International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

Securing Access to Data in Business Intelligence Domains

Ahmad Altamimi
Department of Computer Science
Concordia University
Montreal, Canada
Email: a_alta@cs.concordia.ca

Abstract—Online Analytical Processing (OLAP) has become
an increasingly important and prevalent component of Decision
Support Systems. OLAP is associated with a data model known
as a cube, a multi-dimensional representation of the core
measures and relationships within the associated organization.
While numerous cube generation and processing algorithms
have been presented in the literature, little effort has been made
to address the unique security and authorization requirements
of the model. In particular, the hierarchical nature of the cube
allows users to bypass - either intentionally or unintentionally
- partial constraints defined at alternate aggregation levels. In
this paper, we present an authorization framework that builds
upon an algebra designed specifically for OLAP domains. It is
Object-Oriented in nature and uses query re-writing rules to
ensure consistent data access across all levels of the conceptual
model. For the most part, the process is largely transparent
to the user. We demonstrate the scope of our framework
with a series of common OLAP query case studies, as well
as an experimental performance analysis using a common
OLAP benchmark. The end result is an intuitive but powerful
approach to database authorization that is uniquely tailored to
the OLAP domain.

Keywords-Data warehouses; Data security; Query processing

I. INTRODUCTION

Data warehousing (DW) and On-Line Analytical Process-
ing (OLAP) play a pivotal role in modern organizations.
Designed to facilitate the reporting and analysis required in
decision making environments, OLAP builds upon a multi-
dimensional data model that intuitively integrates the vast
quantities of transactional level data collected by contempo-
rary organizations. Ultimately, this data is used by managers
and decision makers in order to extract and visualize broad
patterns and trends that would otherwise not be obvious to
the user.

One must note that while the data warehouse serves as
a repository for all collected data, not all of its records
should be universally accessible. Specifically, DW/OLAP
systems almost always house confidential and sensitive data
— identification information, medical data or even religious
beliefs or ideologies — that must, by definition, be restricted
to authorized users. As a result, various pieces of legislation
designed to protect individual privacy have been proposed.
One can consider, for example, the United States HIPAA-
Health Insurance Portability and Accountability Act, which

Todd Eavis
Department of Computer Science
Concordia University
Montreal, Canada
Email: eavis@cs.concordia.ca

regulates the privacy of personal health care information,
the GLBA (Gramm-Leach-Bliley Act, also known as the
Financial Modernization Act), the Sarbanes-Oxley Act, and
the EU’s Safe Harbour Law. These laws usually require strict
technical security measures for guaranteeing privacy, with a
failure to comply possibly leading to significant penalties.
In this context, organizations must be able to guarantee the
correct administration, security and confidentiality of the
information they collect and store.

The administrator of the warehouse is ultimately re-
sponsible for defining roles and privileges for each of the
possible end users. In fact, a number of general warehouse
security models have been proposed in the literature. Several
authors define frameworks that are likely too restrictive for
production warehouses. For example, security models have
been based upon the notion of user-specific authorization
views that allow access only to selected data. However,
the administration of these views becomes quite complex
when a security policy is added, changed, or removed.
Moreover, complex roles can be difficult to implement in
practice, and models of this type tend not to scale well
with a large number of users. Conversely, other researchers
have focused on the design process itself, including the
use of Unified Modeling Language (UML) profiles for the
definition of security constraints. Here, however, the phys-
ical implementation of the underlying authorization system
remains undefined.

In a recent paper, we presented an authorization model
for OLAP environments that is based on a query rewriting
technique [1]. The model enforces distinct data security poli-
cies that, in turn, may be associated with user populations of
arbitrary size. In short, our framework rewrites queries con-
taining unauthorized data access to ensure that the user only
receives the data that he/she is authorized to see. Rewriting
is accomplished by adding or changing specific conditions
within the query according to a set of concise but robust
transformation rules. Because our methods specifically target
the OLAP domain, the query rules are directly associated
with the conceptual properties and elements of the OLAP
data model itself. A primary advantage of this approach is
that by manipulating the conceptual data model, we are able
to apply query restrictions not only on direct access to OLAP

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

94

elements, but also on certain forms of indirect access.

In the current paper, we expand upon the original work
in two ways. First, we discuss the data structures and
algorithms utilized by the functions that manipulate the
hierarchical elements of the conceptual data model. The
performance of the transformation process is closely asso-
ciated with these mechanisms. To underscore the practical
viability of the proposed methods, we have also added an
experimental section that highlights the processing overhead
relative to the execution costs of the underlying query. In
addition to these core enhancements, we update the paper
with a deeper treatment of the internal representation of the
intermediate query, as well as a broader discussion of the
work related to this research domain. Finally, an appendix
has been included in order to provide the reader with a clear
description of the query test cases.

The paper is organized as follows. In Section II, we
present an overview of related work. Section III describes the
core OLAP data model and associated algebra, and includes
a discussion of the object-oriented query structure for which
the proposed security model has been designed. The OLAP
query rewriting model and its associated transformation
rules, including the extended section on query representation
and hierarchy processing, are then presented in detail in
Section IV. Experimental results are discussed in Section V,
with final conclusions offered in Section VI.

II. RELATED WORK

The need for strong security mechanisms has long been
recognized in the context of relational database management
systems. A variety of Access Control techniques have in
fact been proposed to restrict access to the appropriate
authorized users. Each such technique aims to limit users
and/or processes to performing only those table or column
operations (i.e., read, write, or execute) for which they are
actually authorized. The relevant control then either allows
or disallows the execution of the specific operation to be
performed.

During the early stages of database security research, the
primary focus was on Discretionary Access Controls (DACs)
[2]. The basic form of DAC authorization consists of a
triple (s, o, a), such that a set of security subjects s can
execute actions a on a set of security objects o. The earliest
DAC model was the Access Matrix, whereby authorization is
represented in an |s |*|o | matrix in which rows are subjects,
columns are objects and the mapping of subject and object
pairs results in the set of rights the subject s has over the
object 0. A primary benefit associated with the use of a DAC
is that it can be implemented relatively easily. However,
in practice, large organizations give rise to extremely large
access matrices. Maintaining matrix contents can be difficult
as the matrix needs to be updated with each update to the
subjects (e.g., addition of users) or objects (e.g., addition of
columns).

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

In the 1980’s the focus moved to Mandatory Access
Controls (MACs) [3]. The most common form of MAC is the
multilevel security policy, which secures data by assigning
security labels to subjects and objects, and subsequently
compares these labels to the level of sensitivity at which
a user is operating. The access controls in MACs restrict
subjects from accessing information labeled with a higher
level. In other words, a user can access the data in his/her
security level or in a lower security level(s) but not in a
higher level(s). MAC is relatively straightforward from a
design perspective and is considered a good model either
for systems in which confidentiality is a primary access
control concern, or in which the objects being protected
are valuable. That being said, MAC systems can also be
expensive to implement due to the necessity for applications
to be rewritten to adhere to MAC labels and properties. Also,
MAC:s do not provide each user with a distinct authorization
context (i.e., access to only their own data address), nor fine-
grained least privilege mechanisms.

An alternative approach was introduced in the 1990’s [4].
This new model is known as Role Based Access Control
(RBAC). RBAC consists of roles, permissions, and users.
Roles are created for various job functions, with permissions
for specific operations then assigned to these roles. Users
are assigned particular roles, and through those role assign-
ments acquire permissions to perform particular operations.
The consolidation of access control for many users into a
single role entry allows for much easier management of
the overall system and much more effective verification of
security policies. However, in large systems, role inheritance
— and the need for finer-grained customized privileges—
makes administration potentially unwieldy. Additionally, it
is inappropriate for multi-dimensional data modeling due to
the fact that it is based on relational concepts (i.e., tables,
columns, rows, and cells), and thus, cannot be implemented
directly on top of the multi-dimensional model.

In contrast to the Access Control paradigm, a number of
security models that restrict data warehouse access have also
been proposed in the literature, including those that focus
strictly on the design process. Extensions to the Unified
Modeling Language to allow for the specification of multi-
dimensional security constraints has been one approach that
has been suggested [5]. In fact, a number of researchers have
looked at similar techniques for setting access constraints at
an early stage in the OLAP design process [6], [7]. Others
have developed security requirements for the entire Data
Warehouse life cycle [8]-[10]. In this case, they first propose
a model (agent-goal-decision-information) to support the
early and late requirements for the development of DWs,
then extend that model to capture security aspects in order
to prevent illegitimate attempts to access the warehouse.
Such models have great value of course, particularly if one
has the option to create the warehouse from scratch. That
being said, their focus is not on authorization algorithms

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

95

per se, but rather on design methodologies that would most
effectively use existing technologies, including the Model
Driven Architecture (MDA) and the standard Software Pro-
cess Engineering Metamodel Specification (SPEM) from the
Object Management Group (OMG).

In terms of true authorization models, several researchers
have attempted to augment the core Database Management
System (DBMS) with authorizations views [11]-[13]. Typ-
ically, alternate views of data are defined for each distinct
user or user group. A query Q is inferred to be authorized if
there is an equivalent query Q’ which uses only authorized
views. The end result is often the generation of a large
number of such views, all of which must be maintained
manually by the system administrator. Clearly, this approach
does not scale terribly well, and would be impractical in a
huge, complex DW environment.

