
62

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Ensembles of Decision Trees for Network Intrusion Detection Systems

Alexandre Balon-Perin
abalonpe@ulb.ac.be

Ecole Polytechnique
Université libre de Bruxelles

Brussels, Belgium

Björn Gambäck
gamback@idi.ntnu.no

Department of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, Norway

Abstract—The paper discusses intrusion detection systems
built using ensemble approaches, i.e., by combining several
machine learning algorithms. The main idea is to exploit the
strengths of each algorithm of the ensemble to obtain a robust
classifier. Network attacks can be divided into four classes:
probe, remote to local, denial of service, and user to root.
Each module of the ensemble designed in this work is itself
an ensemble created by using bagging of decision trees and is
specialized on the detection of one class of attacks. Experiments
highlighted the efficiency of the approach and showed that
increased accuracy can be obtained when each class of attacks
is treated as a separate problem and handled by specialized
algorithms. In all experiments, the ensemble was able to
decrease the number of false positives and false negatives.
However, some limitations of the used dataset (KDD99) were
observed. In particular, the distribution of examples of remote
to local attacks between the training set and test set made
it difficult to evaluate the ensemble for this class of attacks.
Furthermore, the algorithms need to be trained with specific
feature subsets selected according to their relevance to the class
of attacks being detected.

Keywords-intrusion detection, ensemble approaches, bagging,
decision trees, support vector machines.

I. INTRODUCTION

Intrusion detection systems (IDSs) are monitoring devices
that have been added to the wall of security in order to
prevent malicious activity on a system. Here we will focus
on network intrusion detection systems mainly because they
can detect the widest range of attacks compared to other
types of IDSs. In particular the paper discusses machine
learning based mechanisms that can enable the network IDS
to detect modified versions of previously seen attacks and
completely new types of attacks [1].

Network IDSs analyse traffic to detect on-going and
incoming attacks on a network. Additionally, they must
provide concise but sound reports of attacks in order to
facilitate the prevention of future intrusions and to inform the
network administrators that the system has been compromised.
Current commercial IDSs mainly use a database of rules
(signatures), to try to detect attacks on a network or on
a host computer. This detection method is presently the
most accurate, but also the easiest to evade for experienced
malicious users, because variants of known attacks (with

slightly different signatures) are considered harmless by the
IDS and can pass through without warning. New attacks
and attacks exploiting zero-day vulnerabilities can also slip
through the security net if their signatures are unknown to
the IDS. A zero-day vulnerability is a software weakness
unknown by the system developers, which potentially could
allow an attacker to compromise the system. ‘Zero-day’ refers
to the first day, day zero, that the vulnerability was observed.

In order for an intrusion detection system to be able
to detect previously unseen attacks or variants of known
attacks, there is a need for mechanisms allowing the IDS
to learn by itself to identify new attack types. However, the
problem is further complicated by the extreme requirements
of robustness of the IDS. It must be able to detect all
previously seen and unseen attacks without failure, it must
never let an attack pass through unnoticed, and it must
never deliver unwanted warnings when the traffic is in fact
legitimate. Sommer and Paxson (2010) give a summary of
the main challenges that machine learning has to overcome
to be useful for intrusion detection [2].

Despite these constraints and challenges, several attempts
have been made to build automatically adaptable intrusion
detection systems using various machine learning algorithms.
So far though, the machine learning classifiers trigger too
many false alarms to be useful in practice. Part of the problem
is the lack of labelled datasets to train the classifiers on. The
only freely available labelled dataset is the KDD99 dataset [3]
described below (Section III). To address these problems,
new machine learning paradigms have been introduced in
the field of intrusion detection, and in general the machine
learning community has in recent years paid more attention
to ensemble approaches, that is, to combinations of several
machine learning algorithms.

Network attacks can be divided into four classes: probe,
remote to local, denial of service, and user to root. Most
previous machine learning-based solutions include a single
algorithm in charge of detecting all classes of attacks. Instead,
in this work, one module of an ensemble is specialised on
the detection of attacks belonging to one particular class.
The main idea is to exploit the strengths of each algorithm
of the ensemble to obtain a robust classifier. Ensembles are



63

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

particularly efficient in cases like this, when a problem can
be segmented into parts, so that each module of the ensemble
is assigned to one particular subproblem. The modules in
turn include one or more algorithms cooperating.

Furthermore, each class of attacks is characterized by very
specific properties, observable through the values of certain
features on instances in the dataset belonging to a specific
class of attacks. However, even though feature selection is
often applied in IDSs using machine learning techniques,
often only one set of features is selected for all classes
of attacks. In this work, one set of features is selected for
each class of attacks according to their relevance to the
corresponding class. The corresponding algorithm(s) is then
fed with the appropriate set of features. The system can, in
theory, reach a very high accuracy with a small cost, and the
ensemble processing can potentially be parallelized using a
multicore architecture. In the best scenario, each algorithm
could run on a different core of the processor allowing the
IDS to attain extremely high performance.

The experiments performed in this paper are in direct
continuity of the work done by Mukkamala et al. [4]–[6],
which identified the key features relevant to each of the four
classes of attacks. The objectives of our experiments were
multiple. In particular, to answer the following questions:

• Can ensemble approaches improve intrusion detection
accuracy even when using the simplest algorithms
without fine-tuning?

• Are the results of Mukkamala et al. (2005) [4] concern-
ing the features selected by the three algorithms support
vector machines (SVM), linear genetic programming
(LGP), and multivariate adaptive regression splines
(MARS), for each class of attacks, correct?

• Are the false positive (FP) and false negative (FN) rates
close enough to zero for the IDS to be efficient?

The rest of the paper is laid out as follows: First, Section II
introduces the machine learning methods utilized in the
paper, in particular discussing ensembles and feature selection.
Section III then discusses the data set used in the experiments,
while Section IV gives an overview of the state-of-the-art
and related work, in particular focusing on previous efforts
in applying ensemble-based methods to intrusion detection.
The core of the paper is Section V that details two rounds of
experiments carried out, on feature selection for ensembles
resp. on feeding an ensemble of machine learning algorithms
with the most successful sets of features identified. Section VI
then discusses the results of the experiments at length and
points to ways in which the present work could be extended.
Finally, Section VII sums up the previous discussion.

II. ENSEMBLE-BASED INTRUSION DETECTION

Machine learning algorithms operate in two main steps. In
the first, the algorithm uses a training dataset to build a model
of the data. In the second step, the model is applied to new
examples. Usually, a test set is used to assess the performance

of the algorithm. The model differs greatly depending on
the type of algorithm used. In the case of regression, the
algorithm must find the function that fits the data as well as
possible. In the case of classification, the algorithm must find
decision boundaries that separate the data as well as possible
according to the number of desired classes. In both cases, a
cost function is used to evaluate how good the model fits
the data. The goal of the machine learning algorithm is to
find the model that minimizes the cost function.

A. Supervised and Unsupervised Learning

In general, machine learning algorithms can be divided
into two major classes depending on their learning technique:
supervised and unsupervised. Supervised learning implies to
obtain a training dataset in which every entry is labelled with
class the example belongs to, while unsupervised learning
algorithms do not need the dataset to be labelled. This
is the most obvious disadvantage of supervised learning:
obtaining data is cheap whereas obtaining labels for the
data is very expensive in terms of both time and money
because one or more experts must go through millions of
examples and assign them a label. Apart from this main
drawback, supervised learning also has some advantages.
The first one is the ease of use and interpretation of the
results. Indeed, the output of the classifier belongs to one of
the classes defined by the labels of the dataset. The second
advantage of supervised learning is its accuracy to classify
similar examples. However, this accuracy drops significantly
when the new examples are not so similar to the ones in the
training set [7].

The most popular technique of unsupervised learning is
clustering, where the algorithm exploits the similarity of the
examples in order to form clusters or groups of instances.
Examples belonging to the same cluster are assumed to
have similar properties and belong to the same class. In
contrast to supervised learning, disadvantages of unsupervised
learning include manual choice of the number of cluster that
the algorithm must form, lower accuracy of the prediction,
and that the meaning of each cluster must be interpreted
to understand the output. However, unsupervised learning
is more robust to large variations. This is a very important
advantage when applied to the problem of intrusion detection,
since it means that unsupervised learning is able to generalize
to new types of attacks much better than supervised learning.
In particular, this property could be quite beneficial when
trying to detect zero-day vulnerabilities.

