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Abstract—Using collaborative intrusion detection to sense
network intrusions comes at a price of handling an enormous
amount of data generated by detection probes, and the problem
of properly correlating the evidence collected at different parts
of the network. The correlation between the recorded events
has to be revealed, as it may be the case that they are part
of a complex, large-scale attack, even if they manifested at
different parts of the network. In this paper we describe
the inner workings a peer-to-peer network based intrusion
detection system, which is able to handle the intrusion detection
data efficiently while maintaining the accuracy of centralized
approaches of correlation. The system is built on a distributed
hash table, for which keys are assigned to each piece of
intrusion data in a preprocessing step. The network traffic
requirements of such a system, and the load balancing that
can be achieved by using the Kademlia peer-to-peer overlay
network are discussed as well.

Keywords-collaborative intrusion detection; attack correlation;
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I. INTRODUCTION

In the earliest days of the Internet, services on the network
were all based on trust. As e-commerce emerged, network
hosts became victim of a wide range of everyday attacks.
Due to the high amount of confidental data and resources
that can be exploited, the possibilites and open nature of the
Internet opened serious security questions as well.

The attacks network administrators fight against are both
human and software initiated. They get more and more
sophisticated, originating or targetting ocassionally multiple
hosts at the same time. A large number of nodes can be
simultaneously scanned by attackers to find vulnerabilities.
Automatized worm programs replicate themselves to spread
malicious code to thousands of vulnerable systems, typically
of home users. Others compromise hosts to build botnets,
which can deliver millions of spam e-mails per day.

As the manifestation of attacks, e.g., the evidence that can
be observed is spread across multiple hosts, these large-scale
attacks are generally hard to detect accurately. To recognize
such, one has to first collect or aggregate the evidence,
then correlate the pieces of information collected [1]. A
collaborative intrusion detection system has to analyze the
evidence from multiple detector probes located at different
hosts, and even on different subnetworks [2]. However, this
poses several problems to solve:

Figure 1. Messages carrying attack information in the Komondor system.
If any probes in the network detect a suspicious event (solid lines), it sends
a report to the DHT (dashed lines). The nodes of the DHT act as correlation
units as well, and are able to collect these reports.

• large quantities of possible evidence collected,
• including inadequate data for precise decision making,
• communication and reliability problems,
• frequent change of intrusion types and scenarios.

Some of these troubles are specific for the isolated, host-
based detection systems, while others occur only in case of
the network scale intrusion detection. Despite of all these
difficulties it is still worth collecting and correlating evidence
available at different locations for the efficiency and accuracy
boost of both detection and protection [3].

In this paper, we present a collaborative intrusion detection
system, which organizes its participants to a peer-to-peer
(P2P) overlay network. For intrusion data aggregation, a
distributed hash table (DHT) is used, which is built on
the Kademlia topology. This is used to balance the load
of both aggregation and correlation of events amongst the
participants. The organization of nodes in the overlay network
is automatic. Should some nodes quit or their network links
fail, the system will reorganize itself.

The rest of this paper is organized as follows. In Section II,
we first review existing research of collaborative intrusion
detection systems. Then we present the architecture of
our intrusion detection solution based on the Kademlia
DHT overlay in Section III. The results of our intrusion
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detection method and statistics of detection are highlighted
in Section IV. Research is concluded in Section V.

II. RELATED WORK

Attackers use various ways for intrusion of computer
network systems depending on their particular goals. These
methods leave different tracks and evidences, called the
manifestation of attacks [4]. To discuss the internals of a
collaborative intrusion detection system, we use the following
terms [2]:

• Suspicious events are primary events, that can be de-
tected at probes. Not necessarily attacks by themselves,
but can be part of a complex attack scenario.

• Attacks are real intrusion attempts, which are used to
gain access to a host or disturb its correct functioning.
Usually these are made up from several suspicious
events at once.

The activity of an SSH (Secure Shell, a remote login software)
worm program can be seen as an example of an attack. These
worms use brute-force login attempts using well-known user
names and simple passwords [5], directed against a single
host. The attempts are events that make up the attack in
this case. Multiple failed login attempts usually indicate an
attack, while a single failed attempt is usually only a user
mistyping his password.