Query rewriting has also been explored in DBMS envi-
ronments in a variety of ways, with search and optimization
being common targets [14]. Beyond that, however, rewrit-
ing has also been utilized to provide fine grained access
control in Relational databases [15]. Oracle’s Virtual Private
Database (VPD) [16], for example, limits access to row level
data by appending a predicate clause to the user’s SQL
statement. Here, the security policy is encoded as policy
functions defined for each table. These functions are used
to return the predicate, which is then appended to the query.
This process is done in a manner that is entirely transparent
to the user. That is, whenever a user accesses a table that
has a security policy, the policy function returns a predicate,
which is appended to the user’s query before it is executed.

In the Truman model [15], on the other hand, the database
administrator defines a parameterized authorization view
for each relation in the database. Note that parameterized
views are normal views augmented with session-specific
information, such as the user-id, location, or time. The query
is modified transparently by substituting each relation in the
query by the corresponding parameterized view to make sure
that the user does not get to see anything more than his/her
own view of the database. In this model, the user can also
write queries on base relations by plugging in the values
of session parameters such as user-id or time before the
modified query is executed.

We note, however, that the mechanisms discussed above
(e.g., Oracle’s VPD) are not tailored specifically to the
OLAP domain and, as such, either have limited ability to
provide fine grained control of the elements in the conceptual
OLAP data model or, at the very least, would make such
constraints exceedingly tedious to define. Some commercial
tools, such as Microsoft’s Analysis Services [17], do in fact
provide some support for OLAP-level security specification.
Here, however, there is virtually no formal basis for the
application of authorization logic and little can be said about
the actual scope or limitations of the relevant subsystems.
This is in contrast to the work discussed in this paper, where

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

March

January
mQ21 | 14| 3 | 77 | 99
Store {
{ Montreal

MQ15 2 | 23|78 |22
Quebec

S
Laval 4—LQss | 87 [33| 5 |47 N
Measure
(Sales)

Canada

Alberta «— Calgary «— CA69 | 90 | 22 | 53 | 75

Country > D »
VWV
NN
Province

Indoor Outdoor

-

Furniture

Product_number

(_store_number] |__Product_| Product Hierarchy

Store Hierarchy

Figure 1. A simple three dimensional data cube

the primary contribution is a query rewriting technique
that not only transparently supports indirect authorization,
but does so on the basis of an explicit policy/rule model.
Moreover, the mechanisms are not tightly connected to a
specific DBMS product but can be applied to virtually any
standard data management system.

III. THE CONCEPTUAL DATA MODEL

We consider analytical environments to consist of one
or more data cubes. Each cube is composed of a series
of d dimensions — sometimes called feature attributes —
and one or more measures [18]. The dimensions can be
visualized as delimiting a d-dimensional hyper-cube, with
each axis identifying the members of the parent dimension
(e.g., the days of the year). Cell values, in turn, represent the
aggregated measure (e.g., sum) of the associated members.
Figure 1 provides an illustration of a very simple three
dimensional cube on Store, Time and Product. Here,
each unique combination of dimension members represents
a unique aggregation on the measure. For example, we can
see that Product OD923 was purchased 78 times at Store
MQI5 in January (assuming a Count measure).

Note, as well, that each dimension is associated with
a distinct aggregation hierarchy. Stores, for instance, are
organized in Country — Province — City groupings.
Referring again to Figure 1, we see that Product Number
is the lowest or base level in the Product dimension. In
practice, data is physically stored at the base level so as
to support run-time aggregation to coarser hierarchy levels.
Moreover, the attributes of each dimension are partially
ordered by the dependency relation =< into a dependency
lattice [19]. For example, Product Number =< Type =
Category within the Product dimension. More formally,
the dependency lattice is expressed in Definition 1.

Definition 1: A dimension hierarchy H; of a dimension
D;, can be defined as H; = (Lo, L1,...,L;) where Lg is
the lowest level and L; is the highest. There is a functional

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

96

dependency between Ljp_1 and Ly such that Lp,_; <X Lp
where (0 < h < j).

Finally, we note that there are in fact many variations on
the form of OLAP hierarchies [20] (e.g., symmetric, ragged,
non-strict). Regardless of the form, however, traversal of
these aggregation paths — typically referred to as rollup
and drill down — is perhaps the single most common query
form. It is also central to the techniques discussed in this

paper.
A. Native Language Object Oriented OLAP Queries

The cube representation, as described above, is common
to most OLAP query environments and represents the user’s
conceptual view of the data repository. That being said, it
can be difficult to implement the data cube using standard
relational tables alone and, even when this is possible, per-
formance is usually sub-par as relational DBMSs have been
optimized for transactional processing. As a result, most
OLAP server products either extend conventional relational
DBMSs or build on novel, domain specific indexes and
algorithms.

In our own case, the authorization methods described in
this paper are part of a larger project whose focus is to
design, implement and optimize an OLAP-specific DBMS
server. A key design target of this project is the integration
of the conceptual cube model into the DBMS itself. This
objective is accomplished, in part, by the introduction of
an OLAP-specific algebra that identifies the core operations
associated with the cube (SELECT, PROJECT, DRILL DOWN,
RoLL Up, etc). In turn, these operations are accessible to the
client side programmer by virtue of an Object Oriented API
in which the elements of the cube (e.g., cells, dimensions,
hierarchies) are represented in the native client language as
simple OOP constructs. (We note that our prototype API
uses Java but any contemporary OO language could be
used). To the programmer, the cube and all of its data —
which is physically stored on a remote server and may be
Gigabytes or Terabytes in size — appears to be nothing
more than a local in-memory object. At compile time, a
fully compliant Java pre-parser examines the source code,
creates a parse tree, identifies the relevant OLAP objects,
and re-writes the original source code to include a native
DBMS representation of the query. At run-time, the pre-
compiled queries are transparently delivered to the back
end analytics server for processing. Results are returned and
encapsulated within a proxy object that is exposed to the
client programmer.

As a concrete example, Listing 1 illustrates a simple SQL
query that summarizes the total sales of Quebec’s stores
in 2011 for the data cube depicted in Figure 1. Typically,
this query would be embedded within the application source
code (e.g., wrapped in a JDBC call). Conversely, Listing 2
shows how this same query could be written in an Object-
Oriented manner by a client-side Java programmer. Note

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

Select Store.province , SUM(sales)

From Store, Time, Sales

Where Store.store_ID = Sales.store_ID AND
Time. time_ID = Sales.time_ID AND
Time.year = 2011 AND

Store . province = ’Quebec’

Group by Store.province

Listing 1. Simple SQL OLAP Query

Class SimpleQuery extends OLAPQuery{
Public boolean select (){

Store store = new Store () ;
DateDimension time = new TimeDimension () ;
return (time.getYear() == 2011 &&

store . getProvince () == ’“Quebec’);

}
Public Object[] project (){
Store store = new Store () ;
Measure measure = new Measure () ;
Object[] projections = {
store . getProvince (),
measure . getSales () };
return projections;

13

Listing 2. An Object Oriented OLAP Query

that each algebraic operation is encapsulated within its own
method (in this case, SELECT and PROJECT), while the
logic of the operation is consolidated within the return
statement. It is the job of the pre-parser to identify the
relevant query methods and then extract and re-write the
logic of the return statement(s). Again, it is important
to understand that the original source code will never be
executed directly. Instead, it is translated into the native
operations of the OLAP algebra and sent to the server at
run-time.

While it is outside the scope of this paper to discuss the
motivation for native language OLAP programming (a de-
tailed presentation can be found in a recent submission [21]),
we note that such an approach not only simplifies the
programming model, but adds compile time type checking,
robust re-factoring, and OOP functionality such as query
inheritance and polymorphism. Moreover, query optimiza-
tion is considerably easier on the backed as the DBMS
natively understands the OLAP operations sent from the
client side. In the context of the current paper, however,
the significance of the query transformation process is that
the authorization elements (e.g. roles and permissions) will
be directly associated with the operations of the algebra. In
fact, it is this algebraic representation that forms the input
to the authorization module presented in the remainder of
the paper.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

97

Users
userlD
userName
userPassword
OpPermissions Role 4Ac§ess;
rolelD oleld | userlD
oplD roleName | _(k rolelD
Operation roleDescription SstartTime
endTime
ObjPermissions dbObject CubeObject
rolelD dblD L dbiD
dblD dbName cubelD
cubelD I cubeName
dimID il
attib A
oplD AttributeObject DimObject
valuel dimID cubelD
value2 attin po—H dimiD
attType dimName
attName dimLink
Figure 2. The Authorization DB.

IV. AUTHENTICATION AND AUTHORIZATION

Without sufficient security countermeasures, open access
to the OLAP repository becomes a powerful tool in the
hands of malicious or unethical users. Access Control is the
process that restricts unauthorized users from compromising
protected data. This process can be thought of as occurring
in two basic phases: Authentication and Authorization.
Authentication is a form of identity verification that attempts
to determine whether or not a user has valid credentials to
access the system. In contrast, Authorization refers to the
process of determining if the user has permission to access
a specific data resource. In this section, we will describe our
general framework, giving a detailed description of its two
primary components and the relationship between them.