B. Ensembles

The ensemble method is a way to build different types
of approaches to solving the same problem: the outputs of
several algorithms used as predictors for a particular problem
are combined to improve the accuracy of the overall system.
Ensemble approaches were introduced for the first time in
the late 80s. In 1990, Hansen and Salamon showed that



64

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the combination of several artificial neural networks can
drastically improve the accuracy of the predictions [8]. The
same year, Schapire showed theoretically that if weak learners
(i.e., classifiers able to correctly classify only a small fraction
of the examples in a dataset) are combined, it is possible to
obtain an arbitrary high accuracy [9].

The difficulty of ensemble approaches lays in the choice
of the algorithms constituting the ensemble and the de-
cision function that combines the results of the different
algorithms. Often, the more algorithms the better, but it is
important to take into account the computational expense
added by each new algorithm. The decision function is
often a majority vote that is both simple and efficient,
but alternatives should be analysed to obtain an optimal
combination. Another advantage of ensemble approaches
is their modular structure, unlike hybrid constructions that
are engineered with algorithms having non-interchangeable
positions. Consequently, the ensemble designer can easily
replace one or more algorithms with a more accurate one.

Bagging and boosting are the two main techniques used to
combine the algorithms in an ensemble. In an ensemble using
the boosting technique, the algorithms are used sequentially.
The first algorithm analyses all the examples in the dataset
and assigns weights to each of them. The examples with a
higher value for the weight are the ones that were classified
wrongly by the algorithm. Then, the next algorithm receives
as input the dataset as well as the weights for all examples
in the dataset. The weights allow the algorithm to focus on
the examples that were the most difficult to classify. These
weights are updated according to the results of the second
algorithm and the process moves to the third algorithm. This
sequence continues until the last algorithm of the ensemble
has processed the data. The advantage of this technique is that
the most difficult examples can be classified correctly without
adding too much computational overload. The use of weights,
which are continuously updated, reduces the processing time
as the data goes down the chain of algorithms.

In an ensemble using the bagging technique, all algorithms
of the ensemble are used in parallel. In this case, each
algorithm builds a different model of the data and the outputs
of all predictors are combined to obtain the final output of
the ensemble. In order to build different models, either each
algorithm of the ensemble, or the data fed to each algorithm,
or both, can be different. Since all algorithms perform
in parallel, each of them can be executed on a different
processor to speed up the computation. This is an important
advantage over the boosting technique because nowadays
multicore processors are very common even on personal
computers. With this kind of architecture, the ensemble does
not significantly increase the processing time compared to a
single algorithm because the only additional time needed is
used for the decision function that combines the outputs of
all algorithms.

C. Feature Selection

Feature selection is a very efficient way to reduce the
dimensionality of a problem. Redundant and irrelevant
variables are removed from the data before being fed
to the machine learning algorithm used as a classifier.
Feature selection is a preprocessing step that commonly
is independent of the choice of the learning algorithm. It
can be used in order to improve the computational speed
with minimum reduction of accuracy. Other advantages
include noise reduction and robustness against over-fitting
since it introduces bias but drastically reduces the variance.
Generally, automatic selection of features works much better
than manual selection because the algorithm is able to find
correlations between the features that are not always obvious
even for a human expert. Feature selection is an important
preprocessing step of a machine learning algorithm that
should not be overlooked. In particular, it should always be
applied when the problem has a high dimensionality, as is
the case for intrusion detection, since there is no point in
feeding an algorithm with features that are irrelevant or add
an insignificant amount of new information.

The main feature selection algorithms are minimum
redundancy maximum relevance (mRMR) and principal
component analysis (PCA). The former selects the subset
of variables most relevant to the problem. The variables are
ranked according to the information that they contain. This
quantity of information is calculated by using the concept of
entropy from information theory. The latter, PCA transforms
the set of variables into a new smaller set of features. In
both cases, the goal is to extract as much information as
possible from as few features as possible. While PCA has
been extensively used for the problem of intrusion detection,
particularly on the KDD99 dataset, surprisingly, mRMR
seems not to have been used much or at all [10].

III. THE KDD99 DATASET

As observed in the introduction, part of the problem of
automatically creating good intrusion detection systems is
the lack of labelled datasets to train on. The only one
freely available is the KDD Cup 99 dataset, which was
used for the first time in the 3rd International Knowledge
Discovery and Data Mining Tools Competition in 1999. It
is an adaptation of the DARPA98 dataset [11] created in
1998 by the (then) Defense Advanced Research Projects
Agency (DARPA) Intrusion Detection Evaluation Group (now
the Cyber Systems and Technology Group of MIT Lincoln
Laboratory). The DARPA98 set includes seven weeks of data
(captured in the form of a tcpdump) from traffic passing
through a network engineered for the purpose, i.e., the traffic
was generated in a simulated and controlled environment.

A few alternative datasets exist, but are limited by either
not being generally accessible to the research community or
by not being annotated. The UNB ISCX Intrusion Detection
Evaluation DataSet [12] from the Information Security Centre



65

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of eXcellence at University of New Brunswick contains more
realistic/real network traffic data than the KDD99 dataset
(i.e., mainly normal traffic, with just some intrusion attempts).
However, it seems unfortunately currently not to be available
to other researchers. Publically available datasets from, for
example, the Internet Traffic Archive (http://ita.ee.lbl.gov) and
University of New Mexico (http://www.cs.unm.edu/∼immsec)
contain a lot of data, but unannotated. Tavallaee et al. (2010)
give an overview of most currently available datasets [13].

A. Types of Attacks

All the examples in the KDD99 dataset are separated into
five classes: Normal, Probe, R2L (remote to local), DoS
(denial of service), and U2R (user to root). The class Normal
of course denotes normal (legitimate) network traffic. The
other four classes denote different types of attacks (intrusion
attempts) and are further described in turn below.
Probe attacks are scouting missions used to gather

information about the targeted network or a specific machine
on a network: attackers scan a network to find vulnerabilities
and to create a map of the network, often as the first step of
one of other types of attacks. Hence it is crucial to detect
this type of attacks. However, it is difficult to differentiate
attacks from regular actions, since probing or scanning
typically abuse perfectly legitimate features used by network
administrators to check on machines in a network. The most
common program to scan a network is ‘nmap’, which can
be used to look for active machines and active ports on a
machine, or to discover the type and version of the server
and the operating system. Other probes such as ‘saint’ and
‘satan’ are specialised in discovering vulnerabilities in the
targeted system.

In R2L attacks, external attackers start a session on a
computer outside of the targeted network and then manage
to exploit some vulnerability in a system in order to get
local user access on a computer in the network. In order
to do this, the attackers must have the ability to send
network packets to the victim host. Many remote to local
attacks (e.g., ‘warezmaster’, ‘warezclient’, ‘imap’, ‘named’,
and ‘sendmail’) exploit bugs or weaknesses in different
Internet protocols such as FTP, DNS, and SMTP. Other R2L
attacks exploit system misconfigurations (e.g., ‘dictionary’,
‘ftp write’, ‘guest’, and ‘xsnoop’).
DoS attacks aim either to overload a system so that it

cannot process all requests, or to directly deny legitimate
users access to a system or network resource, such as
network bandwidth, computer memory or computing power.
An attacker can abuse a legitimate feature of a network
protocol by, for example, sending replies to protocol queriers
faster than the destination of the query in order to falsify the
information contained in the network tables of the victim.
Some of these attacks are ‘mailbomb’, ‘neptune’, ‘smurf’,
and ‘ARP poisoning’. Others such as ‘teardrop’ and ‘ping
of death’ (‘pod’) exploit implementation bugs of the TCP/IP

Table I
DISTRIBUTION OF INSTANCES IN THE KDD99 DATASETS

Class Training set Test set

Normal 972,781 60,593
Probe 41,102 4,166
R2L 1,126 16,347
DoS 3,883,370 229,853
U2R 52 70

Total 4,898,431 311,029

protocol, while attacks like ‘apache2’, ‘back’, and ‘syslogd’
target a specific program running on the victim host.

In the type of DoS attacks focusing on resource exhaustion,
the attacker typically sends a huge amount of queries in a
short amount of time to the targeted victim. If the victim is a
server, resource exhaustion occurs when the server receives
more queries than it can process: in a ‘udpstorm’ (also called
‘UDP Port DoS’ attack or ‘UDP packet storm’), an attacker
forges a packet with a spoofed source address of a host
running an “echo” or “chargen” process and sends it to
another hosts running a similar process. The receiving host
replies with an echo packet to the spoofed source, which
replies with another echo packet, etc., creating a loop leading
to resource exhaustion or performance degradation [14].

