Therefore, the needed test setup for executing

the security tests can be quickly achieved when doing

different tests.

Moreover, we used the capability of the test environment

of capturing the network traffic. This allowed detailed anal-

ysis of the transferred messages.

During test execution two instances of the two tested

VoIP softphones (see Section V-B) were used. The whole

process of starting logging and network dumps, starting the

softphones, GUI Actor/Monitor, the fuzzer etc. was auto-

mated by using different scripts. After the test execution the

relevant data (e.g., log files of the VoIP softphones, output

of the fuzzer framework) were automatically collected and

added to the version control system.

For correlating and analyzing multiple events and log files

a common time source was needed. This was achieved by

using the time server provided by the test environment. This

way timestamped events in the test environment, even if

produced in different parts of the test environment (e.g.,

fuzzer and SUT), could be combined easily and, e.g., fuzzed

input strings could be correlated to malfunction of the

softphones.

The management interface of the test environment was

accessible remotely. This enabled starting and stopping test

cases efficiently.

B. Tested SIP Softphones

Two different softphones were tested. The first softphone

is QuteCom [31]. It is an open source SIP implementation

written in Python, C and C++. We mainly tested the version

2.2 revg-20100116203101 with our fuzzing framework pre-

sented in [1]. With the extended framework we tested version

QuteCom 2.2 revg-20101103220243. The second softphone

is SIP Communicator [32]. It is an open source Java VoIP

and instant messaging client. For the work presented in [1]

we tested the version 1.0-alpha3-nightly.build.2351. For the

extended framework presented in this paper we tested SIP

Communicator 1.0-alpha6-nightly.build.3189.

Both applications are available for Windows and Unix

platforms. Linux Ubuntu was used as the host system

running the SUT for the test execution. Tests during devel-

opment of the fuzzer framework also showed the possibility

to identify vulnerabilities for a previous version of QuteCom

on Windows (without using the GUI monitoring) where

QuteCom failed to check the content-length SIP header.

QuteCom crashed every time when the content-length was

less than the real content-length. When the current version

of QuteCom was tested this vulnerability had already been

fixed. In a future work the GUI interaction and monitoring

will also be implemented for Windows operating systems.

C. Detailed Test Results

By implementing the fuzzer framework it was possible

to detect vulnerabilities for both tested softphones. The

vulnerabilities were reported to the developers. A DoS

vulnerability in SIP Communicator could be identified. SIP

Communicator had implemented a fixed source port range

between 5000 and 6000. It does not reuse port numbers

and, therefore, for each connection a new port number will

be used. After 1000 used ports no additional calls could

be handled by the application. The error was detected by

the GUI analyzer, because the application showed an error

dialog but did not crash. Therefore, the process of the

application is available and it could not be detected by

monitoring the processes. Monitoring the availability of the

port of the SUT will not register a fail either, because the

problem was only for connections from the SUT to another

host. Another solution to detect such an error is by using

a valid use case which will fail if the application is not

available anymore.

The problem was already fixed in the current version of

SIP Communicator but the fuzzer identified a similar bug in

the new SIP Communicator version. Again, only a range of

ports is available and with many open ports the application

logs an exception to the log file. The log file analyzer

detected this problem. Moreover, it was also detected by the

GUI analyzer because SIP Communicator opened additional

dialogs. The vulnerabilities were detected, because due to

the automation of the test process it was possible to send

many requests, which causes these problem.

Another problem in SIP Communicator could

be identified during the monitoring of the

application log files. The application logs many

java.lang.NullPointerException for different

manipulated calls. This problem could not be identified

using the GUI monitoring, because the GUI does not

display the error information. We also detected several

102

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

java.lang.ArrayIndexOutOfBoundsException

errors. The log analyzer reported this as error because the

keywords are contained in the log messages. Additionally,

also the GUI monitoring detected the error because it was a

problem with open dialogs which are not closed anymore.

Additional tests of SIP Communicator showed further

crashes of the application. The GUI analyzer has identi-

fied the problem, because the process of the application

terminated and, therefore, all windows of the application

disappeared. This was a change of windows, which the

GUI analyzer interpreted as an error in the application and,

therefore, the test case failed. Such a termination of the

process could also be identified by monitoring the process or

by trying to connect to the port of the application. Retests of

single test cases could not reproduce the problem. For future

development the fuzzer should automatically retest different

combinations of test cases of a test run to automatically

identify such problems.

The fuzzer framework identified a type of XSS

vulnerability because SIP Communicator uses

javax.swing.JOptionPane for constructing error

dialogs, which uses javax.swing.JLabel to render

the text. By directly sending an Invite message to the SUT

with a manipulated From SIP header it was possible to

inject HTML code, which was displayed by the JLabel.