A. The Authentication Module

The authentication component is responsible for verifying
user credentials against a list of valid accounts. These ac-
counts are provided by the system administrator and are kept
— along with their constituent permissions — in a backend
database (i.e., the Authorization DB). The Authorization DB
consists of a set of tables (users, permissions, and
objects) that collectively represent the meta data required
to authenticate and authorize the current user. For example,
the users table stores basic user credentials (e.g., name,
password), while the permissions table records the fact
that a given user(s) may or may not access certain controlled
objects. Figure 2 illustrates a slightly simplified version
of the Authorization DB schema. In the current prototype,
storage and access to the Authorization DB is provided by
the SQLite toolkit [22]. SQLite is a small, open source C
language library that is ideally suited to tasks that require
basic relational query facilities to be embedded within a
larger software stack.

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

<?xml version='1.0' encoding="UTF-8'?>

<DOCTYPE QUERY SYSTEM "ClientQuery.dtd" []>

<QUERY><DATA_QUERY>
<CUBE_NAME>Furniture Sales</CUBE_NAME>

<OPERATION_LIST>
<OPERATION><PROJECTION>
<MEASURE_LIST><MEASURE>Sales</MEASURE></MEASURE_LIST>
<ATTRIBUTE_LIST>
<PROJECTION_DIMENSION><DIMENSION_NAME>Store</DIMENSION_NAME>
<ATTRIBUTE>Province</ATTRIBUTE>
<OPERATION> <SELECTION>
<DIMENSION_LIST><COMPOUND_DIMENSION> <DIMENSION_LIST>
<DIMENSION><DIMENSION_NAME>Store</DIMENSION_NAME>
<EXPRESSION><RELATIONAL_EXP><BASIC_EXP><SIMPLE_EXP><EXP_VALUE>
<ATTRIBUTE>Province</ATTRIBUTE></EXP_VALUE></SIMPLE_EXP>
<COND_OP><RELATIONAL_OP>EQUALS</RELATIONAL_OP></COND_OP>
<SIMPLE_EXP><EXP_VALUE><CONSTANT>Quebec</CONSTANT>
<LOGICAL_OP>AND</LOGICAL_OP>
<DIMENSION><DIMENSION_NAME>Time</DIMENSION_NAME>
<EXPRESSION><RELATIONAL_EXP><BASIC_EXP><SIMPLE_EXP><EXP_VALUE>
<ATTRIBUTE>Year</ATTRIBUTE></EXP_VALUE></SIMPLE_EXP>
<COND_OP><RELATIONAL_OP>EQUALS</RELATIONAL_OP></COND_OP>
<SIMPLE_EXP><EXP_VALUE><CONSTANT>2011</CONSTANT>
</OPERATION_LIST>
<USER_CREDENTIALS>
<USER_NAME>John</USER_NAME>
<PASSWORD>J86mn</PASSWORD>
</USER_CREDENTIALS>
</QUERY>

Figure 3. An XML query segment.

Internally, the user’s transformed OLAP query is rep-
resented in XML format (embedded within the re-written
source code). To validate the received XML query, the
system relies on a Document Type Declaration (DTD)
grammar [23] that is used to describe the structure of the
expected XML query (We note that the somewhat more
expressive XMLSchema can also be used for this purpose).
The grammar itself is quite large but, ultimately, its purpose
is to represent the functionality of the analytics queries
one would expect to see in a Business Intelligence context.
Figure 3 shows an XML-encoded segment of the query
depicted in Listing 2. With a little effort one can see how
the “total sales in 2011 for Quebec stores” is captured by
the sequence of nested XML

The user query itself can be divided into three main
parts: CUBE NAME, OPERATION LIST, and USER CRE-
DENTIALS. As one would expect, the CUBE NAME ele-
ment simply indicates the cube from which data is to be
retrieved (the DBMS would likely store multiple cubes).
The OPERATION LIST element contains one or more OP-
ERATION elements, with PROJECTION and SELECTION
being by far the most common (other analytics operations in-
clude CHANGE LEVEL, CHANGE BASE, PIVOT, DRILL
ACROSS, UNION, DIFFERENCE, and INTERSECTION).
In short, the PROJECTION element lists all attributes and
measures the user wants to retrieve (e.g., Store.Province, and
SUM(Sales)). The SELECTION element, in turn, limits or
filters the data fetched from the data cube. Each SELEC-
TION element consists of one or more criteria combined by

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

98

Data Query

|
v v ! v

Cube Name

; ; I J]
l v v v v v ¥
Furniture

_ Sales

Selection Condition User Credentials

User Name Password

R

Year = 2010 John J86mn

Measure | Customer Customer Time

Province =
_‘Quebec’

Sales Province

Figure 4. A small Parse Tree fragment.

a LOGICAL OP element (e.g., Store.Province = ’Quebec’
AND Time.Year = 2011). Finally, the USER CREDEN-
TIALS element, as the name indicates, contains the user’s
authentication identifiers (i.e., the user name and password).

Of course, in order to properly authenticate the query,
it must first be parsed and decomposed into its algebraic
components. In fact, the parsing is done in two phases. First,
the DOM parser utility is used to produce a DOM tree that
represents the raw contents of the XML document. In this
phase, the parser not only builds the tree but also verifies
that the received query has valid syntax corresponding to
the DTD query grammar. An XML document is considered
as valid if it contains only those elements defined in the
DTD. If the query is syntactically valid, the query proceeds
to the second phase. Otherwise, a parsing error message is
returned to the user.

Figure 4 shows the node tree corresponding to the query
depicted in Figure 3. We can easily see that the content of
this parse tree is equivalent to the OLAP query represented
in the XML format. Specifically, it is executed against the
cube Furniture Sales and consists of two OLAP operations
(Projection and Selection). The projection operation returns
the dimension attribute Customer.Province, as well as one
measure attribute — Sales. The Selection operation filters
the returned information via two conditions on the dimen-
sions Customer (i.e., Province = Quebec) and Time (Year
= 2010). The user name “John” and the password “J86mn”
represent the user credentials.

In the second phase of the process, the DOM tree is
converted into a simplified data structure. This “Query
Object” is cached in memory and contains all the query
elements (i.e., returned attributes, query conditions along
with its dimensions and attributes, and user credentials).
The purpose of this final conversion process is to transform
the user query into a simple, minimal data structure that
represents the query in a compact but expressive form.

Once the parsing is completed, the Authentication module
extracts the user credentials to verify them against a valid
account stored in the Authorization DB. If the verification
is successful, the DBMS proceeds with the authorization
process. Otherwise, the query is rejected and the user/pro-

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

——— NotAuthenticated User

P

Authentication Module

User
Authenticator

Query
Object

i BitMap ;
Hierarchy
Manager

Query Parser

DOM Query
Utilities DTD

Backend DB

XML Query

User Side

P

SQLite
Utilities

1

Authorization

e |

User
Authorizer

S

Query
Rewriter

Modified
Query

-—

Not Authorized User

Figure 5. Authentication and Authorization.

grammer is notified. The upper part of Figure 5 depicts the
processing logic of the Authentication module. As a final
note, we add that the prototype for the authentication and
authorization modules has been designed as a third party
component that can interact with existing DBMS products.
As such, it does not maintain connection-oriented session
data and thus requires authentication information to be
provided for each query. That being said, this has a very
limited impact on performance as the bulk of the processing
logic is associated with the authorization module, which
must assess user privileges on a query by query basis.

B. The Authorization Module

The second — and more significant — phase is autho-
rization, the process of determining if the user has permis-
sion to access specific data elements. Specifically, when a
user requests access to a particular resource, the request
is validated against the permitted resource list assigned to
that user in the backend database. If the requested resource
produces a valid match, the user request is allowed to
execute as originally written. Otherwise, the query will
either be rejected outright or modified according to a set
of flexible transformation rules. To decide if the query will
be modified or not, we rely on a set of authorization objects
against which the rules will be applied. The rules themselves
will be discussed in Section IV-E. The lower portion of

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

99

Figure 5 graphically illustrates the Authorization module and
indicates its interaction with the Authentication component.

C. Specifying Authorization Objects

Authorization is the granting of a right or privilege that
enables a subject (e.g., users or user groups) to execute an
action on an object. In order to make authorization decisions,
we must first define the authorization objects. Note that the
objects in the OLAP domain are different from those in
the relational context. In a relational model, objects include
logical elements such as tables, records within those tables,
and fields within each record. In contrast, OLAP objects
are elements of the more abstract conceptual model and
include the dimensions of the multi-dimensional cube, the
hierarchies within each dimension, and the aggregated cells
(or facts). In practice, this changes the logic or focus of the
authorization algorithm. For instance, a user in a relational
environment may be allowed direct access to a specific
record (or field in that record), while an OLAP user may be
given permission to dynamically aggregate measure values
at/to a certain level of detail in one or dimension hierarchies.
Anything below this level of granularity would be considered
too sensitive, and hence should be protected. In fact, the
existence of aggregation hierarchies is perhaps the most
important single distinction between the authorization logic
of the OLAP domain versus that of the relational world.

We note that in the discussion that follows, we assume
an open world policy, where only prohibitions are specified.
In other words, permissions are implied by the absence of
any explicit prohibition. We use the open world approach for
the simple reason that, in contrast to the users in operational
database settings, OLAP users are typically drawn from a
relatively small pool of enterprise decision makers. As such,
these more senior employees generally require broad access
to data. It therefore makes sense to use an open world
policy that defines a relatively small set of constraints, rather
than a closed world approach that would require extensive
“positive” privileges to be defined. That being said, there is
no theoretical barrier to the use of a closed world strategy.