A variant of DoS used extensively by hackers is distributed
denial of service (DDoS) [15], [16]. A DDoS is performed
in two main steps. First, an attacker gains control over a
(often huge) number of computers, called slaves or zombies,
by exploiting unpatched vulnerabilities found in the target
systems. Then the attacker orders all slaves to query a
designated machine (usually a server) at the same time.

In U2R attacks, access to a normal user account (with
restricted rights) is used as a starting point to gain root user
permissions and take over a system, e.g., by exploiting some
vulnerability in the system. There are several different types
of user to root attacks, with the most common being ‘buffer
overflow’ [17] that aims to corrupt a program with high
privileges (i.e., root) in order to take control of the host
computer running the vulnerable program. The attacker uses
a buffer with non-existent or poorly performed boundary
checking to launch a root shell and then corrupts the stack
pointer to point to the attacker’s own malicious code. Other
U2R attacks such as ‘loadmodule’ or ‘perl’ take advantage
of the way some programs sanitize their environment. Others
still (e.g., ‘ps’) exploit poor management of temporary files.

B. Training and Test Sets

The KDD99 dataset is divided into a training set and a
test set. Table I shows the distribution of instances of the
KDD99 training and test sets over the different classes of
attacks. The various types of attacks belonging to each of
these classes are further detailed in Table II.



66

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table II
TYPES OF ATTACKS IN THE KDD99 DATASETS

Class Attack Training set Test set

Probe

satan 15,892 1,633
ipsweep 12,481 306
portsweep 10,413 354
nmap 2,316 84
mscan 0 1,053
saint 0 736

Total 41,102 4,166

R2L

warezclient 1020 0
guess passwd 53 4,367
warezmaster 20 1,602
imap 12 1
ftp write 8 3
multihop 7 18
phf 4 2
spy 2 0
snmpgetattack 0 7,741
snmpguess 0 2,406
httptunnel 0 158
named 0 17
sendmail 0 17
xlock 0 9
xsnoop 0 4
worm 0 2

Total 1,126 16,347

Class Attack Training set Test set

DoS

smurf 2,807,886 164,091
neptune 1,072,017 58,001
back 2,203 1,098
teardrop 979 12
pod 264 87
land 21 9
mailbomb 0 5,000
apache2 0 794
processtable 0 759
udpstorm 0 2

Total 3,883,370 229,853

U2R

buffer overflow 30 22
rootkit 10 13
loadmodule 9 2
perl 3 2
ps 0 16
xterm 0 13
sqlattack 0 2

Total 52 70

Normal 972,781 60,593

Total 4,898,431 311,029

Each entry in the sets is represented by a label and 41 fea-
tures such as duration, src_bytes, and dst_bytes.
Of the features, 38 are numerical and thus only three non-
numerical: protocol_type, service, and flag. For
the non-numerical features, there are three protocol types
(TCP, UDP, and ICMP), 70 different services, and 11 possible
flags. The non-numerical variables are normally transformed
into numerical ones to ensure that all the machine learning
algorithms are able to process their values.

The KDD99 training set contains 4, 898, 431 entries and
is highly unbalanced. Whereas the DoS class contains
3, 883, 370 instances, the classes U2R and R2L are repre-
sented by only 52 and 1, 126 instances, respectively. With
such a small number of examples to train on, it can be
expected that it will be difficult for the classifiers to predict
the correct classes of unseen examples.

The test set is composed of 311, 029 entries with a
distribution of the examples over the different classes similar
to that in the training set. However, the number of examples
belonging to the class R2L is more than ten times higher
than in the training set, so that in order to perform well
on the test set, the predictor must acquire a very high

power of generalisation with 1, 126 training examples. Most
importantly, the number of unseen attacks added in the test
set is huge: for the classes U2R, R2L and Probe, it is
respectively 44.29%, 63.34% and 42.94%. Furthermore, the
attacks ‘spy’ and ‘warezclient’ belonging to the class R2L
are not represented in the test set. In particular, ‘warezclient’
attacks count for more than 90% of the R2L training set.

Notably, two entries in the test set erroneously have a
service value of ICMP, as also previously reported [18].
Those faulty entries were removed from the test set before
carrying out the experiments reported in Section V.

The major criticisms of the KDD99 dataset include the
unbalanced distribution of the data, that the redundant records
can introduce a bias in the learning phase because of their
frequency, that the dataset includes old attacks which have
been mostly mitigated, and that the data were captured from
a controlled environment somewhat different from what is
observed in the wild. The first two issues can be addressed
by sampling appropriate sets of examples for each class
of attacks. However, the distribution of R2L attacks in the
training set and the test set is a problem that is difficult to
overcome.



67

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Nevertheless, the KDD99 dataset is far from useless.
Firstly, if an IDS using machine learning does not perform
well on old attack provided that the data are well sampled,
why would it on newer ones? Furthermore, most of the
research in the field of machine learning applied to intrusion
detection uses the KDD99 dataset, making it a vector of
comparison between different approaches. The controlled
nature of the environment in which the data were captured
is probably the most problematic. For example, the high
number of attacks in comparison to normal traffic does not
reflect the reality of a network in which almost all traffic is
normal. Again, appropriate sampling is required. In addition,
the IDS should at least be accurate on data produced by a
simulated environment before being tested on a real network
where the traffic pattern is probably less predictable.

IV. RELATED WORK

Intrusion detection systems have been around since the
80s. In 1980, Anderson introduced the concept of host-based
intrusion detection [19]. Seven years later, Denning laid the
foundations of intrusion detection system development [20].
Network-based intrusion detection systems were introduced
in 1990 [21]. In the late 90s, researchers in artificial
intelligence started to investigate applying machine learning
algorithms to improve intrusion detection.

An intrusion detection system should be able to au-
tonomously recognize malicious actions in order to defend
itself against variants of previously seen attacks and against
attacks exploiting zero-day vulnerabilities. Misuse-based
IDSs can only detect attacks whose signatures are available
in their signature database. Signatures of attacks are very
specific, and a slight variation of the attack can make it
unnoticeable for the IDS. That is why learning mechanisms
must be implemented to detect and prevent these attacks
without having to wait for an update of the signature database
or a patch for the vulnerable system. Still, machine learning
algorithms are designed to recognize examples similar to
those available in the training set used to build the model of
the data. Consequently, an IDS using machine learning would
have a hard time detecting attacks which patterns are totally
different from the data previously seen. In other words, even
though machine learning is a suitable candidate to detect
variants of known attacks, detecting completely new types of
attacks might be out of reach for these kinds of algorithms.

For a summary of most research involving machine
learning applied to IDSs until 2007, see Wu & Banzhaf (2010)
who cover a range of techniques, including fuzzy sets, soft
computing, and bio-inspired methods such as artificial neural
networks, evolutionary computing, artificial immune systems,
and swarm intelligence; comparing the performance of the
algorithms on the KDD99 test set and showing that all
algorithms perform poorly on the U2R and R2L classes [22].
The best results reported are by genetic programming with
transformation functions for R2L and Probe and by linear

genetic programming (LGP) for DoS and U2R (with 80.22%,
97.29%, 99.70% and 76.30% accuracy, respectively). How-
ever, since ensemble-based methods are fairly new in being
applied to intrusion detection, the description of them in the
review is somewhat limited. The first works on the topic date
from 2003 and many papers were written in 2004 and 2005;
recently (from 2010 onwards), there has been a renewed
interest of ensembles in this field.

Abrahams et al. have performed several types of ensemble-
based experiments, all on a subset of the DARPA98 dataset
composed of 11, 982 randomly selected instances from
the original dataset with a number of data for each class
proportional to the size of the class, except for the smallest
class which was included entirely. This data was then divided
into a training set of 5, 092 and a test set of 6, 890 instances.

First, in [23], an ensemble composed of different types of
artificial neural networks (ANN), support vector machines
(SVM) with radial basis function kernel, and multivariate
adaptive regression splines (MARS) combined using bagging
techniques was compared to the results obtained by each
algorithm executed separately. SVM used alone outperformed
the other single algorithms, but was totally outperformed by
the ensemble. This ensemble surprisingly obtained a 100%
accuracy on the test set for the R2L class. However, the
researchers warn that some of these results might not be
statistically significant because of the unbalanced dataset.

