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Abstract—Considering security as an afterthought and adding
security aspects to a system late in the development process
has now been realized to be an inefficient and bad approach to
security. The trend is to bring security considerations as early
as possible in the design of systems. This is especially critical
in certain domains such as real-time embedded systems. Due to
different constraints and resource limitations that these systems
have, the costs and implications of security features should be
carefully evaluated in order to find appropriate ones which
respect the constraints of the system. Model-Driven Development
(MDD) and Component-Based Development (CBD) are two
software engineering disciplines which help to cope with the
increasing complexity of real-time embedded systems. While
CBD enables the reuse of functionality and analysis results by
building systems out of already existing components, MDD helps
to increase the abstraction level, perform analysis at earlier
phases of development, and also promotes automatic code
generation. By using these approaches and including security
aspects in the design models, it becomes possible to consider
security from early phases of development and also identify
the implications of security features. Timing issues are one of
the most important factors for successful design of real-time
embedded systems. In this paper, we provide an approach using
MDD and CBD methods to make it easier for system designers
to include security aspects in the design of systems and identify
and manage their timing implications and costs. Among different
security mechanisms to satisfy security requirements, our focus
in this paper is mainly on using encryption and decryption
algorithms and consideration of their timing costs to design
secure systems.

Index Terms—Real-Time Embedded Systems; Security; Model-
Driven Development; Component-Based Development; Runtime
Adaptation; Encryption.

I. INTRODUCTION

To cope with the specific challenges of designing security
for real-time embedded systems, appropriate design methods
are required. Due to resource constraints in these systems,
the implications of introducing security and its impacts on
other aspects and properties of the system should be carefully
identified as early as possible and the methods used for design-
ing these systems should provide such a feature [1]. Timing
properties are of utmost importance in real-time embedded
systems. In this paper, we introduce an approach using Model-

Driven and Component-Based Development (MDD & CBD)
methods for designing secure embedded systems to bring
security aspects into early phases of the development and take
into account their timing costs and implications.

This work provides an implementation and a methodology
for the generic idea that we discussed in [1] and extends it with
the result of our works in [2], [3]. In this work we provide
a more complete approach and methodology, compared to the
two aforementioned works, based on their combination and
synergy and discuss how this approach can cover more issue
regarding the timing implications of security mechanisms in
real-time embedded systems.

The approach basically works by identifying and annotating
sensitive data in the component model of the system, and
then deriving automatically a new component model which
includes necessary security components for the protection of
the data. Our main focus in this paper will be on using
encryption and decryption algorithms as security mechanisms.
The derivation of the new component model is based on a
set of pre-defined strategies. Each strategy defines a different
set of possible encryption and decryption algorithms to be
used as the implementation of the security components. In this
approach, since the derived component model conforms to the
original meta model, the same timing analysis and synthesis
as for the original component model can be used and applied
for the derived one.

With the increasing role of computer systems in our daily
lives, there is hardly any software product developed these
days that does not have to deal with security aspects and
protect itself from malicious adversaries [4]. Also with the
exponentially growing number of connected and networked
devices and more integration between different tools and
services that store and exchange different types of data, not
only new types of attacks are constantly emerging but also the
risks and consequences of security breaches have become more
drastic. Even some simple software products and applications
which do not store any sensitive information and therefore
may not seem to need to care about security aspects can,
for example, be the target of buffer overflow attacks [5] and
thus help attackers in gaining access to a system. All these
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points emphasize that security aspects cannot be taken into
account just as an afterthought and added feature to an already
developed system [6], but instead should be considered at
different phases of development from early phases such as
requirements engineering to deployment [4]. What is needed
is that instead of adding security features in an “eggshell
approach”, security should be designed intrinsically and insep-
arable from the application to be able to address the threats
that target the application itself [6].

Considering security from early phases of development is
especially critical in the design of real-time embedded systems.
These systems typically have limited amount of resources
(e.g., in terms of available memory, CPU and computational
power, energy and battery) and therefore, implications of secu-
rity features should also be taken into account. This is basically
because of the fact that Non-Functional Requirements (NFRs),
such as security, are not independent and cannot be considered
in isolation and satisfying one can affect the satisfaction
of others [7]. Therefore, costs and implications of security
features should be identified to analyze the trade-offs and
establish balance among different non-functional requirements
of the system. Such costs can be in the form of impacts
on timing, schedulability and responsiveness of the system,
as well as memory usage, energy consumption, etc. In real-
time embedded systems, satisfaction of timing requirements
is critical for the successful behavior of the system, therefore,
choice of security mechanisms should be done considering
their timing characteristics and impacts.

Model-driven development is a promising approach to cope
with the design complexity of real-time embedded systems.
It helps to raise the abstraction level, enables analysis at
earlier phases of development and automatic generation of
code [8], [9]. Component-based development, on the other
hand, is another discipline in software engineering and a
software development method in which systems are built
out of already existing components as opposed to building
them from scratch [10], [11]. In other words, it promotes
developing a system as an assembly of components by reusing
already existing software units (components). Model-driven
development and component-based development approaches
can be used orthogonally to complement and reinforce each
other to alleviate the design complexity of real-time embedded
systems [10].

In this context, including security aspects in design models
helps with achieving the two goals mentioned so far: bring-
ing security aspects into earlier phases of development and
enabling analysis of security implications. Moreover, model-
based security analysis (not the focus of this paper) in order
to identify possible violations of security requirements [12]
becomes possible and also system designers with lower levels
of expertise and knowledge in security domain can also
include and express security concerns [2]. The latter is due
to the fact that code level implementation of security features
requires detailed security knowledge and expertise, while at
the model level, system designers can use modeling concepts
and annotations for expressing security concerns (which in

turn may also be used for automatic generation of security
implementations).