Before discussing the authorization rules themselves, we
first look at a pair of examples that illustrate the importance
of proper authorization services in the OLAP domain. We
begin with the definition of a policy for accessing a specific
aggregation level in a data cube dimension hierarchy.

Example 1: An employee, Alice, is working in the Mon-
treal store associated with the cube of Figure 1. The policy
is simple: Alice should not know the sales totals of the
individual provinces.

Clearly, Alice is prohibited from reading or aggregating
data at the provincial level in the Store dimension hierarchy.
However, in the absence of any further restrictions, it would
still be possible for her to compute the restricted values from
the lower hierarchies levels (e.g., City or Store_Number).

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

Country Canada

Province Quebec Ontario
Below(Province) City Under(Quebec) Montreal Laval l
Customer Number Ma21 MQ51 LQs8

(a) The Below Function (b) The Under Function

Figure 6. The Below and Under functions.

Ideally, the warehouse administrator should not be respon-
sible for identifying and manually ensuring that all implied
levels be included in the policy. Instead, our model assumes
this responsibility and can, if necessary, restrict access to
all child levels through the use of the Below function. As
the name implies, this function returns a list consisting
of the specified level L; and all the lower levels of the
associated dimension hierarchy. Figure 6(a) illustrates an
example using a Below(Province) instantiation. Here, all
levels surrounded by the dashed line are considered to be
Authorization Objects, and thus should be protected. The
formalization of the Below function is given by Definition 2.

Definition 2: In any dimension D; with hierarchy H;, the
function Below(L;) is defined as Below(L;) = {L; : such
that L; <X L; holds}, where L; is the prohibited dimension
level.

As shown in Example 1, a policy may restrict the user
from accessing any of the values of a given level or
levels. However, there are times when this approach is too
coarse. Instead, we would like to also have a less restrictive
mechanism that would only prevent the user from accessing
a specific value within a level(s). For instance, suppose we
want to alter the policy in Example 1 to make it more
specific. The new policy might look like the following:

Example 2: Alice should not know the sales total for the
province of Quebec.

In Example 2, we see that Alice may view sales totals
for all provinces other than Quebec. However, Alice can
still compute the Quebec sales by summing the sales of
individual Quebec cities, or by summing the sales of Que-
bec’s many stores. In other words, she can use the values
of the lower levels to compute the prohibited value. Hence,
all these values should also be protected. To determine the
list of restricted member values, our model adds the Under
function, which is formalized in Definition 3. Figure 6 (b)
provides an example using Under(Quebec). Here, all the
values surrounded by the dashed line should be protected.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

100

Quebec Ontario

roTT T T * ______ Y l

| |

| |
Exception | |

| l_l_l L

| |

| |

| |

| |

Figure 7. An Authorization Exception.

Definition 3: For any dimension hierarchy level L;, and
any attribute value V;, the function Under(L;, V;) is defined
as Under(L;, V;) = {V; : such that V; < V; holds}, where
L; is the prohibited dimension level and V' is the root value
of the restriction.

Finally, it is also possible that exceptions to the general
authorization rule are required. For instance, Alice should
not know the sales of stores in the province of Quebec except
for the stores in the city/region she manages (e.g., Montreal).
Figure 7 graphically illustrates this policy. In this case, the
circled members represent the values associated with the
exception that would, in turn, be contained within a larger
encapsulating restriction. Note that a user may have one or
more exceptions on a given hierarchy. The formalization of
the exception object is given in in Definition 4.

Definition 4: For any prohibited level L;, there may be
an Exception E such that E contains a set Ev of values
belonging to Under(L;). That is, Ev € values of Under(L;).

To summarize, authorization objects consist of the values
of the prohibited level and all the levels below it, excluding
zero or more exception value(s). We formalize the concept
of the Authorization Object in Definition 5.

Definition 5: An Authorization Object O = {v : v €
Under(L;) - Ev}, where L; is the prohibited level, and Ev
is the exception value.

D. Implementing Below and Under Functions

To efficiently implement Below and Under functions, a
number of additional algorithms and data structures are
needed in order to manipulate dimension hierarchies and to
retrieve attribute values. These structures are initialized once
the server receives a query and are subsequently exploited
by the DBMS engine during query resolution. Below, we
describe the core structures, along with the methods required
to implement the associated functions efficiently.

1) Implementation of the Below Function: We begin by
giving a brief description of the primary data structures
utilized during function execution. The mapGraph is a suite

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

The most detailed

values ‘L

Encoded value Store Number City Province Country
1 20 Timmins Ontario Canada
2 12 Timmins Ontario Canada
3 30 Montreal Quebec Canada
4 22 Montreal Quebec Canada
5 23 Montreal Quebec Canada
6 18 Mentreal Quebec Canada
7 50 Laval Quebec Canada
Z:io'gzzly;llsﬁe — 1 5 s 31 Laval Quebec | Canada
9 40 Sherbrook Quebec Canada
10 41 Sherbrook Quebec Canada
11 55 Sherbrook Quebec Canada

12 35 Anchorage Alaska USA

13 11 Anchorage Alaska USA

14 44 Anchorage Alaska USA

(a)

[Attribute (Store_Number)]

| Level 1 (city) City MapGraph
2 Timmins
6 Montreal

The maximum > 8 Laval
ded val
encodedvalue 11 Sherbrook

14 Anchorage

Level 2 (province) Province MapGraph
2 Ontario
11 Quebec

14 Alaska

Level 3 (Country) Country MapGraph

(b)

Figure 8. (a) The sorted data of the Store Dimension Table, (b) The
corresponding mapGraph.

of algorithms and data structures for the manipulation of at-
tribute hierarchies in “real time” [24]. mapGraph builds upon
the notion of hierarchy linearity [25]. Briefly, a hierarchy is
considered linear if there is a contiguous range of values
R; on dimension attribute A; that may be aggregated into a
contiguous range R;. Informally, this implies that the totals
for a range of values within a child aggregation level are
equivalent to those of some range of values at the parent
level. As a concrete example, the combined sales totals
for the individual months of January, February, and March
would be exactly equivalent to those of the first quarter
of the calendar year. To establish the linearity of each
dimension hierarchy a sorting technique is employed, with
data subsequently stored at the finest level of granularity.
If a Time hierarchy is present, for instance, transactional
data would be stored at the Day level rather than at the Year
level. A compact, in-memory lookup structure is then used to
support efficient real time transformations between arbitrary
levels of the dimension hierarchy. For example, Figure 8(a)

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Select Product.Name,
Sum(sales)
From Product, Store, Sales
Where Product.product_ID = Sales.product_ID
AND Store.store_ID = Sales.store_ID AND
Store . Contry = ’“Canada’ AND
(Product .Name = °LNx’ AND
Product. price >= 24000)
Group by Product.Name, Store.province
Order by Product.Name, Store.province

Store . province ,

Listing 3. Simple SQL OLAP Query

depicts the sorted data of the Store dimension table for the
data cube depicted in Figure 1, while Figure 8(b) illustrates
the corresponding mapGraph for the Store dimension hier-
archy.

Each record in the mapGraph consists of two values — a
native attribute representation (e.g., values of attribute Type
in the Store dimension) and an integer value that represents
the corresponding maximum encoded value in the primary
attribute. We will look at a concrete example. While the
city of Timmins has two stores, Store 1 and Store 2, the
city of Montreal has four stores, Store 3 through Store 6.
Using this structure, one can easily, and efficiently, perform
a mapping from the most detailed encoded level value (i.e.,
Store_Number) to the corresponding sub-attribute value (i.e.,
attribute level values), and vice versa. For instance, Store 13
is located in the city of Anchorage and, as a consequence, in
the State of Alaska in the USA (Alaska and the USA have
a maximum Store_Number = 14).

While a number of commercial products and several
research papers do support hierarchical processing for simple
hierarchies, specifically those that can be represented as a
balanced tree, mapGraph is unique in that it can enforce
linearity on unbalanced hierarchies (i.e., optional nodes), as
well as hierarchies defined by many-to-many parent/child
relationships. The end result is that users may intuitively
manipulate complex cubes at arbitrary granularity levels and
can navigate easily through dimension levels.

Now recall the policy in Example 1. Suppose that Alice
sent the query in Listing 3, which summarizes the total sales
of stores in Canada for products of price 24K or more, and
whose names start with “LN”. To define the authorization
objects, the Below function is invoked, taking the prohibited
level (i.e., Store.Province) as an argument and using the
mapGraph to retrieve a list consisting of the specified
level and all the lower levels of the associated dimension
hierarchy (i.e., Province, City, and Store Number). Clearly,
the prohibited level is in the returned list, and as a result the
query should be rejected.

2) Implementation of the Under Function: The Under
function is invoked when the policy is less restrictive, as
is the case in Example 2. Suppose that Alice now resends
the query in Listing 3, assuming this less restrictive policy.

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

Product Price Product Name

12k | 25 | 32k | 33 [N221 | LN426 | 0D923 | 0D258
Produt 70 0 | 1 | o 1 1] o 0 0
Number 570 1 [0 | 0 2| o 1 0 0
301000 3] 0 0 1 0
NEREERERE 4] o0 0 0 1

(a) bitMap of Product Price (b) bitMap of Product Name

Products {1,2} .