Second, in [24], [25], the combination of classification and
regression trees (CART) and Bayesian networks (BN) in an
ensemble using bagging techniques was explored, as well as
the performance of the two algorithms when executed alone.
Feature selection was applied to speed up the processing:
the performance on the set of 41 features was compared
to a set of 12 selected by BN, 17 selected by CART and
19 features selected by another study. BN performed worse
with a smaller set of features except on the Normal class.
However, when using the set of 19 features, BN and CART
complemented each other to increase the IDS accuracy for
all classes. The final ensemble was composed of three CART
to detect Normal, Probe and U2R examples, respectively;
one ensemble of one CART and one BN to detect R2L
examples; and one ensemble of one CART and one BN to
detect DoS examples — with each classifier trained on its
resp. reduced set of features; an approach quite similar to
the one used in the present paper.

This was then extended by adding a hybrid model com-
posed of SVM and decision trees (DT) to the ensemble [26],
[27]. In the new model, the data was first sent to the DT that
generated a tree to fit the features and values of each example
in the dataset. The tree was then sent to the SVM to produce
the final output. A single DT was in charge of detecting U2R
attacks, a single SVM in charge of detecting DoS attacks, the
hybrid model in charge of Normal instances, and the same
ensemble as above in charge of Probe and R2L attacks.
However, the hybrid model did not seem to help much.



68

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Third, in [28], [29], fuzzy rule-based classifiers, linear
genetic programming (LGP), DT, SVM, and an ensemble
were evaluated using feature selection to reduce the number of
variables of the dataset to 12 on a subset of the DARPA 1998
dataset, selected in the same way as in the work mentioned
previously. The fuzzy rule-based classifier outperformed the
other methods when trained on all 41 features, with the
second set of rules scoring 100% accuracy for all classes of
attacks; while LGP seemed more appropriate when using a
smaller feature set, except for the U2R and Normal classes.
The ensemble was composed of one DT in charge of the
Normal instances, one LGP each for Probe, R2L and DoS,
and one fuzzy set of rules for U2R. The results obtained with
the ensemble were very encouraging with accuracy > 99%
for all classes (on the subset data).

Finally, the results of several machine learning algorithms
were compared in [30]. In particular, the performance of
linear genetic programming (LGP), adaptive neural fuzzy
inference system (ANFIS), and random forest (RF) were
analysed, and an ensemble was created by combining the LGP,
ANFIS, and RF algorithms. The ensemble outperformed the
single algorithms, but its exact configuration is not described
in the paper.

Folino et al. [31], [32], instead used the entire KDD99
dataset and examined the performance of a system composed
of several genetic programming ensembles distributed on
the network based on the island model. Each ensemble was
trained on a different dataset for a number of rounds. Once the
ensemble had been trained for one round, it was exchanged
with the other islands through the distributed environment.
The advantage of a distributed system, as pointed out by
Folino et al., is the increase in privacy and security in
comparison to a central IDS that has to collect audit data from
different nodes on the system. The system showed average
performance for the Normal, Probe and DoS classes, but
very low for the U2R and R2L classes. However, very few
papers study distributed environment for intrusion detection
even though this might be a very good idea.

Bahri et al. [33] introduced Greedy-Boost, a noise resistant
adaptation of the AdaBoost boosting technique [34]. The
Greedy-Boost classifier contrasts with AdaBoost by being a
linear combination of models and by updating the distribution
of weights according to the initial distribution instead of
the previous one. Greedy-Boost’s performance in terms of
precision and recall on the KDD99 dataset was extraordinary
good. In particular, the precision of the most difficult class
(R2L) was much higher than what is usually observed.
However, it is not clear from the paper if the model was
evaluated on the test set, the training set, or a modified
version of one of the sets.

Peng Zhang et al. [35] evaluated the robustness of an
ensemble when confronted with “noisy” data sets, that is,
data sets containing incorrectly labelled instances. In order to
tolerate label imprecision and errors, they used an aggregate

Table III
MOST RELEVANT FEATURES FOR EACH ATTACK CLASS IN THE KDD99

DATASET ACCORDING TO MUKKAMALA et al. (2005) [4]

SVM features LGP features MARS features

Probe

src bytes srv diff host rate src bytes

dst host srv count rerror rate dst host srv count
count dst host diff srv rate dst host diff srv rate
protocol type logged in dst host same srv rate
srv count service srv count

U2R

src bytes root shell dst host srv count
duration dst host srv serror rate duration
protocol type num file creations count
logged in serror rate srv count
flag dst host same src port rate dst host count

R2L

srv count is guest login srv count
service num file access service
duration dst bytes dst host srv count
count num failed logins count
dst host count logged in logged in

DoS

count count count
srv count num compromised srv count
dst host srv serror rate wrong fragments dst host srv diff host rate
serror rate land src bytes
dst host same src port rate logged in dst bytes

Normal

dst bytes dst bytes dst bytes

dst host count src bytes src bytes

logged in dst host rerror rate logged in

dst host same srv rate num compromised service
flag hot hot

ensemble of SVM, DT, and logistic regression. An aggregate
ensemble builds several classifiers over a range of data sets
using different learning algorithms. The aggregate approach
was shown to outperform both a horizontal ensemble frame-
work in which classifiers were built over different data sets
with only one learning algorithm for each set, and a vertical
ensemble framework in which several classifiers were built
over the data sets using different learning algorithms that
were then combined into an ensemble.

The key conclusion from all these works is that ensemble
approaches generally outperform approaches in which only
one algorithm is used. An ensemble is a very efficient way
to compensate for the low accuracy of a set of weak learners.
Moreover, feature selection should provide specific subsets to
train algorithms specialised in the detection of one particular
class of attacks.

Mukkamala et al. [4]–[6] identified the five most important
features for each class of attacks, as shown in Table III. The
features were selected using support vector machines, linear
genetic programming, and multivariate adaptive regression
splines, with in total 16 distinct features selected for SVM,



69

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

21 for LGP and 13 for MARS. Features that are selected by
at least two different algorithms for the same class of attacks
are highlighted because they should most definitely be in the
subset of features used to detect that specific class of attack.

Surprisingly, neither protocol_type nor service
was selected by the three algorithms for the DoS class in the
experiments by Mukkamala et al. (2005) [4]. In contrast,
Kayacik et al. (2007) [36] concluded that those two features
were the most significant ones for the denial of service class
of attacks, even though the experiments by Kayacik et al.
were conducted on hierarchical self-organizing maps (SOM).

V. EXPERIMENTS

The problem of intrusion detection can be divided into
five distinct subproblems, one for each class of instances
(Normal and the four types of attacks: Probe, U2R, R2L,
and DoS). Here each problem will be handled by one or
more algorithms of an ensemble, allowing each subproblem
to be treated separately in the experiments and to join the
solutions to the subproblems into a general solution for the
problem of intrusion detection.

A dedicated training dataset for each attack subproblem
was built by sampling a number of instances from that class
of attacks and the same number from the class Normal in
order to have a balanced dataset with 50% anomalous and
50% normal examples (no algorithm was explicitly designed
to detect normal traffic). A balanced dataset is necessary to
avoid the problem of skewed classes where the accuracy of
the predictor can be made artificially high by increasing the
number of instances from one of the classes.

For the classes of attacks with few examples, R2L and
U2R, the entire set was selected (i.e., 52 instances of
U2R and 1, 126 of R2L). For the Probe class, 10, 000
instances were selected randomly. This number was chosen
to have a significant sample with as many different examples
as possible without affecting the training time too much.
The DoS training set contains 3, 883, 370 instances, with
‘neptune’ and ‘smurf’ attacks counting for the majority (with
1, 072, 017 and 2, 807, 886 instances, respectively). The other
types of attacks have much smaller number of examples, e.g.,
the type of DoS called ‘land’ is represented only 21 times. For
this reason, samples of 5, 000 examples each were selected
randomly from the ‘neptune’ and ‘smurf’ sets. All examples
of the other types of DoS attacks were included for a total of
13, 467 DoS instances. For all four classes, the same number
of Normal instances was selected from the normal dataset
leading to a total training set size of 104 examples for U2R,
2, 252 for R2L, 20, 000 for Probe, and 26, 934 for DoS.

In order to investigate the applicability of ensemble-based
approaches to intrusion detection, two sets of experiments
were carried out. The first step of the experiments was to
assess the sets of features selected in [4], that is, the key
features relevant to each of the four classes of attacks. Then
in a second round of experiments, those sets were fed to an

'

&

$

%

PROBE DETECTOR

- -
module
decision
function

�
�
�
��

�
�

-“SVM”
Decision Tree

@
@
@��

-“LGP”
Decision TreePPP

@@ -“MARS” Decision Tree�
��B

B
B -Combined Decision Tree�

�
�

PROBE DETECTOR- -Probe /
Normal

R2L DETECTOR- -R2L /
Normal

U2R DETECTOR- -U2R /
Normal

DoS DETECTOR- -DoS /
Normal

network
packet

-
ensemble
decision
function

�
�
�
�-

Figure 1. Overview of the ensemble model

ensemble of machine learning algorithms. All models were
evaluated by 10-fold cross-validation.