By constructing the model of the system including security
features, timing analysis can then be done on the model to
evaluate whether the model meets the timing requirements
or not. If so, the implementation of the system can then
be generated from the model(s). This leads to a fixed set
of security mechanisms that are already analyzed as part of
the whole system in terms of their timing behaviors and are
thus known to operate within the timing constraints of the
system. However, there are situations where such a guarantee
in terms of timing behaviors cannot be achieved. For exam-
ple, in performing analysis some assumptions are taken into
account, such as worst-case execution times of tasks. If these
assumptions are violated at runtime, the analysis results will
not hold anymore. Moreover, in complex real-time systems
where timing analysis is not practical/economical or not much
information about the timing characteristics of each individual
task is available, other approaches are needed in order to
tackle the timing issues [13]. One solution is to have runtime
adaptation to mitigate timing violations and keep the execution
of tasks within their allowed time budgets.

The remainder of the paper is structured as follows. In
Section II, we discuss the issue of security and its challenges
in embedded systems in general. In Section III, the automatic
payment system is described as the motivating example of
this paper and also as an example of distributed real-time
embedded systems with security requirements. The suggested
approach and its implementation are described in Sections
IV and V. In Section VI, we introduce a runtime adaptation
mechanism to mitigate the violations of timing constraints
at runtime. Practical aspects of the introduced approach and
other related issued are discussed in Section VII. Section
VIII discusses the related work and finally in Section IX
conclusions are made.

II. SECURITY IN EMBEDDED SYSTEMS

In the design of embedded systems, security aspects have
often been neglected [14]. However, the use of embedded
systems in critical applications such as aviation systems, con-
trolling power plants, vehicular systems control, and medical
devices makes security considerations even more important.
This is due to the fact that there is now a tighter relationship
between safety and security in these systems (refer to [15] for
the definitions of security and safety and their differences).

Also because of the operational environment of embedded
systems, they are prone to specific types of security attacks
that might be less relevant for other systems such as a database
server inside a bank which is physically isolated and protected,
in contrast to smart cards and wireless sensor networks which
are physically exposed. Physical and side channel attacks [16]
are examples of these types of security issues in embedded
systems that bring along with themselves requirements on
hardware design and for making systems tamper-resistant.
Examples of side channels attack could be the use of time
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and power measurements and analysis to determine security
keys and types of used security algorithms.

Increase in the use and development of networked and
connected embedded devices also opens them up to new
types of security issues. Features and devices in a car that
communicate with other cars (e.g., the car in front) or traffic
data centers to gather traffic information of roads and streets,
use of mobile phones beyond just making phone calls and for
purposes such as buying credits, paying bills, and transferring
files (e.g. pictures, music,etc.) are tangible examples of such
usages in a networked environment.

Besides physical and side channel attacks, often mobility
and ease of access of these devices also incur additional secu-
rity issues. For example, sensitive information other than user
data, such as proprietary algorithms of companies, operating
systems and firmwares, are also carried around with these
devices and need protection.

Because of the constraints and resource limitations in em-
bedded systems, satisfying a non-functional requirement such
as security requires careful balance and trade-off with other re-
quirements and properties of the systems such as performance
and memory usage. Therefore, introducing security brings
along its own impacts on other aspects of the systems. This
further emphasizes the fact that security cannot be considered
as a feature that is added later to the design of a system and
needs to be considered from early stages of development and
along with other requirements. From this perspective, there are
many studies that discuss the implications of security features
in embedded systems such as [16], in which considering the
characteristics of embedded systems, major impacts of security
features are identified to be on the following aspects:

• Performance: Security protocols and mechanisms incur
heavy computational demands on a system that the pro-
cessing capacity of an embedded system might not be
able to satisfy easily. For example, using encryption and
decryption algorithms not only have high computational
complexity but also require good amount of memory. In
systems that need to handle heavy input loads, such as
routers and many systems that are used in telecommu-
nication domain to handle calls and data traffics, these
security features can consume lots of processing capacity
of the system and result in missed deadlines of other
tasks, dropped throughput level, and overall transaction
and data rate of the system.

• Power Consumption: In embedded systems with limited
power sources, any resource-consuming feature impacts
the operational life of the system. In this regard, security
features with their heavy computational and memory de-
mands, as discussed above, require careful considerations.
There are studies that investigate this issue and compare
power consumption of different encryption/decryption
algorithms such as [17] that looks at this issue in wireless
sensor networks. The issue of power consumption is
especially interesting knowing that the growth of battery
capacities are a lot slower and far behind the ever-
increasing power requirements of security features. This

has also led to investigating optimized security protocols
for embedded systems and hardware security solutions
[16].

• Flexibility and Maintainability: Flexibility of security fea-
tures and possibility to adapt them according to new re-
quirements is also a challenge in embedded systems. For
example, embedded devices such as mobile phones that
are used in different operational modes and environments
need to support a variety of security protocols. Moreover,
security solutions need to be updated in order to be
protected against emerging hacking methods. Therefore,
flexibility of security design decisions is important for
maintaining the security of the system to apply updates
and patches.

• Cost: Cost is also a limiting factor in the design of
embedded systems. Considering the issues mentioned
above, using a faster and more expensive CPU or adding
more memory modules to cope with the demands of
security requirements can add to the total cost of an
embedded system. Taking into account that these devices
are often produced in large amounts (e.g. mobile phones
and vehicular systems), a small increase in cost can affect
overall revenues and competitive potentials of a product
in the market. Therefore, the security features that are
implemented in embedded systems should be balanced
with hardware requirements and consequently cost limits.

III. MOTIVATION EXAMPLE: AUTOMATIC PAYMENT
SYSTEM

Figure 1 shows the Automatic Payment system which is
an example of distributed embedded systems with real-time
and security requirements. The main goal in the design of this
system is to allow a smoother traffic flow and reduce waiting
times at tolling stations (as well as parkings).

Fig. 1. Automatic Payment System for Toll Roads.