This did not allow the injection of JavaScript code but

it was possible to create a connection to a remote host

and download an image by using an element. In

combination with a Cross Site Request Forgery attack this

could compromise the internal network of the user. This

error was detected by the GUI Monitor because by the

injection of Code the displayed dialog has a different size

and, therefore, was not closed by the used GUI Actor.

QuteCom is also affected by a DoS vulnerability, which

crashed the application. The SUT calls the fuzzer, the fuzzer

accepts the call and sends a Bye message to terminate the

call. Additionally, the fuzzer uses the GUI Actor to click

on the terminate button in the SUT, which causes the crash

in the application. The problem was detected by the GUI

analyzer and the port analyzer.

Several memory corruption vulnerabilities could be identi-

fied for QuteCom, which stop the application with a segmen-

tation fault. One error was identified with multiple parallel

calls in Ringing state. Closing the ringing dialogs crashed

the application. Another error could be identified by opening

several parallel calls. QuteCom shows the error message

”insert number for forwarding”. If the fuzzer triggers the

logout button the application crashes. The crashes were

detected by monitoring the port of the SUT and by the GUI

Monitor because if the application crashed the list of open

windows changed. This vulnerability showed that in future

tests additional scenarios for testing parallel interaction

should be defined. During development we also detected

a DoS vulnerability if two separate accounts are config-

ured. QuteCom regularly sends Option messages which the

used SIP Registrar answers with an Ok message. QuteCom

crashes directly with this behavior. For future work it will

be required to integrate further scenarios including several

registrations and parallel tests.

QuteCom crashed after sending a message with a manip-

ulated Length field. The error was detected by using the port

analyzer because the port is not available anymore after the

crash of the application, GUI Monitor because the window

of the softphone closed and CPU usage because the process

terminates.

During testing SIP Communicator we also detected a

problem in the GNOME implementation. The applet display-

ing an incoming call caused high CPU usage in the system.

We detected the problem because the tests take quite longer

than other tests. This problem showed that for future tests,

in addition to monitoring the CPU and memory usage of the

softphone process, also the CPU and memory of the system

should be analyzed because a misbehavior of the softphone

could also lead to an unstable system.

VI. DISCUSSION

Evaluating the performance of a fuzzer is a difficult

task, because only the detection of new vulnerabilities is

measurable. Without a benchmark with known vulnerabil-

ities, further analysis is not possible. The fuzzer detected

vulnerabilities, which were analyzed manually to evaluate

the result of the fuzzer.

The results showed that the implemented fuzzer frame-

work could identify vulnerabilities in SIP-based softphones.

The combination of multiple analyzers for a test execution

is essential to automatically detect vulnerabilities and reduce

the false-negative rate. The implemented combination of the

single analyzer results with the initial learning phase and the

weight for each analyzer improved error detection compared

to the results presented in [1].

Multiple detected vulnerabilities showed that interaction

with the SIP softphone via its GUI is essential to automat-

ically execute security tests. Some problems could only be

identified by interacting with the GUI.

The analyzers detected different vulnerabilities. The accu-

racies of analyzers are different depending on the measured

property. The analyzer monitoring the port detects failures

with high accuracy. Only network problems caused false-

positives, e.g., if a firewall blocks required ports.

Analyzing the responses based on a keyword table, i.e.,

verifying if a response contains specific keywords indicating

an error, has not produced reasonable results. The quality

of using this information for automated testing strongly

depends on the implemented error handling. In the tested

applications no relevant information for the analysis was sent

in the SIP response.

Analyzing GUI behavior showed that this can be an

important information for detecting vulnerabilities. Some

103

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the identified vulnerabilities were only detectable by

such an approach. The used OCR analyzer did not detect

vulnerabilities but the produced screenshots were helpful for

verifying the produced test results. For future work the OCR

analyzer should be improved to increase detection of the

characters within the image.

In the work presented in [1] Asterisk was used as a

proxy in the test environment. We encountered problems

with some messages, where Asterisk filtered messages and,

therefore, Asterisk was the test target and not the intended

SUT anymore. For the tests presented in this work we

implemented a special proxy, one which forwards fuzzed

data without modification.

By analyzing the fuzzer output, we identified significant

differences in the execution time of test cases within a

test run. We further investigated this finding, but could not

reproduce the results. By using timing as an aspect of an

analyzer during automated tests, it is required to use special

test environments which do not falsify timing properties. In

the used environment this requirement was not fulfilled.

For future work, the performance of the fuzzer should

be improved. Especially the GUI interaction should be

enhanced, because currently it is required to define delays

in order to allow the application to open windows, e.g., to

start a call. Minimizing the delay could improve the runtime

performance of test executions. For optimization we used

a test setup where multiple instances of the softphones are

tested parallel by the fuzzer. However, our focus for the cur-

rent implementation was the automatization of vulnerability

detection as opposed to minimizing execution time.