A. Experimental Setup

Figure 1 gives a schematic overview of the ensemble
model used in this work. First, the network packet being
analysed is sent to four different detector modules, one each
for Probe, R2L, U2R, and DoS. Each module executes a
preprocessing step to extract a number of features from the
packet; the set of features varies depending on the module
(as further described in Section V-B). The extracted features
are then dispatched to different decision trees that have been
previously trained with the same features on the training set,
as shown at the top of the figure for the Probe detector.
Each decision tree is a binary classifier which outputs 0 if
the packet is considered normal traffic and 1 if the packet is
classified as anomalous. A vector of dimension n containing
the output of n classifiers is then fed to the module decision
function. In the figure n = 4 (one each for the features
selected by SVM, LGP and MARS plus the set of those
features combined), but it could be any number of algorithms.

Finally, a vector of dimension 4 containing the output of
each detector module is fed to the ensemble decision function
that combines the results and outputs a value describing
if the packet is considered normal or anomalous, and if
anomalous from which class of attacks. The easiest situations
are when all modules, or all modules except one, output
Normal. In the former case, the system classifies the packet
as normal. In the latter, the system classifies the packet



70

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as anomalous and is able to unambiguously identify the
class of attack concerned. If more than one module classify
the packet as anomalous, it will be more difficult for the
network administrator to understand which class of attack
the anomalous packet belongs to.

The resulting model is an ensemble of ensembles with
feature selection applied independently for each module.
However, in this work, we will not be concerned with
the decision functions for each module. Instead, we will
evaluate the intersection of the sets of false positives and
false negatives produced by the four algorithms in each
module. This will give us the optimal performance that each
module could achieve. The most important advantages of
this model are the possibility to execute the algorithms in
parallel and the modularity allowing the exchange of any
algorithm of the ensemble without any modification of the
rest. The complete ensemble model is as shown in Figure 2
(on the next page).

B. Feature Selection Assessment with Decision Trees

In the first experiment, several classifiers were trained with
different number of features. The goal of the experiment was
not to find the best algorithm possible and fine-tune it, but
rather to conclude on how well an algorithm performs with a
smaller set of features. In this case, it is only natural to use
exactly the same setting for the algorithms and to compare
the performance based only on the sets of features. Five
decision trees were trained with different sets of features.
Only the training set was used for this experiment. The
results obtained represent the performance of the algorithms
on the cross-validation set which is extracted from the training
set. The model assessment experiment (described below, in
Section V-C) evaluated performance on the test set.

The first classifier was trained with all 41 features in the
dataset. The next three were trained with five features selected
in [4] for each class of attacks by the three algorithms support
vector machines (SVM), linear genetic programming (LGP)
and multivariate adaptive regression splines (MARS). These
features are listed in Table III. The last classifier was trained
on a “combined” set of features: the union of the feature
sets selected by the three algorithms from which redundant
features have been removed. The number of features in the
“combined” set is 11 for Probe, 14 for U2R, 11 for R2L and
12 for DoS, as can be seen in Figure 2. These additional sets
help bringing down the number of false positives and false
negatives, as we will see in the results of the experiments.
Note that there is no extra cost from the extraction of these
features from the original network packets since they have
to be extracted for the other algorithms anyway.

The results obtained in terms of accuracy are shown in
Table IV and can be compared to those obtained with 41
features by Peddabachigari et al. (2007) [27] using the same
decision tree. For the class Probe, the accuracy of the
classifier trained with all 41 features is exactly the same as

Table IV
ACCURACY OF THE FEATURE SELECTION ASSESSMENT

Decision Tree Classifier Probe U2R R2L DoS

41 features 99.86 93.00 99.02 99.95
5 SVM features 99.82 96.00 98.58 93.35
5 LGP features 99.32 90.00 97.38 98.69
5 MARS features 99.75 97.00 98.04 99.86
11–14 combined features 99.90 96.00 98.93 99.95

Peddabachigari et al. (2007) [27] 99.86 68.00 84.19 96.83

reported in [27]: 99.86%. The classifiers trained with sets
of five features are not far behind the one trained with all
41 features. The reduced feature sets seem to be a good
choice when the algorithms are trained using decision trees.
However, the classifier fed with the five features selected by
LGP performs slightly worse than the others and could be
replaced by a more accurate algorithm.

The results for U2R are worse than for Probe, but this
was expected: each false positive and false negative has a
larger impact on the general accuracy due to the small number
of examples. The results (93–97%) are much better than the
68% accuracy obtained by Peddabachigari et al. on U2R.
However, the classifier trained on features selected by LGP
again performed poorly. Interestingly, the algorithms trained
on the features selected by SVM and MARS outperformed
the one trained on all features. This is probably since 41
features are too many to generalize from given the small
number of examples; recall that the training set for U2R only
held 52 instances (cmf. Table I).

The results for R2L are similar to those obtained for
Probe, even though the number of instances in the dataset
is much smaller. The results (97–99%) are also much better
than Peddabachigari et al. who obtained 84% accuracy on
this class. This experiment clarifies that classifying Probe
attacks and R2L attacks are two very distinct problems, even
if they are both intrusions, which is why they should be
treated separately. Again, the selected features seem to be a
good choice even if a small drop of accuracy can be observed
compared to Probe. The classifier trained on the features
selected by MARS has a high rate of false positives and
the one trained on features selected by LGP has the lowest
accuracy, but also a lower false positive rate, which implies
a higher false negative rate.
DoS also shows better results than Peddabachigari et al.

who obtained 96.83% accuracy. The classifier trained on
features selected by SVM obtained the worst score, whereas
features selected by MARS gave the best accuracy (99.86%)
after the set of all features and the combined feature set that
both reached 99.95%. This is important, since there is a set
of five features that can perform almost as well as the full
feature set even on larger number of training examples.



71

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Probe Module

Decision Tree

Decision Tree

Decision Tree

Decision Tree

5 features (SVM)

5 features (LGP)

Decision Tree

Decision Tree

Decision Tree

Decision Tree

Decision Tree

Decision Tree

Decision Tree

Decision Tree

Decision Tree

Decision Tree

Decision Tree

Decision Tree

5 features (MARS)

11 features 

11 features 

Data
Preprocessing

Probe 

0/1

0/1

0/1

0/1

Probe Decision
Function Normal/Probe

Remote to Local (R2L) Module

5 features (SVM)

5 features (LGP)

5 features (MARS)

11 features 

11 features 

Data
Preprocessing

R2L

0/1

0/1

0/1

0/1

R2L Decision
Function

Normal/Probe

User to Root (U2R) Module

5 features (SVM)

5 features (LGP)

5 features (MARS)

14 features 

14 features 

Data
Preprocessing

U2R 

0/1

0/1

0/1

0/1

U2R Decision
Function Normal/U2R

Denial of Service (DoS) Module

5 features (SVM)

5 features (LGP)

5 features (MARS)

12 features 

12 features 
Data

Preprocessing
DoS 

0/1

0/1

0/1

0/1

DoS Decision
Function

Normal/DoS

Ensemble 
Decision
Function

Normal/Probe/
R2L/U2R/Dos

Network 
Packet

Figure 2. The complete ensemble. Each algorithm is a binary classifier outputting 0 if the packet is considered normal traffic and 1 if anomalous.



72

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table V
FEATURE SELECTION ASSESSMENT: FALSE POSITIVES

Decision Tree Classifier Probe U2R R2L DoS

41 features 12.0 4.0 17.0 6.0
ENSEMBLEmax 0.7 0.3 6.6 0.0

Table VI
FEATURE SELECTION ASSESSMENT: FALSE NEGATIVES

Decision Tree Classifier Probe U2R R2L DoS

41 features 17.0 3.0 10.0 8.0
ENSEMBLEmax 3.0 0.3 0.5 1.6

The overall numbers of false positives (FP) and false
negatives (FN) drop significantly when using more than one
algorithm, as Tables V and VI show. For the FP and FN
analysis, we call ENSEMBLEmax the number of examples
wrongly classified by all three algorithms trained on sets of
five features and the one trained on the “combined” feature
set. This is the maximum an ensemble composed of the
four algorithms could achieve if the combination of their
individual results was optimal; here calculated by taking the
intersection of the set of examples misclassified by each
algorithm. The experiment was run ten times for each attack
class to ensure accuracy of the results and to find the attack
types in each class that ENSEMBLEmax misclassified most.
Hence the values displayed in the table are average values
over the ten validation sets of the 10-fold cross-validation.