For each toll station, a camera is used to detect a vehicle that
approaches the station (e.g. at 100/200 meter distance), and
scans and reads its license plate information. This information
is passed to the payment station subsystem which then sends
the toll fee to the vehicle through a standardly defined wireless
communication channel. This amount is shown to the driver
in the vehicle through its User Interface (UI) and the driver
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inserts a credit card and accepts the payment to be done. The
credit card number is then sent securely to the payment station
which then performs the transaction on it through a (third
party) merchant (e.g., via a wired Internet connection at the
station). The driver is then notified about the success of the
transaction and receives an OK message to go accordingly.
The interactions between different objects in this system are
shown in Figure 2.

Fig. 2. Automatic Payment System.

To allow a smooth traffic flow, all these operations should
be done in a certain time limit. Such time constraints can
be calculated considering the specifications of camera and
its required time for the detection of an approaching vehicle,
traffic and safety regulations (e.g, allowed speed), and other
similar factors. For example, if the vehicle is detected at 100
meter distance from the station, and the allowed speed at that
point is 20 km/h, then the system has a strict time window
during which it should be able to store the vehicle information,
establish communication, and send the payment information to
it. Different scenarios can happen in this system. For example,
it could happen that the driver/vehicle fails to provide credit
card information, or the credit card is expired. In this case, the
system can log the vehicle information in a certain database
and send the bill later to the owner, or even it can be set to not
open the gate for the vehicle to pass and also show a red light
for other cars approaching that toll station to stop. Besides
the mentioned timing constraints that exist in this system, the
communication between different nodes and transfer of data
need to be secured and protected. In this system, we have the
following security requirements:

1) Sensitive data such as credit card information should not
be available to unauthorized parties.

2) The vehicle only accepts transactions initiated by the
payment station.

To achieve these requirements, the station needs to authenti-
cate itself to the vehicle so that the vehicle can trust and send
the credit card information. Moreover, sensitive information
that is transferred between different parts should also be
encrypted.

Another scenario that can happen in this system is that

several vehicles may approach one station with a short time
distance between each which can result in bursty processing
loads on the system (analogous to bursty arrivals of aperiodic
tasks in real-time terms). In such situations, timing require-
ments may be violated as even by using static analysis of the
system, only certain levels of such bursty loads may be covered
and not all the possible cases. One solution to mitigate timing
violations in this scenario is to introduce runtime adaptation
and adapt the security level of the system at runtime; meaning
that security mechanisms that are less time-consuming (and
presumably less strong) can be used when such situations
are detected. As the last resort, when the system realizes that
many number of timing violations are occurring, to maintain
a smooth traffic flow and prevent any possible accidents and
safety issues due to the increasing queuing of the cars at the
tolling station, instead of the on-site payment and charging
of the vehicles, the system can just store their information to
send a bill later to the owner of the vehicle, or even add the
amount to the payment done at the next tolling stations on the
road (if there are any and they are connected).

To model and build the system (software parts), particularly
considering the timing constraints of the system, the following
challenges are identified:

1) Modeling security mechanisms with enough details to
enable both timing analysis on the model and synthesis
of the security implementations,

2) Obtaining timing costs of security mechanisms,
3) Managing possible timing violations of the system at

run-time.
The first challenge is discussed in the following two sec-

tions. To get the timing costs of security mechanisms, we rely
on studies such as [18] that have done such measurements. To
solve the third challenge, a runtime adaptation mechanism is
introduced and we show how it helps to mitigate the runtime
violations of timing constraints.

IV. APPROACH

Based on the identified challenges in the previous example,
we introduce an approach that aims to bring the security
concerns in the design of embedded systems. Our suggested
approach helps systems designers in expressing the security
concerns in a system without the need to have much security
expertise on the actual implementation of security mecha-
nisms. It does so by just requiring the system designers to
identify sensitive data entities that need to be protected. In the
scope of our work, it can be for example the data that need
to be confidential and/or whose sender must be authenticated.
Moreover, to mitigate potential timing violations of security
mechanisms at runtime, the approach provides the option to
include an adaptation feature for the security mechanisms.

To implement the approach, ProCom [19] component model
has been used; although the approach is not dependent on this
specific component model and can be implemented using other
component models as well. Security needs are specified as
annotations on the component model. A benefit of the ProCom
component model is its power in defining new attribute types
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using its attribute framework to annotate and specify new
types of data. The term component model hereafter is used
to basically refer to the component architecture model than
the meta-model of ProCom. From the specification of the
security needs at the data level and physical platform level,
a model transformation is applied on the component model to
derive a new component model including security implemen-
tations. The derivation of the new component model (which
now has appropriate security components implementing the
security needs) is done based on a selected strategy. The
strategy basically specifies the preferences in terms of security
implementations and which of them to choose among a set of
different possible ones. Having the necessary information in
the model, the steps that have been described so far can be
summarized as follows:

1) The component model which specifies the functional and
non-functional (extra-functional) part of the system is
transformed into a functionally equivalent model with
added security implementations;

2) Analysis can be performed on the derived component
model that includes security components to identify any
possible violations of timing constrains; and

3) Finally, the system is synthesized.
The considered process is iterative and allows to refine secu-

rity specification after evaluating the resulted system properties
such as timing properties. In other words, timing analysis, for
example, can be performed on the derived component model
and if timing properties of the derived model do not satisfy the
timing requirements, the derivation process can be repeated
with different preferences to finally gain a model which is
satisfactory in terms of timing requirements. The process is
depicted in Figure 3 showing different models and annotations
that are used as input in each step (i.e., the analysis of the
system model as well as synthesis of the implementation).

Component

Model

Data Model

Security

Annotations

Step 1: Transformation

Step 2:

Analyze

Step 3: 

Synthesis

Secured

Component

Model

Physical

Input/Output Transformation

/Computation
Model Annotates

Physical

Platform Model

Security

Annotations

Analysis 

Results

back annotations
System

Fig. 3. General description of the approach process.