0 haveName:LN* n Product 2 is the
1 —_ 4inﬁrsection.
1 AND (0] =0]

1 o] [o]

The bitMap of Product Price and Product Name.

Products {2,3,4}
have price >= 24K

Figure 9.

To answer or reject the query, we have to determine if the
user has requested access to the authorization objects. We
note that the user query has two dimension conditions, the
first on Product (Product.Name = ‘LN*’ AND Product.price
> 24000) and the second on Store (i.e., Store.Country =
‘Canada’). The first condition will be ignored, since there
is no restriction on the Product dimension in the current
policy. For the second condition, we need to determine if the
province of Quebec is in Canada (i.e., if Quebec is Under
Canada). If so, we can say that the user has attempted to
access a restricted data element and, as a consequence, the
query should be rejected. By using the Under function, we
retrieve the encoded values of Canada and Quebec from the
mapGraph structure. If there is an intersection between the
two, we know that Quebec is Under Canada. In our example,
Canada has stores encoded with identifiers 1 through 11, and
Quebec has stores encoded as 3 through 11. Clearly, there
is an intersection between them, which means that the user
has requested access to restricted data.

Definition 6: If there 1is an intersection between
Under(L;) values — where L; is the prohibited level —
and Under(E;) values — where E; is the requested level
— then the query should not be executed directly.

As noted, the mapGraph is very useful when hierarchical
attribute levels are involved in the OLAP query. However, in
some cases, it is a non-hierarchical attribute that is restricted
(e.g., the Name or Price attributes of Product). In this case,
the FastBit [26] bitmap index structure allows us to easily
find those records that contain specific values on a given
attribute in the dimension. For example, suppose the Product
dimension has four records (i.e., four products), numbered
1 through 4, and a non-hierarchy attribute (Product Price) is
added to the Product dimension attributes. The bitmap index
for the Product Price attribute is illustrated in Figure 9(a),
while Figure 9(b) illustrates the bitmap index for the Product
Name. Each index consists of four bit strings (number of
products), each of length four. In each string, the 1’s indicate
the encoded values for the primary key.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

102

Selection :

Product.Name, Store.province, Sum(sales)
Condition :

Store . Province = ’Quebec’ AND

(Product .Name = ’LNx’ AND

Product. price >= 24000)
From :
Sales

Listing 4. A Query in Simple Form

Now, suppose that Alice is restricted from accessing all
products whose names start with “LN”. Further, we will
assume that she resends the query in Listing 3. Since the
Product Price and the Product Name are non-hierarchical
attributes, we use their bitmap indexes to retrieve the base
level numbers for those products, and then determine if there
is an intersection between the two. Figure 9 illustrates how to
identify those products whose Name starts with “LN” AND
whose price > 24K. The array at the lower left represents
the products of price > 24K, in this case Products 2, 3,
and 4. The array in the center represents the products with
names starting with “LN”. Products 1 and 2 are identified
in this case. The AND operator determines the intersection
between them, with the final result shown in the last array.
As we can see, there is in fact a non-empty intersection (i.e.,
Product_Number 2 has a price > 24K and a name starts with
“LN”); thus, the query should be rejected.

Algorithm 1 summarizes the logic of the checking pro-
cess. In short, we determine if the attributes within the selec-
tion predicate(s) are hierarchical in nature. For example, a
restriction on a time value (e.g., Day-Month-Year) would be
hierarchical in nature, while a restriction on an attribute such
as colour or weight would not be associated with any form
of hierarchy. Based upon this understanding, query values
would be analyzed relative to the information contained
in the mapGraph data structure (which stores hierarchical
relationship information) or bitmap indexes.

E. Authorization Rules

We now turn to the query authorization process itself.
As noted above, pre-compiled queries are encoded inter-
nally in XML format. For the sake of simplicity (and
space constraints), we will depict the received queries in
a more compact form in this section. For example, Listing 4
represents the same query shown in Listing 3. Note that
the query is divided into three elements: the SELECTION
element, the CONDITION element, and the FROM element.
The SELECTION element lists all attributes and measures
the user wants to retrieve. The CONDITION element, in turn,
limits or filters the data we fetch from the cube. Finally, the
FRrROM element indicates the cube from which data is to be
retrieved.

In the discussion that follows, we will assume the ex-
istence of a cube corresponding to Figure 1. That is, the

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

input : The policy condition S, and the Query Q
output: Returns True if Q is valid, False otherwise

Initialize the mapGraph (hM) and the bitMap (fB)
if they have not already been initialized;
Let QA be the query attributes;

if S has a hierarchy attribute then

| Let SR be the range of S using hM;
end
else

| Let SR be the range of S using {B;
end
foreach attribute a; in QA do

if a; is hierarchy attribute then
Get the range of a; QR using hM;
if OR N SR # () then

| Return False;
end
end
else if a; is non-hierarchy attribute then
Get the range of a; QR using fB;
if OR N SR # (then

| Return False;
end

end
end
Return True;
Algorithm 1: The procedure of Policy Class 2

cube has three dimensions (Product, Store, and Time).
Dimension hierarchies include Product_ Number < Type =<
Category for Product, Store_Number < City < Province =<
Country for Store, and Month < Year for Time. Selection
operations correspond to the identification of one or more
cells associated with some combination of hierarchy levels.

One of the advantages of building directly upon the
OLAP conceptual model and its associated algebra is that it
becomes much easier to represent, and subsequently assess,
authorization policies. Specifically, we may think of policy
analysis in terms of Restrictions, Exceptions, and Level
Values that form a bridge between the algebra and the
Authorization DB. There are in fact four primary policy
classes, as indicated in the following list:

1) L; Restriction + No Exception

2) L; Restriction 4+ Exception

3) Restriction on a specific value P of level L; 4+ no

Exception
4) Restriction on a specific value P of level L; + Excep-
tion

As mentioned, the query must be validated before execu-
tion. If validation is successful, then it can be executed as
originally specified. Otherwise, the query is either rejected
or rewritten according to a set of transformation rules. In
the remainder of this section, we describe the four policy

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

103

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

104

Selection: Selection :

Store . City , Product.Type, SUM(sales) Store . province , Product.Type, SUM(sales)
Condition : Condition :

Time.year = 2011 AND Time.year = 2011 AND

Store . Country = ’Canada’ AND Store . City = *Montreal’ AND

Product. Category = ’Furniture’ Product. Category = ’Furniture’
From: From:

Sales Sales

Listing 5. Authorization Strategy as per Rule 1 Listing 6. Authorization Strategy as per Rule 4

classes and the processing logic relevant to each.

1) Policy Class 1: L; Restriction + No Exception: If a
user is prohibited from accessing level L; and the user has
no exception(s), then the authorization objects consist of the
values of level L; and all the levels below it. In short, this
means that if the user query specifies level L; or any of its
children in the SELECTION element, then the query should
simply be rejected. Moreover, if any value belonging to the
L; level or any of its children is specified in the CONDITION
element of the query, the query should also be rejected. The
formalization of the rule and an illustrative example is given
below.

Rule 1. If a user is prohibited from accessing the values of
level L;, and there is no exception, then the Authorization
Objects (0) = {v : v € Below(L;) }.

Example 3: If Alice sends the query depicted in Listing 5,
which summarizes the total sales of Canada’s stores in 2011
for furnitures products, and she is restricted from access-
ing/reading provincial sales, the query should be rejected.

Why is this query rejected? Recall that Alice is restricted
from accessing provincial sales. Consequently, we see that
an implicitly prohibited child level (i.e., City) is a component
of the SELECTION element. So, if we allow this query, Alice
can in fact compute the provincial sales by summing the
associated city sales.

2) Policy Class 2: L; Restriction + Exception: In this
case, the authorization objects that should be protected
consist of the prohibited level value and all values below it,
except of course for the value of the exception or any value
under it. Let us first formalize this case, before proceeding
with a detailed description.

Rule 2. If a user is restricted from accessing the values of
level L;, and the user has an exception E, then the
Authorization Objects (O) = {v : v € Below(L;) -
Under(Ev) }.

As such, when a user is prohibited from accessing the L;
level — excluding the exception values — then the query
can be (i) allowed to execute, or (ii) modified before its
execution. Let’s look at these two cases now.

Rule 3. The query will be allowed to execute without
modification if the prohibited level value Lv or any of its

more granular level values in (Below(L;)) exists in the
CONDITION element AND is equal to the exception value
(Ev) or any of its implied values in (Under(Ev)).

Example 4: Suppose that we have the following policy:
Alice is restricted from accessing provincial sales except the
sales for Canadian provinces. If Alice resubmits the query
in Listing 4, it will now be executed without modification
because the prohibited value (e.g., Quebec) is under the
exception value (e.g., Under(Canada)).

But what if Alice has an exception value only for a more
detailed child level of L; (e.g., the city of Montreal)? In
this case, if Alice submits the previous query, it should now
be modified by replacing the restricted value (e.g., Quebec)
in the CONDITION element with the exception value (e.g.,
Montreal). In this example, Alice gets only the values that
she is allowed to see. The modified query is depicted in
Listing 6. Rule 4 gives the formalization of this case.

Rule 4. If the prohibited level value Lv or any of its more
granular level values (Under(Lv)) exists in the
CONDITION element, and the exception value belongs to
this set of values, then the query should be modified by
replacing the prohibited value with the exception value.