All types of Probe attacks appear at least once as a
false negative, however, ‘satan’ and ‘portsweep’ seem to be
the most difficult attacks to detect. When comparing the
problematic instances of ‘satan’, ‘portsweep’ and ‘ipsweep’
with true instances of the same attack types, it seems that
src_bytes is the feature that gives the classifiers most
trouble. In fact, for probe attacks, src_bytes should be
very small, although not equal to zero (since there is always
a number of bytes contained in the header); when an example
of these attacks has a high value for src_bytes, it goes
undetected. This is a big problem since an attacker could
easily fill the packets of the attack with random bytes to
evade the IDS. It could seem like a good idea to get rid
of this feature; however, src_bytes is very important to
detect Probe attacks: the only classifier that performs poorly
is the one trained on the features selected by LGP, a feature
set that does not include src_bytes.

For the U2R class, in general either one false positive or
one false negative appears in each test run. The false positive
can be explained by the small number of examples in the
dataset, only 52 Normal examples are present. The false
negative is always a ‘rootkit’ attack that is wrongly classified

as normal traffic, but it is not always the same instance,
indicating that some information is missing for the decision
tree to classify ‘rootkit’ attacks. These can be any kind of
malware such as worm, Trojan or virus with the ability to
hide its presence and actions to the users and processes of a
computer; this is called a stealth attack. The diversity found
in malware probably has a huge impact on the problem.
Moreover, as shown in Table II, there are only 10 ‘rootkit’
attacks in the dataset, increasing the difficulty. Examining
the values of these examples for the 14 features of the
combined algorithm revealed that almost all 10 instances have
very different values for those features. The ENSEMBLEmax

performs perfectly in most cases, but it is difficult to conclude
anything with such a small dataset: One false positive or
false negative out of ten instances of the cross-validation set
is quite a bad score.

The combination of all algorithms helps to bring down the
number of false positives and false negatives also for R2L, but
these numbers are again too high for a real-world application.
There are eight different types of R2L attacks represented
in the training set. After running the experiments ten times,
only three types of these attacks trigger false negatives for
the ENSEMBLEmax: ‘spy’, ‘imap’, and ‘phf’. There is not
much documentation about ‘spy’ attacks, which are not even
represented in the test set. However, the signatures of ‘imap’
and ‘phf’ are described in [37]. Detection of these attacks
requires very specific features. In the case of a ‘phf’ attack,
the IDS according to Kendall (2007) “must monitor http
requests watching for invocations of the phf command with
arguments that specify commands to be run” [38]. None of the
41 features in the KDD99 dataset gives any information about
a specific command being run on the system. It would be
impractical to do so for each specific command vulnerable to
an attack. However, this could be the reason why the machine
learning algorithms are incapable of detecting these kinds of
attacks with certainty. Without meaningful information, the
algorithms are powerless in building a proper model.

There are two ways to solve this problem, either new
features could be added to the dataset or an IDS using
signatures of attacks should perform the detection for these
particular types of attacks. In the former case, the new
features should not be too specific to ensure that new attacks
could also be identified. In the second case, the IDS loses
its ability to detect similar attacks but its accuracy increases.
To detect an ‘imap’ attack, an IDS should be “programmed
to monitor network traffic for oversized Imap authentication
strings” [38]. This seems more within reach of our IDS,
since service and src_bytes are both represented in
the feature set.

ENSEMBLEmax was highly successful on the DoS class,
returning zero false positives. Table VI shows that the number
of false negatives is reduced as well. Three types of attacks
trigger false negatives: ‘smurf’, ‘neptune’, and ‘back’. The
first two rarely appear in the list; however, the third seems



73

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table VII
ACCURACY OF THE MODEL ASSESSMENT

Decision Tree Classifier Probe U2R R2L DoS

41 features 93.09 90.00 50.00 79.34
5 SVM features 77.63 40.00 50.00 87.70
5 LGP features 87.48 83.57 61.03 76.10
5 MARS features 84.04 85.00 50.00 82.20
11–14 combined features 79.97 94.29 50.00 85.36

to be the most difficult type to handle. This is not a surprise,
since to detect a ‘back’ the IDS must look for a big number
of frontslashes (“/”) in the request URL [37]. There are no
features in the dataset taking this particularity into account.
Consequently, the model has to rely on other features to make
up for the lack of information, leading to an imperfect result.
Nevertheless, as expected, ENSEMBLEmax brings robustness
to the accuracy of the IDS.

C. Model Assessment Experiment

In the second round of experiments, several classifiers
were trained with different number of features on examples
from the training set. Decision tree was again the algorithm
used as classifier. The goal of the experiment was to evaluate
the model used in the previous experiment on the test set
after training on the same number of examples as selected
for the training set for each class in the first experiment. As
discussed in Section III, the test set is composed of many
examples of unseen attacks (attacks that are not represented
in the training set). The experiment aimed to assess if the
ensemble was capable of generalizing to new types of attacks
belonging to the same classes as the ones previously seen.

In most cases, the accuracy of all algorithms degraded
drastically in comparison to the first experiment as shown in
Table VII, where the values represent one run of the program.
In particular, the set of features selected by SVM obtains
the worst results, and does not seem to generalize well to
new types of attacks. The set selected by LGP managed
to keep a respectable accuracy on the Probe class, while
all classifiers except SVM showed results very similar to
those in the feature selection experiments on U2R, with the
“combined” set of features being the best one, outperforming
even the algorithm trained with all 41 features in the same
way that was observed in the feature selection experiment.

Particularly bad results could be expected for R2L because
of the poor distribution of attacks in the training set, and
Table VII confirms this: the accuracy of all algorithms is equal
or close to the 50% guessing baseline. Most of the attacks
are ‘warezclient’ (1020 out of 1126 in total for the R2L
training set) leaving only 106 instances of all other attack
types (seven different types) to train on — and ‘warezclient’
is not even represented in the test set. There is no chance
that the models built would perform well on new attacks (or

Table VIII
MODEL ASSESSMENT: FALSE POSITIVES

Decision Tree Classifier Probe U2R R2L DoS

41 features 86.0 3.0 0.0 69.0
ENSEMBLEmax 11.4 1.6 1.0 16.6

Table IX
MODEL ASSESSMENT: FALSE NEGATIVES

Decision Tree Classifier Probe U2R R2L DoS

41 features 490 11 16,347 7,268
ENSEMBLEmax 524 1 7,779 688

even on old) with this limited training set. In addition, the
results for DoS were much worse than in the first experiment,
with the set of features selected by LGP obtaining by far the
worst results. Nevertheless, all other algorithms performed
better than the one trained with all features.

As Tables VIII and IX show, the ENSEMBLEmax is able to
handle part of the new attacks, but does not recognize them
as easily as the old ones, and the number of false negatives is
very high for most classes. For Probe, the most surprising
fact is that the attack ‘ipsweep’ seems to go undetected almost
all the time. This result is unusual because ‘ipsweep’ was
available in the training set and did not cause any trouble in
the previous experiment. One reason for this could be if the
examples of ‘ipsweep’ from the test set were very different
from the ones in the training set. However, after examining
the training set carefully, typical values for the features of
an ‘ipsweep’ attack were observed, and it appears that the
values of ‘ipsweep’ in the test set are in the same range
as those in the training set. Overall, the results are not bad.
First, almost all old attacks are perfectly detected, especially
‘portsweep’ and ‘satan’ which triggered false negatives in the
first experiment are now absent from the attacks triggering
false negatives. The new attacks are detected most of the
time, but the number of false negatives is still too high to
be useful in a real-world application. Finally, solving the
problem of ‘ipsweep’ would substantially bring down the
number of false negatives.

For U2R, ENSEMBLEmax brings down the average number
of false positives to 1.6 and the average number of false
negatives to 1.0, respectively, over five runs of the program.
As expected, a ‘rootkit’ attack sometimes goes undetected,
just as in the previous experiment. ‘ps’ also occasionally
appears as a false negative. The most surprising result comes
from undetected ‘buffer overflow’, which did not occur in the
feature selection experiment. However, ‘xterm’ and ‘sqlattack’
are detected all the time, which is good because it means
that ENSEMBLEmax generalizes well for the U2R class.