V. IMPLEMENTATION

A. ProCom Component Model
While the approach principles are component model

generic, we implemented it using ProCom. The ProCom com-
ponent model targets distributed embedded real-time system

domain. In particular, it enables to deal with resource limi-
tations and requirements on safety and timeliness concerns.
ProCom is organized in two distinct layers that differ in terms
of architectural style and communication paradigm. For this
paper, however, we consider only the upper layer which aims
to provide a high-level view of loosely coupled subsystems.
This layer defines a system as a set of active, concurrent sub-
systems that communicate by asynchronous message passing,
and are typically distributed. Figure 4 shows ProCom design
of the Automatic Payment System example.
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User

Interface
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Message Channel
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CI: Customer Info
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TA: Transaction acknowledgement

CCI: Customer Card Info
PI: Payment Info
PS: Payment Status

VI: Vehicle Info

Fig. 4. Component Model of the System using ProCom.

A subsystem can internally be realized as a hierarchical
composition of other subsystems or built out of entities from
the lower layer of ProCom. Figure 5 shows the implementation
of the subsystem E as an assembly of two component C1
and C2. Data input and output ports are denoted by small
rectangles, and triangles denote trigger ports. Connections
between data and trigger ports define transfer of data and
control, respectively. Fork and Or connectors, depicted as
small circles, specify control over the synchronization between
the subcomponents.

C1

C2

Subsystem E

(a) (b)

Fig. 5. ProCom SubSystem Implementation.

B. Data Model
As components are usually intended to be reused, their

related data may also be reused. To this end, we propose
to extend the data-entity approach described in [20] for
design-time management of data in component-based real-
time embedded systems. In this approach every data entity



73

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is stored in a shared repository and designers are provided
with an additional architectural view for data management,
namely the data architectural view. The description of a data
entity contains its type (string, int...), its maximum size and
its unit. A data entity can also be a composite entity defined
as a list of data entities. We use the concept of data entity
to identify data that are transfered through different message
channels in the system (shown in Figure 4) and map them
to their respective security concerns (e.g., if they need to
be encrypted and protected or not). Table I and Table II
show the data entities in our example. As described in the

TABLE I
PRIMITIVE DATA ENTITIES.

Data Entity Type Max Size Unit
CCNumber String 16 byte

ExpirationDate String 4 byte
AskCI Empty 0 byte

AskCCI Empty 0 byte
PaymentStatus boolean 1 byte

VehicleNumber String 20 byte
VehicleType Enum 8 byte

AmountToPay float 4 euro

TABLE II
COMPOSITE DATA ENTITIES.

Data Entity Contains
CreditCard CCNumber, ExpirationDate

CustomerInfo VehicleNumber, CreditCard
PaymentTicket AmountToPay, PaymentStatus

PaymentRequest AmountToPay, CreditCard

last section, subsystems communicate through asynchronous
message passing represented by message channels. A message
channel is associated with a list of data entities which defines
the message content. Table III presents the mapping between
message channels and data entities for our example. We can

TABLE III
MAPPING BETWEEN DATA ENTITIES AND MESSAGE CHANNELS.

Message Channel Data Entities
AskCI AskCI

CI CustomerInfo
PT PaymentTicket

AskCCI AskCCI
PS PaymentStatus

CCI CreditCard
VI VehicleNumber, VehicleType
TA CCNumber, AmountToPay, PaymentStatus
PI PaymentRequest

observe that the same data entity can be used several times
in different message channels. The mapping between data
ports of message ports and data entities is based on naming

convention which enables to distinguish between the data ports
that require to encrypt/decrypt their data and those that do not.
We call data model the set of data entities which are used in
the related design.

C. Physical Platform And Deployment Modeling

The physical entities and their connections are described in a
separate model called Physical Platform Model (see Figure 6).
This model defines the different Electronic Computation Units
(ECUs), called Physical Nodes, including their configurations
such as processor type and frequency, the connections between
the physical nodes, and the physical platforms which represent
a set of ECUs fixed together.

Bank

ECU1 ECU3
ECU4

C
A

N

T
C

P
/IP

WIFI IPSec

Inter Physical Platform
Connection 

Physical Platform 

Vehicle Station

ECU4ECU2

ECU
Computation Unit allocation
(= Physical Node)

Intra Physical Platform
Connection

Fig. 6. Physical Platform Model of the System.

ProCom system deployment is modeled in two steps, intro-
ducing an intermediate level where subsystems are allocated
to virtual nodes that, in turn, are allocated to physical nodes.
In a similar way, message connections are allocated to virtual
message connections which, in turn, are allocated to physical
connections. Figure 7 defines the physical platform and related
mapping of Automatic Payment System model. To simplify the
example, we assume a one to one mapping between virtual
node and physical node.

D. Security Properties

Instead of defining the security properties on the architec-
ture, i.e. the component model, we propose to annotate the
data model and compute the required security properties on
the architecture, based on these security requirements. It is an
original part of our approach where a designer can think about
sensitive data without considering the architecture models. The
designer applies security properties to identify and annotate
sensitive data in the system, which require to be protected
using some security mechanisms (e.g., confidentiality and
encryption, authentication, integrity, etc.). We consider two
types of security properties:

• Confidentiality ensures that the considered information
cannot be read by any external person of the system; and
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Fig. 7. Deployment Model of the System depicting allocation to Physical
Platforms.

• Authentication which ensures that the considered infor-
mation comes from the expected sender.

Table IV shows security annotations associated to data
entities for our example. In addition to security properties on

TABLE IV
DATA ENTITY SECURITY PROPERTIES.

Data Entity Security properties
CCNumber Confidentiality
VehicleNumber Authentication
AskCI Authentication
AskCCI Authentication
PaymentRequest Authentication
PaymentStatus Authentication

the data model, we define the security properties related to the
physical platform which are independent of any application:

• Exposed defines that the physical platform is potentially
accessible to external persons and that they may be able
to open it and modify physical parts.

• NotAccessible defines that the physical platform is not
considered as accessible to unauthorized persons.