In addition to the scenario just described, the query
can also be modified by adding a new predicate to the
CONDITION element when the prohibited level or any of
its child levels exists in the SELECTION element only.

Rule 5. If the prohibited level Lv or any of its more
granular levels (Below(L;)) exists in the SELECTION
element only, then the query should be modified by adding
the exception E as a new predicate to the query.

Example 5: Suppose that Alice sends the query depicted
in Listing 7. In this case, the query will be modified by
adding a new predicate (i.e., Store.Province = ’Quebec’),
because the prohibited level (i.e., City) exists in the SELEC-
TION element. After the modification, Alice will see only the
cities of Quebec. The modified query is depicted in Listing 8.

The complete processing logic for Policy Class 2 (i.e.,
Rule 3, Rule 4, and Rule 5) is encapsulated in Algorithm 2.
Essentially, the algorithm takes the prohibited level L;
and the exception E as input and produces as output an
authorization decision to execute or modify the query. The

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

Selection:

Store . City , Product.Type, SUM(sales)
Condition :

Time.Year = 2011 AND

Product.Type = ’Indoor’
From:

Sales

Listing 7. Simple OLAP Query 2

Selection:

Store . City , Product.Type, SUM(sales)
Condition :

Time. Year = 2011 AND

Product.Type = ’Indoor’ AND
Store . Province = ’Quebec’

From:

Sales

Listing 8. Authorization Strategy as per Rule 5

process is divided into two main parts or conditions. In the
first case, we are looking at situations whereby the prohibited
level L; exists in the query CONDITION element. Here, the
query can either be allowed to execute directly or further
modified. It executes directly if the prohibited value Lv is
equal to the exception value Ev or any value under Ev.
However, if the exception value Ev is equivalent to any
value under Ly, then the query is modified by replacing the
prohibited level with the exception level AND the prohibited
level value with the exception value.

In the second case, we target the scenario whereby the
prohibited level L; exists in the SELECTION element only.
Here, we modify the original query by adding the exception
E as a new condition.

3) Policy Class 3: Restriction on a specific value P of
level L; + no Exception: We now turn to the classes in
which specific values at a given level are restricted, as
opposed to all members at a given level. We begin with
the simplest scenario.

Rule 6. If a user is prohibited from accessing a specific
value P of level L;, and the user has no exceptions, then
the Authorization Objects(O)= {v : v € P U Under(P)
where P is the prohibited value}.

Here, the prohibited value P, or some value under P,
exists in the query CONDITION element. As per Rule 6,
the query should simply be rejected. But what if L; exists
in the SELECTION element only? In this case, the query
should be modified by adding the prohibited value as a new
predicate to the query CONDITION element. Let’s look at
the following example.

Example 6: Suppose that Alice is restricted from ac-
cessing Quebec’s sales. If Alice sends the query depicted
in Listing 9, the query should be modified as shown in
Listing 10.

input : The prohibited level L; and the exception E
output: Decision to directly execute or modify

Let Ev = E value;

foreach level L; ¢ Below(L;) do

if L; exists in the query CONDITION element
then

Let Lv = L; value;

if Lv == Ev OR Lv € Under(Ev) then
Allow the query to execute without

modification;
end

else if Ev € Under(Lv) then
Replace E by L;, and Ev by Lv, then

inform the user, and allow the query to
execute;

end

end
else if L; exists only in the query SELECTION

element then
Add E as new condition to the user query,

inform the user, and allow the query to

execute;
end

end

Algorithm 2: The procedure of Policy Class 2

105

Selection :

Store . Province , SUM(sales)
Condition :

Time.year = 2011 AND

Product.Type = ’Outdoor’
From :

Sales

Listing 9. Simple OLAP Query 3

The associated query summarizes the sales of provinces
in 2011 for outdoor products. As noted, the SELECTION
element contains the prohibited level (Province), so instead
of rejecting the query we modify it by adding a new
predicate to the condition. The modified query returns only
the sales that Alice is allowed to see. The logic is formalized
in Rule 7 below.

Rule 7. If the prohibited level L; exists in the SELECTION
element only, then the query should be modified by adding
a new predicate to the query CONDITION element.

4) Policy Class 4: Restriction on a specific value P
of level L; + Exception: Finally, we add an exception
to the queries described by Class 3. Here, the relevant
authorization objects consist of the prohibited value (P),
minus the exception values.

Rule 8. If a user is restricted from accessing a value P of
level L;, and the user has an exception E, then the

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Selection :

Store . Province , SUM(sales)
Condition :

Time.year = 2011 AND

Product.Type = ’Outdoor’ AND

Store . Province != ’Quebec’
From:

Sales

Listing 10. Authorization Strategy as per Rule 7

Selection :

Store . City , Product.Type, SUM(sales)
Condition :

Store . City = *Montreal’ AND
Product.Type = ’Indoor’ AND
Time. Year = 2011

From:
Sales

Listing 11. Authorization Strategy as per Rule 9

Authorization Objects(O)= {v : v € (P U Under(P)) - (Ev
U Under(Ev))} where P is the prohibited value and E is
the exception.

In this scenario, the query can either be allowed to execute
or modified according to the following associated rules.

Rule 9. The query will be allowed to execute, if the
prohibited value Lv exists in the CONDITION element AND
is equal to the exception value Ev or any value Under(Ev).

Example 7: Suppose that Alice is restricted from access-
ing the sales of Canadian provinces, except for the sales of
Quebec. If Alice sends the Query depicted in Listing 11, the
query will be allowed to execute since the prohibited value
(i.e., Montreal) is under the exception value (i.e., Quebec).

Rule 10. If the prohibited level L; exists in the query
SELECTION element only, the query will be modified by
adding the exception E as a new predicate. In principle,
this rule is similar to Rule 4.

Rule 11. When Lv exists in the query CONDITION element
AND Lv is under Ev, the query is modified by replacing
the prohibited level L; by the exception level E AND the
prohibited level value Lv by the exception value Ev.

Algorithm 3 illustrates the full processing logic for Policy
Class 4 (Rule 8, Rule 9, Rule 10, and Rule 11). In short,
the authorization module takes the prohibited level value
P and the exception E as input and gives as output an
authorization decision to execute or modify the query. The
algorithm is again divided into two main parts. The first
component targets the case whereby the prohibited value P
exists in the query CONDITION element. Here, the query
can be modified or executed directly. If the prohibited value
belongs to the set of values under E , the query is modified

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

by replacing the condition that contains the prohibited value
by a new one containing the exception. Conversely, the query
is allowed to execute directly if the prohibited level value
Lv belongs to the values Under(P) AND Ly is equal to the
exception value Ev OR Ev belongs to the values Under(Lv).

In the second case, a new condition (exception E) is added
to the query CONDITION element when the prohibited level
Ly or any level below it Below(Lv) exists in the SELECTION
element only.

input : The prohibited value P of level L; and the
exception E
output: Decision to directly execute or modify

Let Ev = E value;

foreach level L; € Below(L;) do

if L; exists in the query CONDITION element

then

Let Lv = L; value;

if (Lv == P) AND (P € Under(Ev)) then
Add E as a new condition instead of the
condition that contains L;, inform the
user, and allow the query to execute;

end

else if (Lv € Under(P)) AND (Lv == Ev

OR Ev € Under(Lv)) then

Allow the query to execute without

modification;

end

end
else if L; exists only in the query SELECTION

element then
Add E as new condition to the user query,

inform the user, and allow the query to
execute;

end
end

Algorithm 3: The procedure of Policy Class 4

F. Authorization Rule Summary

The preceding sections have formalized the authoriza-
tion framework in terms of four policy classes and their
associated transformation rules. Below, we summarize the
authorization decision in terms of its three possible outcomes
— Execute, Modify, Reject:

1) The query is allowed to execute without modification

in two situations:

o Level L; is restricted and there is an exception E:
a) If any upper level exists in the SELECTION or
PROJECTION query element, OR
b) If the L; value or any value from the levels
below it exists in the CONDITION element
AND this value is equal to the exception value
Ev or any value under it.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

106

o A specific value of L; is restricted and there is an

exception E:

a) If the prohibited value Lv or any value under
it exists in the CONDITION element AND it is
equal to the exception value Ev OR any value
under it.

2) The query is modified in one situation:
o A level L; is restricted and there is an exception

E:

a) If level L; or any value from the levels below
it exists in the query SELECTION element
only, then we add the exception E as a new
condition, OR

b) If the exception value Ev belongs to the values
under Lv, then we replace the prohibited level
in the CONDITION element by the exception
E.

3) The query is rejected in two situations:
o Alevel L; is restricted, and there is no exception:

a) If level L; or any value from a lower level
exists in the SELECTION element only, OR

b) If level L; or any value from the levels below
it exists in the CONDITION element.

o A specific value P is restricted, and there is no
exception:

a) If P or any value under it exists in the CON-
DITION element.