A. Centralized Collaborative Intrusion Detection

Generally, large-scale attacks can only be detected by
collecting and correlating events from a number of detector
probes. The collection of evidence has to be extended to
suspicious events as well, which otherwise do not necessarily
suggest attacks themselves. In order to achieve this, various
collaborative intrusion detection systems (CIDS) have been
proposed, for which a detailed overview can be found in [3].

The earliest collaborative detection systems used a central-
ized approach for collecting the events, as seen on Figure 2.
The Internet Storm Center DShield project collects firewall
and intrusion detection logs from participants, uploaded either
manually or automatically [6]. The log files are then analyzed
centrally to create trend reports.

The NSTAT system [7] on the other hand is more advanced,
since its operation completely real-time. In NSTAT, the
detection data generated by the probes is preprocessed and
filtered before being sent to a central server for correlation.
This system analyzes the order of events using a state
transition mechanism with predefined scenarios to find out
the connection between them.

The advantage of centralized methods is that the server is
able to receive and process all data that could be gathered,
i.e.,it has all the information necessary to recognize the
intrusion attempt. The correlation can be carried out with
several different methods. SPICE [8] and CIDS [9] group
events by their common attributes. The LAMBDA system
tries to fit events detected into pre-defined and known

scenarios [10]. The JIGSAW system maps prerequisites and
consequences of events to find out their purposes [11].

Centralized solutions have two drawbacks to address. The
first one of these is scalability – the high amounts of data
to be aggregated and correlated for large networks cannot
be handled by a single correlation unit. The second one is
that the correlation unit is a single point of failure, being
even a possible target of attack for shutting down the whole
intrusion detection system.

B. Hierarchical and P2P Collaborative Intrusion Detection

By using hierarchical approaches, the scalability problem
of centralized intrusion detection systems can be handled.
The DOMINO system is used to detect virus and worm
activity. It is built on an unstructured P2P network with
participants grouped into three levels of hierarchy [12]. The
nodes on the lowest level generate statistics hourly or daily,
therefore they induce only a small network traffic.

The PROMIS protection system (and its precedessor,
Netbiotic) uses the JXTA framework to build a partly
centralized overlay network to share intrusion evidence [13].
The nodes of this system generate information for other
participants about the frequency of detected suspicious events.
This information is used to fine-tune the security settings
of the operating system and the web browser of the nodes.
This creates some level of protection against worms, but also
decreases the usability of the system.

The Indra system is built on the assumption that attackers
will try to compromise several hosts by exploiting the same
software vulnerability [14]. If any attempts are detected
by any participant of the Indra network, it alerts others
of the possible danger. Participants can therefore enhance
their protection against recognized attackers, rather than
developing some form of general protection.

The scalability and single point of failure problems of
centralized solutions can also be solved by using structured
P2P application level networks. The P2P communication
model enables one to reduce network load compared to the
hierarchical networks presented above.

The CIDS system [9] is a publish-subscribe application of
the Chord overlay network [15]. Nodes of this system store
IP addresses of suspected attackers in a blacklist, and they
subscribe in the network for notifications that are connected
to these IPs. If the number of subscribers to a given IP
address reaches a predefined threshold, they are alerted
of the possible danger. The Chord network ensures that
the messages generated in this application will be evenly
distributed among the participants.

The BotSpot system aims to discover traffic patterns
generated by botnets in recorded NetFlow data [16]. By
dropping specific IP addresses from the data to be analyzed,
anonymity can also be ensured for its users. The Spamwatch
system aims filtering of spam messages [17]. It uses a
Tapestry-based peer-to-peer network to store data of mail
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Figure 2. Collaborative detection system with centralized collection and correlation of data from probes. Every piece of information is sent to a server,
which handles the correlation, and has the responsibility of alerting participants when an attack is detected.

messages that are tagged as spam by the users of the
Spamwatch community [18]. Other users’ mail applications
can then automatically delete known spam messages.

C. Structured P2P Networks

The intrusion detection systems mentioned above use
various P2P substrate networks. By selecting a proper
substrate, the traffic generated in a specific application of
the network can be reduced.