In a similar way, physical connections are annotated:
• Secured defines that the physical connection is consid-

ered as secured due to its intrinsic security implementa-
tion.

• NotSecured defines that the physical connection protocol
does not implement a reliable security (opposite of the
above).

Using these properties, the person responsible for the phys-
ical platform annotates physical entities and the physical
connections between them in the platform model. Thanks to
these annotations, we can deduce which parts do not need
additional security implementations if it is already provided
(by construction). For example, if a link is established using
mere TCP/IP, it is annotated as NotSecured, while in case that
IPSec protocol suite is used for a link, that link is annotated

as Secured. This means that the link is considered trusted and
already secured, and no security component is necessary to be
added for the link. Table V shows the security properties of
Automatic Payment System physical platforms.

TABLE V
SECURITY PROPERTIES OF PHYSICAL ENTITIES.

Physical Platform or Connection Security properties
Vehicle Exposed
Station NotAccessible
Bank NotAccessible
WIFI NotSecured
IPSec Secured
TCP/IP NotSecured
CAN NotSecured

E. Cost of Security Implementations

Different encryption/decryption algorithms as security
mechanisms can be selected to satisfy the identified security
properties in the system. Considering the fact that each security
mechanism in the system has its own costs in terms of timing
and performance, power consumption and so on, choosing an
appropriate security mechanism is critical in order to ensure
the satisfaction of timing requirements of the system. For
this purpose, and to take into account the timing costs of
different security mechanisms, we rely on the results of studies
such as [18] that have performed these cost measurements.
Based on such methods, we assume the existence of such
timing measurements for the platforms used in our system
in the form of the Table VI. We assume that execution times
can be computed knowing the target platform, algorithm, key
size and data size. A timing estimation toolkit may also
be provided which provides execution time estimates based
on these measurements. As can be observed from the table,
we also take into account and add this flexibility that some
algorithms may not be supported on some platforms (marked
as NS).

TABLE VI
EXECUTION TIMES AND STRENGTH RANKING OF DIFFERENT SECURITY

ALGORITHMS FOR A SPECIFIC PLATFORM

Strength Rank Algorithm Key Size ET-P1 ET-P2 ET-Pn
1 AES 128 NS 480 . . .
2 3DES 56 292 198 . . .
3 DES 56 835 820 . . .

. . .
(ET-Px: Executime Time on Platform x in bytes per second, NS: Not Supported on corresponding platform)

F. Security Implementation Strategy

As mentioned previously, based on the selected strategy, a
security mechanism is chosen from the table and the com-
ponents implementing it are added to the component model.
The user can then perform timing analysis on the derived
component model to ensure that the overall timing constraints
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hold and are not violated. We propose several strategies to
help choosing among all possible security implementations:

• The StrongestSecurity strategy selects the strongest se-
curity implementation available on the platforms (taking
into account that some security mechanisms, namely
encryption algorithms here, may not be available and pos-
sible on a certain platform, hence selecting the strongest
available one);

• The StrongestSecurityAndLimitImplemNb strategy se-
lects the strongest security implementation available on
the platforms while ensuring that we use as few as
possible different security implementations, since each
message channel can use a different encryption algorithm
(finding the most common security implementation which
achieves the strongest level in terms of the strength
rankings);

• The LowestExecTime strategy selects the security im-
plementation available on the platforms which has the
lowest execution time;

• The LowestExecTimeAndLimitImplemNb strategy se-
lects the lowest execution time implementation available
on the platforms while ensuring that we use as few as
possible different security implementations; and

• The StrongestSecuritySchedulable strategy selects the
strongest security implementation available on the plat-
forms where the system remains schedulable.

The selection is driven by the fact that the same algorithm
must be used for the sender and receiver components which
may be deployed on different platforms which in turn may not
support the same algorithms.

G. Transformation

The transformation is performed in four steps:
1) First, we identify the part of a message which needs

to be confidential or authenticated while considering on
which communication channels they are transferred;

2) Next, we add components in charge of the encryption
and decryption of the identified communication chan-
nels;

3) Then, the strategies are used to choose which encryption
algorithm to use and generate the code of the added
components; and

4) Finally, the Worst Case Execution Time (WCET) of
added components is estimated.

The transformation aims to ensure that data decryption
is performed once and only once before that data will be
consumed and that data encryption is performed once and
only once when a message should be sent. To illustrate
the algorithm, let’s consider the example in Figure 8. We
assume that only data D1 needs to be confidential. The pseudo
algorithm of the transformation is described in Listing 1.

Listing 1. Transformation Pseudo Algorithm
msgToSecure = {}
f o r a l l c h a n n e l s M i n component model {
P = M. a l l o c a t e d P h y s i c a l C h a n n e l ;

(a) Before transformation, no security

C2

C1

C2

D1

D1

C1
D2

D2

D2

C2

(b) After transformation, secured system

C1

C2

EnD1

Original elementsGenerated elements

ED1

ED1 DeD1

C1

Digest

Digest

D2

D2

D2

Fig. 8. Transformation.

i f ( (M. g e t C o n f i d e n t i a l D a t a ( ) <> {} ) o r
(M. g e t A u t h e t i c a t e d D a t a ( ) <> {} ) and

( P . i s N o t S e c u r e d ( ) ) and
( ( P . i s I n t r a P l a t f o r m ( ) and

P . s o u r c e P o r t . p l a t f o r m . i s E x p o s e d ( ) ) o r
( P . i s I n t e r P l a t f o r m ( ) ) )

add M i n msgToSecure ;
}

f o r a l l M i n msgToSecure {
P = M. a l l o c a t e d P h y s i c a l C h a n n e l ;

Source = M. s o u r c e P o r t ;
EnD = c r e a t e component

wi th same p o r t s a s Source ;
i f (M. g e t A u t h e t i c a t e d D a t a ( ) <> {} )

add one o u t p u t p o r t D i g e s t t o EnD
add one i n p u t p o r t D i g e s t t o Source