74

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table X
FEATURE SELECTION ASSESSMENT WITH SVM CLASSIFIER

SVM Classifier Probe U2R R2L DoS

41 features 99.61 88.00 97.60 99.83
5 SVM features 97.46 67.00 75.11 89.55
5 LGP features 96.91 82.00 65.02 98.83
5 MARS features 86.92 95.00 92.53 97.74
11–14 combined features 99.28 90.00 98.13 99.90

(a) Accuracy

SVM Classifier Probe U2R R2L DoS

41 features 19.9 15.9 6.7 0.2
ENSEMBLEmax 51.9 0.0 2.6 2.2

(b) False positives

SVM Classifier Probe U2R R2L DoS

41 features 66.4 0.5 50.4 43.6
ENSEMBLEmax 18.5 0.1 6.8 9.4

(c) False negatives

The number of false negatives for the R2L class explodes.
Old and new types of attacks are similarly misclassified. The
only conclusion that can be drawn is that the R2L training
set contains too few examples of each type of attack to be
of any help.

For DoS, the majority of the false negatives are due
to new attacks. Of the old attack types, ‘pod’ is the only
one that regularly triggers a few false negatives, for each
run of the program. Other old attacks, such as ‘smurf’
and ‘neptune’, sometimes trigger false negatives, but this
happens extremely rarely. New attacks are more problematic,
with ‘mailbomb’, ‘apache2’, ‘processtable’, and ‘udpstorm’
recurrently triggering false negatives, even if most of these
attacks are detected in general. Even though its generalization
power is limited, ENSEMBLEmax performed quite well overall
on unseen DoS attacks and helped bring down both false
positives and false negatives. This is quite an improvement,
but again not enough for a real-world application.

D. Ensembles with Support Vector Machine Classifiers

As displayed in Figure 1, the main algorithms used as
classifiers in the ensemble were decision trees (DT). Attempts
were also made to use support vector machines (SVM) with
a Gaussian radial basis function kernel (which is one of
the most powerful machine learning algorithms currently
available). However, the results were not very encouraging,
as displayed in Table X.

Table XI
MODEL ASSESSMENT WITH SVM CLASSIFIER

SVM Classifier Probe U2R R2L DoS

41 features 50.00 50.00 50.00 50.00
5 SVM features 55.45 50.00 50.15 76.42
5 LGP features 64.45 50.00 51.65 77.23
5 MARS features 84.82 72.86 50.00 76.78
11–14 combined features 51.90 50.00 49.97 72.27

(a) Accuracy

SVM Classifier Probe U2R R2L DoS

41 features 0.0 70.0 0.0 0.0
ENSEMBLEmax 0.0 1.0 0.0 173.4

(b) False positives

SVM Classifier Probe U2R R2L DoS

41 features 4166.0 0.0 16,347.0 17,761.0
ENSEMBLEmax 871.8 0.8 4380.8 715.0

(c) False negatives

Utilizing support vector machines with Gaussian radial
basis functions as the main ensemble classification algorithm
for the model assessment experiment yielded even worse
results, as shown in Table XI, where the accuracy for many
classes and classifiers is around the 50% guessing baseline.

One reason why the SVMs do not give accurate results
might be that many data points corresponding to different
attacks are located among the data points corresponding to
normal traffic in the dimensional space. Hence, the SVMs
are not able to find hyperplanes that clearly separate the
examples in the dataset as attacks or normal traffic. On the
other hand, decision trees are able to identify key features
that appear at the top of the tree and are in this way able to
accurately separate the examples.

Intuitively, it is reasonable to assume that, in this case,
using SVMs as multiclass classifiers (one class for each type
of attack) instead of as binary classifiers (attack or normal)
would give more accurate results, since there should be even
more similarities between instances belonging to the same
attack type within an attack class (‘smurf’, ‘neptune’, etc.)
than instances belonging to the same class (DoS, R2L, etc.).

Experiments were also carried out on SVMs using different
kernel functions (linear, quadratic and polynomial of order 3).
The maximum number of iterations then had to be increased
to 100, 000 in order to have the algorithm converge all the
time. These experiments were run on the test set only, but
several times for each kernel.



75

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Surprisingly, quite good results were obtained on the test
set with the linear kernel (except for the R2L class, but that
was to be expected). The results were non-conclusive, but
sometimes even better than with decision trees. The quadratic
kernel also gave some interesting results, but quite limited.
Hence, an accuracy of 94% for the LGP feature set on
Probe attacks could be reached several times. However, the
order 3 polynomial kernel produced terrible results across the
board, and the algorithm did not converge for the polynomial
kernel even after 100, 000 iterations on the feature selection
experiment with cross-validation. It transpires that when
adding more complex forms for the boundaries, the results
are getting worse and worse. The SVMs probably overfit
the data in the training phase. This would explain why the
results are so bad when increasing the boundary complexity.

Furthermore, SVM was much slower than DT, roughly two
orders of magnitude both for training and for classification.
In particular classification time is an important criterion to
take into account when building a real-world application:
if the classifier is very accurate but need too much time to
analyse each packet on a network, chances are that many
packets will go through without being analysed, leading to
poor performance of the intrusion detection system.

VI. DISCUSSION AND FUTURE WORK

The Feature Selection Assessment experiments (Sec-
tion V-B) showed that the ensemble approach is indeed
a very powerful paradigm that can be used to bring down
the number of false positives and false negatives. The lower
accuracy observed by individual algorithms is countered by
the union of their results. Even with sets containing only
five features, the results are very encouraging. Moreover,
treating each class of attack as a different problem solved by
a specialised algorithm seems to work well when compared to
strategies using one algorithm to detect all classes of attacks.
“Divide and conquer” and “Unity is strength” seem to be
opposite views, but they are actually both applied in this
work with impressive results. In general, algorithms using
fewer features have slightly lower accuracy and prediction
time, but much lower training time.

The results obtained by Mukkamala et al. [23] seem to be
correct. However, the features selected by LGP give the worst
result in most cases except for DoS where it is the feature
set selected by SVM that performs poorly. Consequently, the
sets of features selected by LGP should be reconsidered for
all classes except DoS, while the set of features selected for
DoS by SVM should be replaced. The number of different
types of attacks that go undetected is very small and only
few examples of these attacks are problematic. Most of the
time, the problem lays in the lack of information contained
in the dataset. Some attacks require very specific features
and should probably be handled by specialized programs or
signature-based IDSs. The class Probe is a bigger problem
since most of the attacks belonging to this class exploit a

legitimate feature used by network administrators; as a result,
all types of Probe attacks trigger FN at some point, even
though ‘portsweep’ and ‘satan’ are the most problematic.

A smaller feature set means that less information must be
extracted from a network packet in the data preprocessing
phase. Since the accuracy is not lowered too much in the
best cases, this is a huge improvement that could be used in
real IDSs. Moreover, the union of all algorithms using fewer
features tremendously improves the accuracy: on average
over ten runs of the program, only 0.7 FP and 3.0 FN were
observed for Probe over 20, 000 examples, 6.6 FP and 0.5
FN for R2L over 2, 252 examples, 0.3 FP and 0.3 FN for
U2R over 104 examples, and 0.0 FP and 1.6 FN for DoS over
20, 000 examples. Even though these results are much better
than what could be achieved with a single algorithm, they are
still quite far from being useful in a real-world application
where the false positives and negatives should be < 1 for
some 15 million instances in a 10Gb/s Ethernet network.
Arguably, over 90% of those instances will be normal traffic
containing no attack at all, but ENSEMBLEmax still has to be
improved to stand a chance against clever hackers.

The results described above are the best that an ensemble
composed of these algorithms and sets of features could
achieve. In its current state, there is no point in building
an experiment to assess a real combination of the results
of the individual algorithms in the ENSEMBLEmax. Further
work will have to be carried out to find the best suitable
algorithms and sets of features. Nevertheless, it is interesting
to see how well this ENSEMBLEmax can perform when
predicting previously unseen attack types. That was the topic
of the second round of experiments, on Model Assessment
(Section V-C). Even if ENSEMBLEmax in general helps
tremendously in bringing down the numbers of false positives
and false negatives, it is still far from reaching the accuracy
appropriate for a real-world application. In particular, datasets
that are not carefully designed are proven to be useless in
building accurate models of the attacks. This is the case with
the R2L training set, which mainly contains examples of the
‘warezclient’ attack (which is not even represented in the test
set) and very few examples of all other types of attacks. The
performance of ENSEMBLEmax was acceptable for the classes
of attacks U2R and DoS. The performance on the Probe
class was also standard, even though ‘ipsweep’ attacks went
undetected for unknown reasons. Overall, the results of this
second round of experiments were not very satisfying, but
once again proved the usefulness of the ensemble approach.