Structured P2P networks generally implement distributed
hash tables [19]. DHTs store 〈key; value〉 pairs and allow
the quick and reliable retrieval of any value if the key
associated to that is known precisely. This is achieved by
using a hash function and mapping all data to be stored
to the nodes selected by the distance of the hashed keys
and their NodeIDs, which are chosen from the same address
space. The connections between nodes are determined by
their NodeID selected upon joining the network. They are
selected so that the number of steps between any two node
is usually in the order of logN , where N is the count of all
nodes.

DHTs all implement routing between their nodes on the
application level to build the topology desired. For the small
network diameter however, only some of these are feasible.
The Chord DHT, for example, arranges its nodes into a
ring [15]. To reduce the number of hops required for sending
a message, it uses auxiliary network connections, which
enable nodes to send message to the opposite side of the
ring, and it divides the network to smaller pieces, which are
half of the original in every step.

The Kademlia network uses a binary tree topology [20],
as seen on Figure 3. All Kademlia nodes have some degree
knowledge of the successively smaller subtrees of the network
they are not part of. For any of these subtrees they have
routing tables called k-buckets, which store IP addresses of
nodes that reside in distant subtrees. When a node looks up
a selected destination, it successively queries other nodes,
which are step by step closer to the destination. The queried
nodes answer by sending their k-buckets to the source. As

Figure 3. Sequence of lookup messages in the Kademlia overlay network.
The node initiating the message successively queries nodes closer to the
destination, so it finally receives its IP address for direct communication.
(For details of the lookup procedure, see [20].)

nodes closer to the destination have greater knowledge of
their neighbors, the lookup will get closer every step, as
discussed in [20]. The distance in the binary tree is halved
with every message, so the number of messages is log2 N
with N being the number of nodes in the tree.

DHTs map all 〈key; value〉 pairs to the nodes, which
have their NodeIDs closest to the hashed value of the key.
The distance function used depends on the topology of the
network. Kademlia uses the XOR function to calculate the
distance, which captures the topology of the binary tree well,
as the magnitude of the distance calculated with d (A,B) =
A⊗B is the height of the smallest subtree containing them
both. The k-buckets are sorted by decreasing distance. The
advantage of Kademlia is great flexibility: for the correct
functioning of the lookup procedure, any nodes can be put
in any of the k-buckets, as long as they are in the correct
subtree.

III. THE KOMONDOR SYSTEM ARCHITECTURE

In this section, our intrusion detection system named
Komondor is presented. Its most important novelty is that
it uses the Kademlia DHT as a substrate network to store
intrusion data and to disseminate information about detected
events [1]. Having analyzed the collected events, Komondor
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Figure 4. Distributed collection and distributed correlation of intrusion evidence from various probes. The Komondor system assigns keys to pieces of
evidence so that data can be stored efficiently in a DHT. By using these keys, computational load of correlating can be distributed among several units.

correlation units may start an alert procedure notifying other
nodes of the possible danger if necessary.

A. Distributing Load Among Multiple Correlation Units

The Komondor peer-to-peer application level network
consists of multiple nodes. All nodes have the responsibility
of collecting and correlating intrusion data. They also report
attacks discovered to other nodes of the network, as seen in
Figure 1. All participants of the Komondor network serve as
intrusion detection units and correlation units as well.

The Komondor network is designed to enable the cor-
relation methods mentioned in Section II to be used in a
distributed manner:

• Pieces, which are correlated should be sent to the same
correlation unit, so that it can gather all the information
about the attack.

• Pieces of evidence, which are part of distinct ongoing
attacks should preferably be sent to different correlation
units. This reduces load and improves overall reliability
of the system.

Komondor achieves this goal by assigning keys to prepro-
cessed intrusion data, as seen in Figure 4 (cf. Figure 2).
Keys assigned are used as storage keys in the DHT as well.
For different attackers or attack scenarios, different keys are
selected, and this way data is aggregated at different nodes
of the Komondor overlay.

This is different from other P2P distributed intrusion
detection networks, in which only one attack correlation
method is used. In Komondor, attack correlation and event
aggregation is decoupled by the means of selecting a key in
an early phase of correlation, and using it as a DHT key for
storage. The Komondor system is essentially a middle layer
inserted into the intrusion detection data path.