EnD . i n C o n n e c t i o n s = Source . i n C o n n e c t i o n s ;
c r e a t e c o n n e c t i o n s where EnD . o u t P o r t s

a r e c o n n e c t e d t o c o r r e s p o n d i n g
Source . i n P o r t s ;

g e n e r a t e EnD i m p l e m e n t a t i o n code

Des t = M. d e s t P o r t ;
DeD = c r e a t e component

wi th same p o r t s a s Des t ;
i f (M. g e t A u t h e t i c a t e d D a t a ( ) <> {} )

add one o u t p u t p o r t D i g e s t t o Des t
add one i n p u t p o r t D i g e s t t o DeD

DeD . o u t C o n n e c t i o n s = Des t . o u t C o n n e c t i o n s ;
c r e a t e c o n n e c t i o n s where Des t . o u t P o r t s

a r e c o n n e c t e d t o c o r r e s p o n d i n g
DeD . i n P o r t s ;

g e n e r a t e DeD i m p l e m e n t a t i o n code
}

Encryption/Decryption (in EnD1 and DeD1) is done only for
confidential data while other data are just copied. An addi-
tional port is used to send the digest used for authentication.
The decryption component (DeD1) ensures that all message
data will be available at the same time through the output data
ports. This implementation ensures the original operational
semantic of the component model. Then, the security strategy
is used to choose which encryption/decryption algorithm must
be used and what its configuration will be.
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VI. RUNTIME ADAPTATION

The suggested approach results in a static and fixed set
of security mechanisms to be implemented and used in each
invocation and use of the system. The system model includ-
ing the added security components can then be analyzed in
terms of timing properties before reaching the implementation
phase and therefore it can be evaluated whether the timing
requirements are met or not.

There are, however, cases where such static analysis may
not be possible or even economical. For example, when there
is not much timing information available about each task in
the system to perform timing analysis, particularly in complex
real-time systems with a big number of different tasks. In such
systems even if enough timing information is available for
each task, due to the complexity and big number of tasks,
performing timing analysis may actually be not economical.
Moreover, in performing static analysis some assumptions are
taken into account and if those assumptions are violated at
runtime then the static analysis results will not hold anymore.
In such situations, a runtime adaptation mechanism can help to
cope with the above challenges and mitigate timing violations
by establishing balance between timing and security in a
dynamic fashion.

To bring such adaptation mechanism into our approach, we
introduce another strategy called StrongestSecurityAdaptive.
By selecting this strategy, the implementation of added secu-
rity components will be synthesized as depicted in Figure 9.
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Encryption
Algorithm n

Encryption 
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Encryption 
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Allowed Execution Time
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Fig. 9. Adaptation mechanism.

As shown in Figure 9, by using this strategy, in the body
of the added security components (here encryption ones), the
implementation of all different possible encryption algorithms
will also be included. When a request for an encryption
arrives, the component firstly tries to use the strongest possible
encryption algorithm (based on the rank of algorithms in
Table VI) to encrypt the data. The time it takes to perform
the encryption is stored in the Timing History Log. If
this time is more than the specified timing constraint for
performing the job, then for the next encryption, another
encryption algorithm with a lower rank but with less execution
time will be selected (based on the information in Table VI).

In case the encryption job completes sooner than the
specified time limit, the unused portion of its time budget
is then used to determine whether it is feasible to adopt a
higher ranked algorithm for the next encryption job or not.
With this approach, the feedback that is produced regarding
the timing behavior of encryption algorithm is used by the
system to try to adapt itself. Therefore, when the system
receives a burst of processing loads which it cannot fulfill
under specified time constraints, it adapts itself to this higher
load and similarly when the processing load decreases, it
can gradually go back to using more time-consuming (and
presumably more secure) encryption algorithms. This design
is based on the implicit assumption that when it is detected
that an executing encryption algorithm is exceeding its allowed
time budget, it is basically more costly to terminate it in the
middle of the encryption procedure, and restart the encryption
of the data with another encryption algorithm, than just letting
it finish its job, and instead use one with a lower execution
time in the next invocation of encryption components.

The information that is logged in the Timing History
Log has the following format: Timestamp, Encryption algo-
rithm, Time constraint, Actual execution time (timestamp, time
constraint and actual execution time are in system ticks unit in
the following experiment). An example of the generated log
information is shown in Table VII.

TABLE VII
SAMPLE LOG INFORMATION.

10360, AES, 50, 90
11800, 3DES, 80, 70
14500, 3DES, 60, 70
21353, DES, 60, 10
22464, 3DES, 90, 40
23112, AES, 50, 50
28374, AES, 60, 58

Considering the last row from the log as:

ts, alg, t, e
(ts: timestamp, alg: encryption algorithm, t: time constraint, e: actual execution time)

the decision that the system should adopt a lower ranked
algorithm is made using the following formula:

(i) e > t⇒ move down in the encryption algorithms table
and select the next algorithm with a lower rank.

Also, considering the two log records described as follows:
ts(l), alg(l), t(l), e(l) : representing the last log record

ts(h), alg(h), t(h), e(h) : representing the log record for the
first encryption algorithm with a higher rank that was used
before the last log record;

the decision to adopt a higher ranked algorithm is made using
the following formula:

(ii) e(l) < t(l) ∧ t(l) − e(l) > abs(e(h) − t(h)) ⇒ move
up in the encryption algorithms table and select the previous
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higher ranked algorithm.

A. Evaluation of the Adaptation Mechanism

In [3], we have tested the introduced adaptation mechanism;
here we include the evaluation results produced during that
work to demonstrate the benefits of using the adaptation
approach. A simulation environment was setup as described
in [3] with the use of a tool called CPU Killer [21] to enforce
arbitrary CPU loads at desired times.

Figure 10 shows the evaluation results comparing per-
forming encryption with and without using the adaptation
mechanism. In each case, CPU loads of 10%, 50%, 70%, and
then back to 50%, and 10% were applied.

Fig. 10. Performing encryption with and without adaptation.