V. EXPERIMENTAL RESULTS

Because of the potential to impact overall query resolution
time, considerable effort has been made to ensure the effi-
ciency of the authorization logic, including the exploitation
of compact data structures such as mapGraph and the FastBit
bitmap indexes. Moreover, the analysis of policy classes
is based primarily upon a restricted set of IF/ELSE cases
that, in turn, manipulate a small in-memory Authentication
Database. Given the motivation to include OLAP-aware
authorization mechanisms within fully functional database
management systems, however, it is important to actually
verify that our checking approach does not in fact seriously
degrade query performance. As noted earlier, the authoriza-
tion framework has been incorporated into a DBMS proto-
type specifically designed for OLAP storage and analysis.
For testing purposes, however, this integrated environment
is not necessarily ideal as it is difficult for the reader to
determine if the balance between checking and execution
is reflective of current systems. Furthermore, it may not be
obvious that our authorization model has the potential for
integration with standard database servers.

For this reason, we have coupled our framework with
MonetDB, a popular open source database management
system [27]. MonetDB is a column store DBMS, as opposed
to the more familiar row-based systems. Column stores

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

are particularly well suited to OLAP workloads as the
ability to efficiently extract only the columns of interest
can significantly improve 10 performance. Note that in this
case, the job of MonetDB is simply to provide execution
services — all authorization services are provided by the
subsystems defined in this paper. In the current case, we
utilize the Star Schema Benchmark (SSB) [28], a variation
of the original TPC-H benchmark augmented for OLAP
settings. In short, SSB consist of a central Fact Table and
four dimension tables, with a set of 13 analytics queries
executed against the data. Queries are divided into four
query categories, with each category providing increasingly
sophisticated restrictions on the associated dimensions. A
full listing of the queries can be found in the Appendix.
The SSB is particularly valuable in the current context as it
provides a common mechanism by which to assess the kinds
of queries — in terms of both form and complexity — that
one would actually expect to encounter in OLAP settings. As
a final note, we stress that Monet does not provide an internal
OLAP-aware conceptual model. To ensure compatibility
with the mechanisms described throughput this paper, it
was necessary to develop SQL conversion middleware, a
significant research effort of its own. The details of the
middleware architecture are the subject of an upcoming
submission.

For the following tests, we have used the SSB generator
(with default settings) to produce a Fact table of 180 million
records, with each dimension housing between 60,000 and
one million records. The experiments themselves were run
on a 12-core AMD Opteron server with a CPU core fre-
quency of 2100 MHz, L1/L2 cache size of 128K and 512K
respectively, and a shared 12MB L3 cache. The server was
equipped with 24 GB of RAM, and eight 1TB Serial ATA
hard drives in a RAID 5 configuration. The supporting OS
was CentOS Linux Release 6.0. All OS and DBMS caches
were cleaned between runs.

A set of four simple but typical authorization policies was
created, as follows. We generated one constraint across a
full dimension (i.e., the Product.Part is restricted), a second
constraint on an attribute, along with an exception (i.e., the
attribute s_region is restricted with an s_province exception),
a third constraint on an attribute value with an exception
value (i.e., d_year < 2009 is restricted except d_year = 2005
or 2006), and the last constraint prohibits access to a cuboid
as a whole. Essentially, policies were designed in keeping
with the logic of Section IV, but adapted to the specific
attributes of the SSB schema.

In terms of the results, we have isolated each of the four
query classes and show authorization processing versus the
subsequent query execution time in Figure 10, Figure 11,
Figure 12, and Figure 13. We note that all queries violated
one or more security policies and that these violations were
identified and appropriately processes by the authorization
module (each authorization decision was manually verified

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

107

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

108

for correctness). For those that were not candidates for re-

writing (i.e., they were simply rejected), the query execution 4000
time is still listed so as to give the reader a better sense of 4000
the relative balance between checking and execution. A few 3500
additional points are also worth noting. First, the ratio of 3000
checking time to execution time varies considerably, depend- 2500
ing on the specification of the underlying query. In particular, 2000
many OLAP queries are very expensive to execute, given the 1500
amount of sorting and aggregation involved. In this case,
Query Classes 1 and 3 have restrictive selection constraints 1000
3 : : 500
(with the exception of the Query 3.1), thereby reducing the — - T IR

size of intermediate results and, in turn, dramatically limiting 0

aggregation costs. Overall, execution times range from about et Qil QL2
half a second for Query Class 3 to more than 30 seconds futhencation [Pxesution Time

for Query Class 2, where large intermediate results produce
massive aggregation costs. As the database gets larger, of
course, these execution times will continue to grow.
Second, the checking costs are quite modest, in the range
of 100-400 milliseconds. More importantly, the size of the

Figure 10. Performance for SSB schema, Query 1 category

underlying database has no effect upon the checking costs, #0000
as only the cube meta data is inspected. In other words, it 35000 — — —
does not matter that 180 million records exist in the database 30000
as authorization decisions are not based upon this data.
Rather, only schema information (e.g., cubes, dimensions, 25000
hierarchies) and policy specifications (i.e., restrictions and 20000
exceptions) are required during this process. In practice, it 15000
is extremely unlikely that, from an end user’s perspective,
authorization costs would have a tangible impact on database 10000
access and analysis. 5000
As a final point, we re-iterate that column stores are well 0
suited to this environment, given their ability to minimize Q2 Q21 Q2.2
I/O costs. The execution times for traditional row store W Authentication [Execution

database servers can be one to two orders of magnitude time (ms) Time (ms)

larger [29]. The authors have, in fact, evaluated the current
test cases on the open source row-based PostgreSQL DBMS Figure 11. Performance for SSB schema, Query 2 category
and validated these ratios. In such environments, the ratio

of checking to execution costs would be far more extreme,

with execution costs being dozens or even hundreds of times 2500

larger than checking costs. o

VI. CONCLUSIONS AND FUTURE WORK 2000

In this paper, we have discussed a query re-writing
model to provide access control in multi-dimensional OLAP
environments. We began by defining a conceptual model 1000
that focused on the data cube and its constituent dimen-
sion hierarchies. From there we introduced the notion of 500
authorization objects designed to identify and constrain the ﬂ .j .j
relationships between parent/child aggregation levels. We 0 L
then presented a series of rules that exploited the autho- Q3 Q3.1 Q3.2 Q33
rization objects to decide whether user queries should be W Authentication I Execution

. . . time (ms) Time (ms)
rejected, executed directly, or dynamically and transparently
transformed. In the latter case, we identified a set of minimal

changes that would allow queries to proceed against a subset Figure 12. Performance for SSB schema, Query 3 category
of the requested data.

1500

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0 —

Q4 Q4.1

B Authentication [Execution
time (ms) Time (ms)

Q4.2

Figure 13. Performance for SSB schema, Query 4 category

While the authentication and authorization framework
has been integrated into a prototype DBMS that provides
OLAP-specific indexing and storage, we believe that the
general principles are broadly applicable to any contem-
porary DBMS product. To this end, we combined the
framework with MonetDB, an open source DBMS that
provides efficient column oriented services. Using the Star
Schema Benchmark, we showed that for common OLAP
queries, authentication and authorization services represent a
negligible impact on overall query execution and, in fact, that
there is no relationship between authorization and execution
costs. For this reason, we believe that our methods are viable
for not only OLAP-specific database management systems,
but more conventional platforms as well.

Finally, it is important to point out that the framework
presented in this paper cannot block all attempts to access re-
stricted data. In particular, it is possible for a user possessing
some degree of external knowledge to combine the results of
multiple valid queries to obtain data that is itself meant to be
protected. We refer to such exploits as inference attacks. We
are currently working on inference detection mechanisms
that will piggy back on top of the core authentication and
authorization framework to provide an even greater level of
security for OLAP data.

REFERENCES

[1] T. Eavis and A. Altamimi, “OLAP authentication and au-
thorization via query re-writing,” in The Fourth International
Conference on Advances in Databases, Knowledge, and Data
Applications (DBKDA), 2012, pp. 130-139.

[2] P. P. Griffiths and B. W. Wade, “An authorization mechanism
for a relational database system,” ACM Transactions on
Database Systems, vol. 1, no. 3, pp. 242-255, Sep. 1976.

[3] Biba, “Integrity considerations for secure computer systems,”
MITRE Co., technical report ESD-TR 76-372, 1977.

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

[4] R. Sandhu, D. Ferraiolo, and R. Kuhn, “The NIST model
for role-based access control: towards a unified standard,” in
Proceedings of the fifth ACM workshop on Role-based access
control, ser. RBAC *00, 2000, pp. 47-63.

[5] E. Fernandez-Medina, J. Trujillo, R. Villarroel, and M. Pi-
attini, “Developing secure data warehouses with a UML
extension,” Information Systems, vol. 32, pp. 826-856, 2007.

[6] C. Blanco, I. G.-R. de Guzman, D. Rosado, E. Fernandez-
Medina, and J. Trujillo, “Applying QVT in order to implement
secure data warehouses in SQL Server Analysis Services,”
Journal of Research and Practice in Information Technology,
vol. 41, pp. 135-154, 2009.

[7] J. Trujillo, E. Soler, E. Fernandez-Medina, and M. Piattini,
“An engineering process for developing secure data ware-
houses,” Information and Software Technology, vol. 51, pp.
1033-1051, 20009.

[8] K. Khajaria and M. Kumar, “Modeling of security require-
ments for decision information systems,” SIGSOFT Software
Engineering Notes, vol. 36, no. 5, pp. 1-4, Sep. 2011.

[9] M. Kumar, A. Gosain, and Y. Singh, “Stakeholders driven
requirements engineering approach for data warehouse de-
velopment,” JIPS, vol. 6, no. 3, pp. 385402, 2010.