Correct key selection is critical, since pieces of evidence,
which might be correlated to each other must be assigned the
same key and sent to the same Komondor node for correlation.
Note that these pieces do not have to be detected by the same
probe, yet they can be aggregated by the same correlation
unit. The nodes of the DHT are the correlation units, which

have to implement the same correlation methods as their
centralized counterparts. The correlation procedure is started
as soon as the preprocessing stage with the key selection,
and it is finalized at the correlation units.

The detected and preprocessed data of suspicious events
is stored in the Komondor overlay. In this system, the key
assigned at the preprocessing stage of detection is used as
a key for DHT operations as well. The value parts of the
〈key; value〉 pairs stored are any other data, which might
be useful for detection or protection. As all nodes use the
same key selection mechanism and the same hash function,
events related to each other will be stored at the same node,
as seen in Figure 1. This way the algorithm ensures that the
aggregator node has perfect knowledge of all events related
to the attack in question, and is able to recognize the attack
as well.

The reason why a structured overlay was selected for the
Komondor system is that it combines the advantages of both
the distributed and centralized detection systems. Event data
collected has to be sent to a single collector node only (this
would not be possible with an unstructured overlay, as those
have no global rule to map a key to a node.) Moreover, when
Komondor nodes are under multiple but unrelated attacks,
the network and computational load of both aggregation
and correlation is distributed among nodes. Moreover, the
Komondor system does not have a single point of failure: the
responsibility of correlating particular events is transferred
to another node in this case. The overlay can also be used to
disseminate other type of information as well, for example
the attack alerts, which enable nodes to create protection.

B. Kademlia as the DHT Topology of Komondor

The nodes of Komondor create a Kademlia DHT overlay.
This is the topology, which can adapt its routing tables to
the dynamic properties of traffic generated by the intrusion
detection probes. As discussed below, other DHTs wouldn’t
be able to adapt their routing tables to the dynamic properties
of this kind of traffic.

Storing information of events generated by the probes



138

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I
NUMBER OF MESSAGES IN STRUCTURED OVERLAYS FOR INTRUSION

DETECTION

Overlay Chord Kademlia

Routing algorithm recursive iterative

Node lookup 0 log2 N

First event stored log2 N 1 + log2 N

n events with the same key n · log2 N n+ log2 N

Average number of mes-
sages per event

(n · log2 N)/n (n+ log2 N)/n

Average number of mes-
sages with n→∞

log2 N 1

generates significant overlay traffic, which will load not
only detector and collector nodes, but other nodes along the
path from the former to the latter one as well, as routing
between nodes is handled on the application level. If the
events are in correlation with the same attack, the key chosen
is likely to be the same, making the distribution of keys highly
uneven. However, by using Kademlia, network traffic can be
significantly reduced in this scenario. The reason for this is
that the routing algorithm of Kademlia is very flexible: any
node can be put to the routing tables of any other node while
still obeying the rules of the routing protocol. Routing tables
of other DHT overlays like CAN or Chord are much more
rigid, and therefore the routing algorithm of those cannot
optimize the number of messages for the store requests with
the same key.

Table I compares the number of messages generated in
intrusion detection for Kademlia and Chord, with the latter
being an example for having rigid routing tables. Chord uses a
recursive routing mechanism, which means that messages are
forwarded by overlay nodes along the path from the source
to the destination of the message, as seen on Figure 5. If
Komondor would be built on Chord, the number of messages
generated in the overlay would be in the order of log2 N
for each detected event, where N is the node count of the
overlay.

Contrary to Chord, Kademlia uses an iterative algorithm.
To store a 〈key; value〉 pair, a Kademlia node first looks
up the IP address of the destination node by successively
querying nodes closer to the destination. After finding out
its address, data is sent directly from the source and the
destination. This also implies that the payload of the message
is contained in every message for Chord, and only in the
last message for Kademlia. For Kademlia, the node has to
first look up the address of the destination, which also takes
log2 N messages. Having done that, it requires one more
message (+1) to send the payload as well. If multiple events
are to be stored, which are detected by the same probe (this
is a likely scenario for a node that is under attack), the lookup
procedure can be optimized away, as the key and therefore

the collector node is the same, too. For sending data of n
events, the number of messages generated is only n+log2 N
for Kademlia and n · log2 N for Chord, which is worse at
the factor of n for the latter one. The limit of messages
per event drops to 1 for Kademlia in this common intrusion
detection scenario.