The columns for each log record in Figure 10 identify:
system time (ticks), encryption algorithm (AES=1, 3DES=2,
DES=3) , time constraint (for each invocation; in ticks),
and actual execution time (ticks). The records in which the
violation of the time constraint has occurred are marked with
a ’*’. Comparing the two cases (without adaptation and with
it) shows that the number of time constraint violations are
reduced in the second case compared to the first case where
only one encryption algorithm (with the highest execution
time) is used. Moreover, in the second case more number of
encryption jobs have been performed under a shorter period
of time.

Since the goal with this adaptive strategy is to use the
strongest security algorithm possible, the adaptation mech-
anism assumes that the encryption algorithms in Table VI
are sorted according to their execution times resulting in the
strongest but most time consuming one to be at the top and the
weakest but less timing consuming algorithm at the bottom.
Also, as a note for the decryption side, there are different
ways to match and synchronize the decryption algorithm
with the selected encryption algorithm. Our suggested way

to do this is to add some additional bits identifying the
used encryption algorithm (e.g., through the use of 2-bit
or 3-bit ID numbers, according to the number of different
algorithms) to the encrypted message for the decryption side
to correctly pick and use the appropriate algorithm. Moreover,
in the introduced adaptation mechanism and its evaluation, an
encryption algorithm and the respective decryption algorithm
for it have been assumed to take the same amount of time
which is generally valid as mentioned in [18]. However, to
extend the adaptation approach for distributed systems where
encryption and decryption can be performed on different
nodes, more parameters for making adaptation decisions can
be added. Such an extension can be to consider the sum
of encryption time and decryption time for each algorithm
to make adaptation decisions instead of just considering the
encryption time only.

VII. DISCUSSION

This approach has been experimented partially in PRIDE,
the ProCom development environment. The feasability at
model level of the approach has been validated while the
code generation part remains as future works. The security
annotations have been added using the Attribute framework
[22] which allows to introduce additional attribute to any
model element in ProCom. The model transformation has been
implemented using a QVTo [23] transformation plugged at
the end of the process described in [24]. These experiments
aim to show the benefits at the design level of the approach
where timing properties of the overall system can be analysed.
The current implementation only supports the LowestExec-
Time and StrongestSecurity strategies. The StrongestSecuri-
tySchedulable strategy is hard to implement, however, it is
the most interesting one. One of the reasons that we do not
claim that we also provide this strategy, in spite of having
the execution times of security components, is that the actual
execution times in the synthesized system will not necessarily
be the sum and individual addition of the execution times of
the added security components to the rest of the system. More
complex security implementation strategies can be considered
but are not covered in this paper.

As for the synthesis of the code of the security compo-
nents, in order to keep the approach generic, we intend to
let certificate specification and other specific parameters of
encryption algorithm to be filled in the generated code. One
generator is associated for each algorithm. The suitability for
timing analysis of the generated component code needs to be
planned but at least will allow for measurement based timing
analysis as any other ProCom component. While the system
functionality remains the same, the system needs also to react
to authentication errors. This problem could be partially solved
by allowing developers to add code to manage authentication
errors in the generated code to define what must be the output
data in each specific case.

Regarding the runtime adaptation mechanism, while on one
hand, it may make the job of the attackers harder as not a
fixed algorithm is used in each invocation and thus it will not
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be known and predictable to the attackers (hence some sort of
“security through obscurity”), on the other hand, if attackers
know the internal mechanism of the runtime adaptation, they
can force some processing load on the system to make
the system adopt the weakest algorithm possible, and that
way, make it easier for themselves to break into the system.
Moreover, the adaptation mechanism which was used as part
of our general approach in this paper, can also be designed to
act as an option; in the sense that it can be turned on and used
when a processing load beyond a certain level is detected and
turned off otherwise. This can help to mitigate the overhead of
the adaptation mechanism itself (although another mechanism
to monitor the processing load would need to be added in
that case) and only use it when there are many requests for
encryption.

VIII. RELATED WORK

Designing security features for real-time embedded systems
is a challenging task and requires appropriate methods and
considerations. [16] and [25] particularly discuss the specific
challenges of security in embedded systems and define it as a
new dimension to be considered throughout the development
process. Considering the unique challenges of security in
embedded systems, [25] also emphasizes that new approaches
to security are required to cover all aspects of embedded sys-
tems design from architecture to implementation. The methods
that we introduced in this paper contribute towards this goal
by applying different disciplines in the field of software
engineering, such as model-driven development methods, to
cope with the specific challenges of designing security for
embedded systems.

Also as a non-functional requirement [7], [26], satisfying
security requirements in a system has costs and implications
in terms of impact on other requirements such as performance,
power consumption and so on. In [17], measurement and
comparison of memory usage and energy consumption of
several encryption algorithms on two specific wireless sensor
network platforms have been done. Performance and timing
comparisons of several encryption algorithms are offered in
[18] where Pentium machines are used as the platform. The
approaches we proposed in this paper, work by relying on
the timing and performance comparison results of encryption
algorithms in such studies.

While model-driven and component-based approaches serve
as promising approaches to cope with the design complexity
of real-time embedded systems, management of runtime data
in these systems has also become an important issues than
ever before due to the growing complexity of them. This fact
becomes more clear when we realize that keeping track of all
data that are passing through different parts of the system is
an extremely hard task for a person. In addition, most design
methods based on component models focus mainly on func-
tional structuring of the system without considering semantics
and meanings for data flows [20]. A data-centric approach
for modeling data as well as using real-time databases for
runtime data management in real-time embedded systems is

proposed in [20]. In this work, however, non-functional (extra-
functional) properties such as security are not addressed, and
our approach presented in this paper basically follows a similar
method for modeling data entities as a basis to define security
specification.