[10] Y. Singh, A. Gosain, and M. Kumar, “From early require-
ments to late requirements modeling for a data warehouse,”
Networked Computing and Advanced Information Manage-
ment, International Conference on, vol. 0, pp. 798-804, 2009.
[11] N. Katic, G. Quirchmay, J. Schiefer, M. Stolba, and A. Tjoa,
“A prototype model for data warehouse security based on
metadata,” in DEXA, 1998, pp. 300-308.

[12] A. Rosenthal and E. Sciore, “View security as the basic
for data warehouse security,” in International Workshop on
Design and Management of Data Warehouse, 2000, pp. 8.1-

8.8.

[13] ——, “Administering permissions for distributed data: factor-
ing and automated inference,” in Proceedings of the fifteenth
annual working conference on Database and application
security, ser. Das’01, 2002, pp. 91-104.

[14] A. Deshpande, Z. Ives, and V. Raman, “Adaptive query
processing,” Foundations and Trends in Databases, vol. 1,
pp. 1-140, 2007.

[15] S. Rizvi, A. O. Mendelzon, S. Sudarshan, and P. Roy,
“Extending query rewriting techniques for fine-grained access
control,” in ACM Special Interest Group on the Management
of Data, ser. SIGMOD ’04, 2004, pp. 551-562.

[16] “The Virtual Private Database,” June 2012, http://www.oracle.
com/technetwork/database/security/index-088277.html.

[17] “Microsoft Analysis Services,” June 2012, http://www.
microsoft.com/sqlserver/2008/en/us/analysis-services.aspx.
[18] J. Gray, A. Bosworth, A. Layman, D. Reichart, and H. Pira-
hesh, “Data cube: A relational aggregation operator general-
izing group-by, cross-tab, and sub-totals,” Data Mining and
Knowledge Discovery, vol. 1, pp. 29-53, 1997.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

109

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

V. Harinarayan, A. Rajaraman, and J. Ullman, “Implementing
data cubes efficiently,” in ACM Special Interest Group on the
Management of Data, ser. SIGMOD °96, 1996, pp. 205-227.

E. Malinowski and E. Zimdnyi, “Hierarchies in a multi-
dimensional model: from conceptual modeling to logical
representation,” Data and Knowledge Engineering, vol. 59,
pp. 348-377, 2006.

T. Eavis, H. Tabbara, and A. Taleb, “The NOX framework: na-
tive language queries for business intelligence applications,”
in Data Warehousing and Knowledge Discovery (DaWak),
2010, pp. 172-189.

“SQL database engine,” June 2012, http://www.sqlite.org.

“Definition of the XML document type declaration from
Extensible Markup Language (XML) 1.0 (Fifth Edition),”
June 2012, http://www.w3.org/TR/xml/.

T. Eavis and A. Taleb, “Mapgraph: efficient methods for
complex olap hierarchies,” in Proceedings of the sixteenth
ACM conference on Conference on information and knowl-
edge management, ser. CIKM 07, 2007, pp. 465-474.

V. Markl, R. Bayer, B. Forschungszentrum, and R. Bayer,
“Processing relational OLAP queries with UB-Trees and
multidimensional hierarchical clustering,” in In Proceedings
of DMDW 2000, 2000, pp. 5-6.

M. Zaker, S. Phon-amnuaisuk, and S. cheng Haw, “An ade-
quate design for large data warehouse systems: Bitmap index
versus B-tree index,” 2008.

“MonetDB column store database engine,” June 2012, http:
/Iwww.monetdb.org.

P. O’Neil, E. O’Neil, X. Chen, and S. Revilak, “Performance
evaluation and benchmarking,” R. Nambiar and M. Poess,
Eds., 2009, ch. The Star Schema Benchmark and Augmented
Fact Table Indexing, pp. 237-252.

D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores
vs. row-stores: how different are they really?” in Proceedings
of the 2008 ACM SIGMOD international conference on
Management of data, ser. SIGMOD ’08, 2008, pp. 967-980.

APPENDIX

Below, we provide a listing of the 13 queries found in the
Star Schema Benchmark.

1.

select sum(lo_extendedprice*lo_discount) as revenue

from lineorder, date

where lo_orderdate = d_datekey and

d_year = 1993 and

lo_discount between 1 and 3

and lo_quantity < 25
1. 1) select
revenue
from lineorder, date

sum(lo_extendedprice*lo_discount) as

where lo_orderdate = d_datekey and
d_yearmonthnum = 199401 and
lo_discount between 4 and 6 and
lo_quantity between 26 and 35
1. 2) select
revenue
from lineorder, date
where lo_orderdate = d_datekey and
d_weeknuminyear = 6 and
d_year = 1994 and
lo_discount between 5 and 7 and
lo_quantity between 26 and 35

sum(lo_extendedprice*lo_discount) as

select sum(lo_revenue), d_year, p_brandl
from lineorder, date, part, supplier
where lo_orderdate = d_datekey

and lo_partkey = p_partkey and
lo_suppkey = s_suppkey and

p_category = ‘MFGR#12’ and

s_region = ‘AMERICA’

group by d_year, p_brandl

order by d_year, p_brandl

2. 1) select sum(lo_revenue), d_year, p_brandl
from lineorder, date, part, supplier
where lo_orderdate = d_datekey and
lo_partkey = p_partkey and

lo_suppkey = s_suppkey and

p_brandl between ‘MFGR#2221°
‘MFGR#2228’ and

s_region = ‘ASIA’

group by d_year, p_brandl

order by d_year, p_brandl

and

2.2) select sum(lo_revenue), d_year, p_brandl
from lineorder, date, part, supplier
where lo_orderdate = d_datekey and
lo_partkey = p_partkey and

lo_suppkey = s_suppkey and

p_brandl = ‘MFGR#2221° and

s_region = ‘EUROPE’

group by d_year, p_brandl

order by d_year, p_brandl

select c_city, s_city, d_year, sum(lo_revenue) as
revenue

from customer, lineorder, supplier, date

where lo_custkey = c_custkey and

lo_suppkey = s_suppkey and

lo_orderdate = d_datekey and

c_nation = ‘UNITED STATES’ and

s_nation = ‘UNITED STATES’ and

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

110

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

d_year >= 1992 and
d_year <= 1997
where c_city, s_city, d_year

where d_year asc, revenue desc

3. 1)

3.2

3. 3)

select c_nation, S_nation,
sum(lo_revenue) as revenue

from customer, lineorder, supplier, date
where lo_custkey = c_custkey and
lo_suppkey = s_suppkey and
lo_orderdate = d_datekey and
c_region = ‘ASIA’ and

s_region = ‘ASIA’ and

d_year >= 1992 and

d_year <= 1997

group by c_nation, s_nation, d_year
order by d_year asc, revenue desc

d_year,

select c_city, s_city, d_year, sum(lo_revenue) as
revenue

from customer, lineorder, supplier, date

where lo_custkey = c_custkey and

lo_suppkey = s_suppkey and

lo_orderdate = d_datekey and
(c_city="UNITED KI1’ or c_city="UNITED
KI5’) and

(s_city="UNITED KII1’ or
KI5’) and

d_year >= 1992 and
d_year <= 1997

group by c_city, s_city, d_year
group by d_year asc, revenue desc

s_city="UNITED

select c_city, s_city, d_year, sum(lo_revenue) as
revenue

from customer, lineorder, supplier, date

where lo_custkey = c_custkey and

lo_suppkey = s_suppkey and

lo_orderdate = d_datekey and
(c_city="UNITED KII’ or c_city="UNITED
KI5’) and

(s_city="UNITED KI1’ or
KI5’) and

d_yearmonth = ‘Dec1997
group by c_city, s_city, d_year
order by d_year asc, revenue desc

s_city="UNITED

4. select d_year, s_nation, p_category, sum(lo_revenue -
lo_supplycost) as profit
from date, customer, supplier, part, lineorder
where lo_custkey = c_custkey and
lo_suppkey = s_suppkey and
lo_partkey = p_partkey and

lo_orderdate = d_datekey and

c_region = ‘AMERICA’ and

s_region = ‘AMERICA’ and

(d_year = 1997 or d_year = 1998) and
(p_mfgr = ‘MFGR#1’ or p_mfgr = ‘MFGR#2’)
group by d_year, s_nation, p_category

order by d_year, s_nation, p_category

4.1

4.2)

select d_year, c_nation, sum(lo_revenue -
lo_supplycost) as profit

from date, customer, supplier, part, lineorder
where lo_custkey = c_custkey and

lo_suppkey = s_suppkey and

lo_partkey = p_partkey and

lo_orderdate = d_datekey and

c_region = ‘AMERICA’ and

s_region = ‘AMERICA’ and

(p_mfgr = ‘MFGR#1’ or p_mfgr = ‘MFGR#2’)
group by d_year, c_nation

order by d_year, c_nation

select d_year, s_city, p_brandl, sum(lo_revenue
- lo_supplycost) as profit

from date, customer, supplier, part, lineorder
where lo_custkey = c_custkey and
lo_suppkey = s_suppkey and

lo_partkey = p_partkey and

lo_orderdate = d_datekey and

c_region = ‘AMERICA’ and

s_nation = ‘UNITED STATES’ and

(d_year = 1997 or d_year = 1998) and
p_category = ‘MFGR#14’

group by d_year, s_city, p_brandl

order by d_year, s_city, p_brandl

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

111