The above optimization is made possible by the fact, that
any node can be inserted to the routing tables of any other
arbitrarily selected node in Kademlia, while still obeying the
selection rules of the protocol. The k-buckets of the nodes
cover the whole NodeID space of the binary tree, and the
exact selection of nodes do not affect the correctness of the
lookup mechanism, only its latency properties. The original
Kademlia paper [20] suggests that nodes with long session
uptimes are selected for routing, which is feasible in file
sharing applications to enhance reliability. Komondor nodes,
which are selected by attack events to be stored, should be
selected to reduce network traffic.

The Komondor system uses does not use the data lookup
mechanism (looking up a value associated with a specific
key) of the DHT as other applications do. Only the data
store mechanism is used. Stored events are never looked up,
rather the node, which stores them has to process incoming
events to recognize attackers. The collector nodes have
the responsibility to start a broadcast algorithm [21], if an
attack is recognized. The broadcast message must contain
data, which can be used by participants to create their own
protection.

C. Selection of Keys in the Komondor System

The accuracy of detection, also network and computational
load balancing depends on the proper selection of keys.
If, at preprocessing stage, the correct key is failed to
be chosen, pieces of evidence may mistakenly end up at
different correlation units, and therefore the attack may
remain unnoticed. Detection efficiency can be increased
by assigning more keys, should an event be suspected to
be a candidate for being part of different attacks or attack
scenarios. One can also implementing several correlation
algorithms simultaneously. However, every subsequent key
increases network traffic as well.

Examples for key selection include the source or destina-
tion IP addresses of offending packets. For every large-scale
network scan scenario, a different key selection mechanism is
feasible. Consider the network scan types categorized in [12]:

• Horizontal port scan. Different hosts are scanned by
a attackers, but the port number, e.g., the vulnerability
searched for is the same. In this case, a blacklist of
attackers can be built using the collection and correlation
of detected attempts. The key for the Komondor overlay
in this case is the identifier of the vulnerability, or the
port number.

• Vertical scan. A single host is under attack. The attack
originates from a single host, too. If this is the case,
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(a) recursive (b) iterative

Figure 5. Routing methods in DHT overlays. In overlays with recursive routing, messages are forwarded from node to node. The iterative method requires
nodes to look up the address of the destination of the message themselves.

the attacker is known and hosts can protect themselves
against it, should it try to attack another friendly hosts.
The DHT key should be the IP address of the attacker.

• Mixed scan. Multiple attackers use their network ca-
pacity to launch an attack against a single host or a
subnetwork. This is the usual scenario for the well
known DDoS (distributed denial of service) attacks [22],
the goal of which is to disrupt some service of an
on-line service provider by overloading its network
or computational capacities. The key for the evidence
storage in the DHT in this case is the subnetwork address
attacked. By analyzing the data collected in this scenario,
hosts can automatically detect the fact of the network
scale attack, e.g., they can discover that the problem
is not only related to a single host but a complete
subnetwork or organization.

Apparently, the achievable benefit of the collaborative
detection for these scan methods also varies with their type
and intent.

IV. RESULTS AND DISCUSSION

In this section, we present statistics of intrusion attempts
detected using the implemented Komondor system. The
statistics are evaluated to show which types of attacks this
system can be used to detect.

The implementation used for testing was written in C++,
and run on various versions of Ubuntu, Debian Linux and
OpenBSD operating systems. The systems protected provided
HTTP, SSH, mail, SQL and other services to their users. The
number of probes in the system varied from 7 to 10, each
with their own, public IP address. The overlay created was
not limited to a single subnetwork.

The present Komondor implementation used the open-
source Snort intrusion detection system [23] to detect
intrusion events, and it could collaborate with other host-
based intrusion detection solutions as well. The key selected
for each event was the IP address of the attacker, as found
in the Snort log file. It was also used for correlation. We
selected common event types from the Snort database and
also tagged events with a severity score. Intrusion alert was

triggered when the sum of these scores reached a threshold
level. This simple correlation method enabled us to determine
the efficiency and reliability of the Komondor system for
known attack types. Data presented here was collected in
a three year interval. During this time, 17,088 attacks were
detected, with the maximum number of attacks originating
from a single IP address being 811. The number of individual
events for a single attack reached as much as 80,000 events
for some of the worm attacks recorded. The number of nodes
in the small Komondor test overlay was around 7 and 15
nodes, with most of them being on the same subnetwork.