As for modeling security aspects, there are several solutions
such as UMLsec [12]. UMLsec is a UML profile [27] for
the specification of security relevant information in UML
diagrams. It is one of the major works in this area and comes
with a tool suite which provides the possibility to evaluate
security requirements and their violations. SecureUML [28] is
also another UML profile for modeling of role-based access
controls. UML profile for Modeling and Analysis of Real-
time Embedded Systems (MARTE) [29] provides semantics
for modeling non-functional properties and their analysis
(e.g., schedulability). In [30], we have discussed MARTE and
the benefits of extending MARTE with security annotations
to better cover the modeling needs of embedded systems.
Besides UMLsec and its tool suite which enables analysis
of security requirements, in [31], a method for specifying
security requirements on UML models and verifying their
satisfaction by relating model-level requirements to code-level
implementation is offered. In [32], we have provided a small
example how it is possible to model security requirements
along with some other requirements of telecommunication
systems and then perform model-based analysis using the
analysis tool suite of UMLsec to identify possible violations
of security requirements.

The need to identify sensitive data is also discussed in [33]
where an extension to include security concerns as a separate
model view for web-services based on Web-Services Business
Process Execution Language (WS-BPEL) is offered. However,
it does not take into account the consequences of security de-
sign decisions on timing aspects, while by identifying sensitive
parts of messages which need to be secured, our objective
is to ease the computation of the timing impacts of security
implementations protecting those sensitive data. Considering
the challenges of securing distributed systems [34] has done a
survey on the application of security patterns, as a form of soft-
ware design patterns, to secure distributed systems. Moreover,
it discusses different methodologies that make use of these ad-
hoc security patterns in a structured way. It also reports that
the majority of the studied methodologies lack explicit support
for distributed systems and special concerns that these systems
have and mentions the development of tailored methodologies
for different types of distributed systems as an important future
work in this area. The approach that we suggested here could
serve as an example for developing such methodologies in
particular for distributed real-time and embedded systems in
which timing requirements play a key role in the correctness
of the whole system.

Regarding the adaptation method that we used as part of
our suggested approach, there are also several related studies
and approaches that we discuss them here. The study done in
[35] is one of the interesting works in the area of security for
real-time embedded systems which uses an adaptive method.
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In this work, the main focus is on a set of periodic tasks
with known real-time parameters, whereas, our main target
is complex systems that can consist of any type of real-
time tasks. Also, while in our work, the security level of
the system is considered implicitly through the selection of
algorithms from the encryption algorithms table, in [35], a
QoS value has been considered which explicitly represents the
security level of the system. Moreover, in our work, it is the
encryption algorithms which are adaptively replaced, while the
main adaptation component in that work is the key length. Our
approach can easily be extended to cover not only different
encryption algorithms but also variations of each, including
different combinations of key length, number of rounds and
so on, as items (rows) in the encryption algorithms table (e.g.,
AES256, AES128, etc.). Another interesting study with is
close to our work is [36], which basically introduces a similar
type of adaptation mechanism as ours. The main focus in that
work is, however, on client-server scenarios using a database,
and to manage the performance of transactions. The security
manager component used int his work periodically adjusts the
the security level of the system. In our approach, however,
the adaptation mechanism is executed per request and is not
active when there is no request for encryption. Moreover, it
is possible in the approach introduced in this work that an
inappropriate encryption method is used by a client, while
security level change is occurring. To solve this situation,
several acknowledgment messages are sent and the process
is repeated to correct this issue. Therefore, it is possible that
the security manager faces problems regarding synchronization
and message loss due to out of order arrival of messages. As
another approach for managing security in real-time systems,
in [37], a secure-aware scheduler is introduced which basically
incorporates and takes into account timing management of
security mechanisms as part of its scheduling policy.

IX. CONCLUSION AND FUTURE WORK

In this paper, we introduced an approach to define security
specifications in real-time embedded systems at a high level
of abstraction based on the benefits of model-driven and
component-based methods. Using the suggested approach we
bring semantics to the data that are transferred in embedded
systems to identify sensitive data. The approach enables also
to derive automatically the security implementations and fa-
cilitates performing timing analysis including security features
at early phases of development. It was also demonstrated
how incorporating a runtime adaptation mechanism as part
of the approach helps to mitigate the violations of timing
constraints at runtime. As mentioned, such runtime adapta-
tion mechanisms are especially useful for complex systems
where performing static analysis may not be practical, as
well as in cases where the assumptions that have been used
for performing static analysis are prone to deviation and
violation at runtime which can then lead to the invalidation
of analysis results. Moreover, the introduced approach helps
system designers to mainly focus on the system architecture
and addressing timing properties, and at the same, including

security concerns in the design models without needing much
expertise on how to implement security mechanisms. This
again contributes to bringing security considerations in higher
levels of abstraction.

One of the extensions of this work is to define and add more
strategies for the designers to choose. Among the currently
defined strategies, the StrongestSecuritySchedulable is the
most interesting one but is hard to implement and will be
part of our future works. One of the reasons that we do not
claim that we also provide this strategy, in spite of having
the execution times of security components, is that the actual
execution times in the synthesized system will not necessarily
be the sum and individual addition of the execution times of
the added security components to the rest of the system. Also
as another idea for the extension of this work, it would be
interesting to define and assign required security strength to
data and message channels as another factor that also affects
the selection of security components. It should also be noted
that in this work we mainly addressed encryption as a security
mechanism. Considering other mechanisms such as autho-
rization methods and their impacts on timing characteristics
of systems is another interesting direction of this work to
investigate. Also including other aspects than timing, such as
power consumption of security mechanisms, performing trade-
off, and establishing balance among them, similar to what we
did here for timing properties, can be another extension of this
paper and future work.
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marte with security concepts,” in International Workshop on Model
Based Engineering for Embedded Systems Design (M-BED 2011),
March 2011.

[31] J. Lloyd and J. Jürjens, “Security analysis of a biometric authentication
system using umlsec and jml,” in Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems, ser.
MODELS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 77–91.

[32] M. Saadatmand, A. Cicchetti, and M. Sjödin, “Uml-based modeling
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