VII. CONCLUSION AND FUTURE WORK

This paper presents an automated security test approach,

which increases the security of VoIP communication by

identifying vulnerabilities in GUI-based SIP softphones. The

provided state-based extension of the fuzzer framework

fuzzolution allows for testing SIP states by sending SIP

messages and GUI actions to control the softphone, e.g.,

initiate calls.

Multiple analyzers are integrated to automatically monitor

the behavior of the SUT to detect vulnerabilities of VoIP

softphone implementations. The responses of the SUT are

analyzed and the port of the application is monitored. Addi-

tionally, the framework uses the log files of the softphones

and observes the GUI behavior of the SUT, which utilizes

changes of window states to determine errors, e.g., newly

opened dialogs or closed windows. The CPU and memory

usage of the process are monitored to detect extensive

usage after sending the test attacks. The implemented OCR

analyzer could not find an error because the displayed text

was not recognized correctly. However, the screenshots taken

by the OCR analyzer are helpful for further manual checks.

Messages are sent directly from the fuzzer to the SUT

for some test scenarios and for other scenarios a proxy is

used to send the messages. Instead of using Asterisk as done

for previous tests we implemented a special and robust SIP

registrar and proxy for the tests. Asterisk filtered some of

the invalid messages. The current used implementation does

not filter messages.

With the implemented fuzzer framework, two open source

SIP-based softphones were tested and various security vul-

nerabilities could be identified, e.g., DoS, memory corrup-

tion, improper validation of array index, use of uninitialized

variables and a kind of XSS. The amount of vulnerabilities

found in previous tests showed that further extensive security

tests with additional scenarios and variations are required for

the softphone applications. The current executed tests also

uncovered many security problems of the implementations.

As further work the possible SIP states should be configured

automatically to get the whole SIP state space for tests.

The previous version of the fuzzer framework produced

many false-positive results. In the current version the accu-

racy of the fuzzer test result was increased by improving

the analyzers on the one hand and on the other hand by

using a combination of the single analyzer results. To reduce

required time for manual analysis many additional function-

ality has been implemented, e.g., screenshot capturing or

grouping of test results based on the analyzer outputs.

The test execution was done on Linux systems. For future

versions it is required to implement GUI interaction and

observation for additional operating systems.

With the presented approach various vulnerabilities of

SIP-based softphone implementations could be identified.

The results show that GUI interaction and observation is

required to automatically test for security vulnerabilities of

softphone applications efficiently.

REFERENCES

[1] S. Taber, C. Schanes, C. Hlauschek, F. Fankhauser, and
T. Grechenig, “Automated security test approach for sip-based
voip softphones,” in The Second International Conference on
Advances in System Testing and Validation Lifecycle, August
2010, Nice, France. IEEE Computer Society Press, Aug.
2010.

[2] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler, “RFC
3261: SIP - Session Initiation Protocol.”

[3] B. P. Miller, L. Fredriksen, and B. So, “An empirical study
of the reliability of unix utilities,” Commun. ACM, vol. 33,
no. 12, pp. 32–44, 1990.

[4] J. E. Forrester and B. P. Miller, “An empirical study of the
robustness of windows nt applications using random testing,”
in WSS’00: Proceedings of the 4th conference on USENIX
Windows Systems Symposium. Berkeley, CA, USA: USENIX
Association, 2000, pp. 6–6.

104

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based
whitebox fuzzing,” in PLDI ’08: Proceedings of the 2008
ACM SIGPLAN conference on Programming language design
and implementation. New York, NY, USA: ACM, 2008, pp.
206–215.

[6] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed
whitebox fuzzing,” in IEEE 31st International Conference on
Software Engineering, 2009. ICSE 2009., May 2009, pp. 474–
484.

[7] C. Schanes, “fuzzolution fuzzer framework,” 2011. [On-
line]. Available: http://security.inso.tuwien.ac.at/esse-projects/
fuzzolution/

[8] H. H. Thompson, “Why security testing is hard,” IEEE
Security & Privacy Magazine, vol. 1, no. 4, pp. 83–86, 2003.

[9] E. Y. Chen and M. Itoh, “Scalable detection of SIP fuzzing
attacks,” in Second International Conference on Emerging
Security Information, Systems and Technologies, 2008. SE-
CURWARE ’08., Aug. 2008, pp. 114–119.

[10] P. Oehlert, “Violating assumptions with fuzzing,” Security &
Privacy, IEEE, vol. 3, no. 2, pp. 58–62, Mar./Apr. 2005.