One of the nodes of the test overlay was assigned special
logging tasks. This was achieved by fixing the NodeID
of that node to the hexadecimal value 0x00000001. (Our
implementation used 32-bit NodeIDs, rather than using the
full 160-bit space as usual in Kademlia networks.) The
attack storage method used in other nodes was modified
to send all data to this node as well, besides sending the
events to the nodes as selected by the keys. This anchor
node generated statistics, and provided us with a monitoring
interface accessible through a web browser.

A. Attack Intervals and Number of Events

Figure 6 shows invalid passwords detected for SSH login
attempts on various hosts [5]. Every dot on the graph is an
individual attack. The y axis shows the number of events or
the number of invalid passwords detected. The duration of
an attack is the time interval between the first and the last
event detected, and is on the x axis. Several attackers were
detected by multiple Komondor probes, because the SSH
worm that was trying to gain access to the subnetwork tried
to login all on-line hosts it found. The number of probes,
which detected an attack in question is shown by the color of
the dots. (In the case of multiple probes detecting an attacker,
the event number on axis x is an average per probe.)

Apparently the attacks, which were detected by one probe
only (black dots) have much less events associated to them.
The 1,100 attacks shown on the graph have as much as 450
of them stacked up in the (1; 1) point. These evidently came
from human interaction. Attacks detected by multiple probes
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Figure 6. Number of invalid password events detected for various attacks
(y axis) plotted by the duration of the attack (x axis), as detected by the
Komondor test overlay network. The color of the dots represent the number
of probes a specific attacker was detected by.

usually suggest automatic worm programs using dictionary
attacks against the detector hosts.

This experience suggests that distributed intrusion detec-
tion can benefit from the advantages of DHTs:

• Attackers could be detected by several probes at the
same time. When multiple hosts are attacked, recogniz-
ing an attacker using any evidence from any probe of
the Komondor network, several hosts could be protected
using firewalls at the same time, which might promptly
be attacked, too.

• Attack evidence came from multiple probes. One attack
is likely to be associated to thousands or tens of
thousands of events, which must be stored and processed
in the overlay. This type of load can be dealt with the
DHT fairly well, as it can select different collector nodes
for each individual attack and therefore balance the load.

• When detecting an event, which generates the same key,
the Kademlia DHT can significantly reduce network
traffic, as the IP address of the collector nodes have to
be looked up only once. When the IP address is obtained,
the system works as if it were using a centralized
approach with the same benefits as those.

B. Attack Types and Confidence

Table II shows various attack types and the efficiency
for the Komondor system regarding protection. The column
Protection shows the number of attacks for each type, for
which the attack continued after it was blocked on the firewall,
and the activity of the attacker was detected by another
Komondor node of the same subnetwork. For these attacks,
the collaborative intrusion detection can greatly enhance the
protection of hosts.

Figure 7 shows event numbers and attack durations for
different worms attacking SQL servers. The y axis has two

Table II
NUMBER OF ALL ATTACKS AND ATTACKS FOR WHICH PROTECTION

COULD BE BUILT BY Komondor, FOR EACH ATTACK TYPES.

Type of attack Attacks Protection Ratio
phpMyAdmin scan 107 71 66%

MSSQL overflow 4355 15 0%

SSH connection lost 490 321 65%

SSH failed password 546 219 40%

SSH invalid user 51 47 92%

FTP failed login 46 2 4%

scales for each graph. The scales of the left hand side show
attack durations (red plot), and the right hand side scale
shows the number of events (blue plot). Attacks are sorted
by duration. Every value on the x axis is an attack for which
the duration and the number of events is shown right under
each other.

A worm, which scanned the Web servers for vulnerabilities
via HTTP requests is shown on the right hand side subfigure.
For any event detected, the IP address of the attacker can
be recognized by the correlation units. The left hand side
graph presents the properties of the Slammer worm, which
penetrates outdated MSSQL servers. This worm does not
issue more attempts in a short time interval to the same host,
and selects IP addresses of victims randomly. For detecting
this type of attacks, the PROMIS and CIDS systems could
be used more effectively.

Figure 8 is similar to Figure 7, showing the attack interval
and the number of events for attacks. However, invalid SSH
login attempts are visualized on this one. The figure shows
real attacks and mistyped passwords as well. The left hand
side subfigure shows the invalid user name events, and the
right hand side subfigure the invalid password events. The
usual user interfaces of SSH remote login software show the
login names to the users as they type, while the password is
hidden for security reasons. This implies that mistyped login
names rarely come from authorized users, as they would
correct it before sending it to the server. Almost all of this
type of attacks are conducted automatically by worm software.
However, 40% of detected mistyped password attacks have
only one event, and supposedly come from authorized users.
These are all false alarms in an automatic intrusion protection
system like Komondor.

C. Load Balancing Potential of Using Hash Functions for
IP Addresses as Keys

Figure 9 shows the distribution of events in IP address
space and in overlay key (NodeID) space. The figure shows
only the events related to SSH worms.

The IP addresses on the top part of the figure were mapped
to the rectangular area using a Hilbert space filling curve.
This mapping renders the 32 bit address space in such a way,
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Figure 7. Attack intervals and number of events for different worm activities detected by the Komondor system. The left hand side shows a worm, which
scanned our Web servers via HTTP in order to find a phpMyAdmin installation to gain access to MySQL databases. On the right hand side the activity of
the infamous Slammer worm is shown, which penetrates MSSQL servers.

Figure 8. Attack intervals and number of events for SSH login attempts, as detected by the Komondor network. An invalid login name almost inevitably
suggests an attack, while an invalid password may come from an otherwise authorized user.

that addresses close to each other (therefore, addresses in
the same subnetwork) are close to each other. For example,
the 0/8 to 63/8 range is in the upper left quarter square, and
the 0/16 to 15/16 range in the upper left sixteenth. The first
octet of the address determines the numbered square, and
the second octet was used to select the place inside every
small square similarly, so that dots do not cover each other
needlessly.

The size and color of the nodes show the number of
events for each attack. The number of events related to each
attack is quite different for every attack, the difference has
a magnitude of about four. If we are using IP addresses for
correlation, the hash functions used in the structured overlays
for data to node mapping can significantly reduce this, as
seen on the bottom side subfigure.

The Komondor reference implementation used 32-bit
hashed addresses. The bottom side plot on Figure 9 shows
the number of events by their hashed values, the first octet of
which values are used for the x coordinate, and the next eight
bits for the y coordinate. The magnitude of the difference
between the highest and lowest number of messages that

are related to a single attack could be reduced by 1.85, i.e.,
about 70 times lower.

Of course, a single detector node can still detect and send
many events to the same collector node, when being under
attack. This load imbalance can not further be reduced by
hashing the keys, but rather by properly selecting the DHT
topology, as discussed in Subsection III-B.

V. CONCLUSION

Attacks on the Internet mean constantly growing prob-
lem for network administrators. Sophisticated attacks have
evidence spread across multiple hosts and subnetworks. To
detect these attacks promptly and correctly, data must be
aggregated and analyzed automatically. In this article, the
novel Komondor intrusion detection system is presented,
which enables current attack correlation methods to be
upgraded to work in a distributed environment. This is
achieved by inserting a middle layer into the intrusion
detection data path, which utilizes the Kademlia DHT overlay.
As it is possible to optimize the data storage traffic to O(1)
message per attack event, Kademlia is the most feasible
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Figure 9. Network traffic distribution in the structured overlay
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choice of DHT topology for a wide area deployment of an
intrusion detection system.

The novelty of the method presented is attaching a key to
the detected events, which key is then used to send the events
for correlating to several correlation units that are organized
as a DHT. This mechanism can be used to reduce network
and computational load and increase reliability of the system,
while still retaining the advantages of centralized approaches
of intrusion detection. By mapping the detected events to
nodes in the system, all nodes are assigned the same level of
responsibility as well. Our ongoing research is focusing on
considering the different computational and network capacity
of nodes to prevent those with slow connections or CPUs
from being overloaded by intrusion detection data.
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