[11] T. Zourzouvillys and E. Rescorla, “An introduction to
standards-based voip: Sip, rtp, and friends,” Internet Com-
puting, IEEE, vol. 14, no. 2, pp. 69 –73, 2010.

[12] D. Endler and M. Collier, Hacking Exposed VoIP: Voice Over
IP Security Secrets & Solutions. New York, NY, USA:
McGraw-Hill, Inc., 2007.

[13] A. D. Keromytis, “Voice-over-ip security: Research and prac-
tice,” Security Privacy, IEEE, vol. 8, no. 2, pp. 76 –78, 2010.

[14] W. Werapun, A. A. El Kalam, B. Paillassa, and J. Fasson,
“Solution analysis for sip security threats,” in Multimedia
Computing and Systems, 2009. ICMCS ’09. International
Conference on, 2009, pp. 174 –180.

[15] C. Wieser, M. Laakso, and H. Schulzrinne, “Security testing
of SIP implementations,” 2003.

[16] H. J. Abdelnur, R. State, and O. Festor, “Kif: a stateful sip
fuzzer,” in IPTComm ’07: Proceedings of the 1st international
conference on Principles, systems and applications of IP
telecommunications. New York, NY, USA: ACM, 2007, pp.
47–56.

[17] U. Oulu, “PROTOS: Security testing of protcol
implementations.” [Online]. Available: https://www.ee.oulu.
fi/research/ouspg/Protos,2010-02-14

[18] C. Wieser, M. Laakso, and H. Schulzrinne, “Sip robustness
testing for large-scale use,” in SOQUA/TECOS, 2004, pp.
165–178.

[19] D. Aitel, “The advantages of block-based protocol analysis
for security testing,” Tech. Rep., 2002.

[20] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kem-
merer, and G. Vigna, “SNOOZE: Toward a stateful network
protocol fuzzer,” pp. 343 – 358, 2006.

[21] H. J. Abdelnur, R. State, and O. Festor, “Advanced fuzzing in
the VoIP space,” Journal in Computer Virology, vol. 6, no. 1,
pp. 57–64, 2010.

[22] T. Alrahem, A. Chen, N. DiGiussepe, J. Gee, S.-P. Hsiao,
S. Mattox, T. Park, A. Tam, and I. G. Harris, “INTERSTATE:
A stateful protocol fuzzer for SIP,” 2007.

[23] I. G. Harris, T. Alrahem, A. Chen, N. DiGiussepe, J. Gee,
S.-P. Hsiao, S. Mattox, T. Park, S. Selvaraj, A. Tam, and
M. Carlsson, “Security testing of session initiation protocol
implementations,” ISeCure, The ISC International Journal of
Information Security, vol. 1, no. 2, pp. 91–103, 2009.

[24] L. Feng and S. Zhuang, “Action-driven automation test frame-
work for graphical user interface (GUI) software testing,”
Autotestcon, 2007 IEEE, pp. 22 –27, sept. 2007.

[25] P. Godefroid, “Random testing for security: blackbox vs.
whitebox fuzzing,” in RT ’07: Proceedings of the 2nd in-
ternational workshop on Random testing. New York, NY,
USA: ACM, 2007, pp. 1–1.

[26] J. Neystadt, “Automated penetration testing with white-
box fuzzing,” Feb. 2008. [Online]. Available: \url{http:
//msdn.microsoft.com/en-us/library/cc162782.aspx}

[27] Z. Xiaochun, Z. Bo, L. Juefeng, and G. Qiu, “A test automa-
tion solution on GUI functional test,” 6th IEEE International
Conference on Industrial Informatics, 2008. INDIN 2008., pp.
1413 –1418, july 2008.

[28] J. Bo, L. Xiang, and G. Xiaopeng, “Mobiletest: A tool
supporting automatic black box test for software on smart
mobile devices,” in Proceedings of the Second International
Workshop on Automation of Software Test, ser. AST ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp.
8–. [Online]. Available: http://dx.doi.org/10.1109/AST.2007.9

[29] A. Johnston, S. Donovan, R. Sparks, C. Cunningham,
and K. Summers, “Session Initiation Protocol (SIP) Basic
Call Flow Examples,” 2003. [Online]. Available: http:
//www.ietf.org/rfc/rfc3665.txt

[30] M. Ronniger, F. Fankhauser, C. Schanes, and T. Grechenig, “A
robust and flexible test environment for voip security tests,”
in Internet Technology and Secured Transactions (ICITST),
2010 International Conference for, Nov. 2010, pp. 1–6.

[31] V. Lebedev, “Qutecom,” website, 2011. [Online]. Available:
http://www.qutecom.org/

[32] E. Ivov, “Sip communicator,” website, 2011. [Online].
Available: http://www.sip-communicator.org/

105

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