In the future, particular attention has to be paid to the
features relevant to each attack. New features carrying
meaningful information about the attacks must be designed to
help the machine learning algorithms to successfully classify
all types of attack. The DoS and Probe classes are mostly
characterized by time-related features, whereas R2L and U2R
mostly are characterized by content-related features extracted
from the payload of the network packets.



76

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. CONCLUSIONS

The aim of this work was to show that ensemble
approaches fed with appropriate features sets can help
tremendously in reducing both the number of false positives
and false negatives. In particular, our work showed that the
sets of relevant features are different for each class of attacks,
which is why it is important to treat those classes separately.
We developed our own IDS to evaluate the relevance of
the sets of features selected by Mukkamala et al. [4]. This
system is an ensemble of four ensembles of decision trees.
Each of the four ensembles is in charge of detecting one
class of attacks and composed of four decision trees trained
on different sets of features. The first three decision trees
were fed with sets of five features selected in [4]. The last
decision tree was fed with the union of these three sets of five
features from which the redundant features were removed.

The experiments showed that these sets were appropriate in
most cases. In the first experiment, the set of features selected
by linear genetic programming gave the worst results, except
for the class DoS for which the set of features selected by
SVM performed poorly. The second experiment gave less
interesting results because of the inappropriate distribution
of examples between the training and test sets of the KDD99
data. In particular, the ensemble could not generalize well
enough to be useful for the R2L class because the training
set mainly contains a type of attack that is not represented
in the test set. In both experiments, we looked at the number
of instances that were misclassified by all four algorithms in
order to obtain a result from the best combination of these
algorithms. Further work would be required to develop an
appropriate decision function combining the results of the
different algorithms. However, since the accuracy obtained
here was not good enough for a real-world application,
designing decision functions was unnecessary. Nevertheless,
we are convinced that this work is heading in the right
direction in order to overcome the limitations of current
intrusion detection systems.

Finally, a thorough analysis of the examples that were
misclassified by the ensemble was performed, in particular
highlighting the types of attacks that were systematically
misclassified by the ensemble. By looking at the signatures
of these attacks, we were able to find the reasons for the
classification errors. In most cases, the attacks displayed
very specific features not captured by the set of variables in
the dataset. These attacks should probably be handled by a
specialized system or new variables should be developed to
train the classifiers.

ACKNOWLEDGEMENTS

The authors would like to express their thanks to Lillian
Røstad (Norwegian University of Science and Technology),
Esteban Zimanyi, Olivier Markowitch, Liran Lerman (all at
Université Libre de Bruxelles), and the anonymous reviewers
for valuable comments on previous versions of the text.

REFERENCES

[1] A. Balon-Perin, B. Gambäck, and L. Røstad, “Intrusion
detection using ensembles,” in Proceedings of the 7th In-
ternational Conference on Software Engineering Advances,
Lisbon, Portugal, Nov. 2012, pp. 656–663.

[2] R. Sommer and V. Paxson, “Outside the closed world: On
using machine learning for network intrusion detection,” in
Proceedings of the 2010 IEEE Symposium on Security and
Privacy. Washington, DC: IEEE Computer Society, Jun.
2010, pp. 305–316.

[3] C. Elkan, “KDD Cup 1999: Computer network
intrusion detection,” Webpage (last accessed:
June 12, 2013), 1999, http://www.sigkdd.org/
kdd-cup-1999-computer-network-intrusion-detection.

[4] S. Mukkamala, A. Sung, and A. Abraham, “Cyber security
challenges: Designing efficient intrusion detection systems
and antivirus tools,” in Enhancing Computer Security with
Smart Technology, V. R. Vemuri and V. S. H. Rao, Eds. Boca
Raton, Florida: CRC Press, Nov. 2005, pp. 125–161.

[5] S. Mukkamala and A. H. Sung, “Identifying significant
features for network forensic analysis using artificial intelligent
techniques,” International Journal of Digital Evidence, vol. 1,
no. 4, pp. 1–17, 2003.

[6] A. H. Sung and S. Mukkamala, “The feature selection and
intrusion detection problems,” in Proceedings of the 9th Asian
Conference on Advances in Computer Science. Chiang Mai,
Thailand: Springer-Verlag, May 2004, pp. 468–482.

[7] P. Laskov, P. Düssel, C. Schäfer, and K. Rieck, “Learning in-
trusion detection: supervised or unsupervised?” in Proceedings
of the 13th International Conference on Image Analysis and
Processing. Cagliari, Italy: Springer, Jun. 2005, pp. 50–57.

[8] L. K. Hansen and P. Salamon, “Neural network ensembles,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 12, no. 10, pp. 993–1001, Oct. 1990.

[9] R. E. Schapire, “The strength of weak learnability,” Machine
Learning, vol. 5, no. 2, pp. 197–227, Jul. 1990.

[10] J. J. Davis and A. J. Clark, “Data preprocessing for anomaly
based network intrusion detection: A review,” Computers &
Security, vol. 30, no. 6-7, pp. 353–375, 2011.

[11] R. Lippmann, “1998 DARPA intrusion detection evalua-
tion data set,” Webpage (last accessed: June 12, 2013),
1998, http://www.ll.mit.edu/mission/communications/cyber/
CSTcorpora/ideval/data/1998data.html.

[12] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani,
“Toward developing a systematic approach to generate bench-
mark datasets for intrusion detection,” Computers & Security,
vol. 31, no. 3, pp. 357–374, May 2012.

[13] M. Tavallaee, N. Stakhanova, and A. A. Ghorbani, “Toward
credible evaluation of anomaly-based intrusion-detection meth-
ods,” IEEE Transactions on Systems, Man, and Cybernetics —
Part C: Applications and Reviews, vol. 40, no. 5, pp. 516–524,
Sep. 2010.



77

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] D. M. Gregg, W. J. Blackert, D. C. Furnanage, and D. V.
Heinbuch, “Denial of service (DOS) attack assessment analysis
report,” Johns Hopkins University, Baltimore, Maryland, Tech.
Rep. AFRL-IF-RS-TR-2001-223, Oct. 2001.

[15] F. Lau and S. H. Rubin, “Distributed denial of service attacks,”
in Proceedings of the 2000 IEEE International Conference on
Systems, Man, and Cybernetics. Nashville, Tennessee: IEEE,
Oct. 2000, pp. 2275–2280.

[16] C. Patrikakis, M. Masikos, and O. Zouraraki, “Distributed
denial of service attacks,” The Internet Protocol Journal, vol. 7,
no. 4, pp. 13–35, Dec. 2004.

[17] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole,
“Buffer overflows: attacks and defenses for the vulnerability
of the decade,” in Foundations of Intrusion Tolerant Systems
(Organically Assured and Survivable Information Systems
2003), J. H. Lala, Ed. Los Alamitos, California: IEEE
Computer Society, Jan. 2003, pp. 227–237.

[18] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A
detailed analysis of the KDD CUP 99 data set,” in Proceed-
ings of the 2nd International Conference on Computational
Intelligence for Security and Defense Applications. Ottawa,
Ontario, Canada: IEEE, Jun. 2009, pp. 53–58.

[19] J. P. Anderson, “Computer security threat monitoring and
surveillance,” James P. Anderson Co., Fort Washington,
Pennsylvania, Tech. Rep., Apr. 1980.

[20] D. E. Denning, “An intrusion-detection model,” IEEE Trans-
actions on Software Engineering, vol. 13, no. 2, pp. 222–232,
Feb. 1987.

[21] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee,
J. Wood, and D. Wolber, “A network security monitor,” in
Proceedings of the IEEE Symposium on Security and Privacy.
Los Alamitos, California: IEEE Computer Society, May 1990,
pp. 296–304.

[22] S. X. Wu and W. Banzhaf, “The use of computational
intelligence in intrusion detection systems: A review,” Applied
Soft Computing, vol. 10, no. 1, pp. 1–35, Jan. 2010.

[23] S. Mukkamala, A. H. Sung, and A. Abraham, “Intrusion
detection using an ensemble of intelligent paradigms,” Journal
of Network and Computer Applications, vol. 28, no. 2, pp.
167–182, Apr. 2005.

[24] S. Chebrolu, A. Abraham, and J. P. Thomas, “Hybrid fea-
ture selection for modeling intrusion detection systems,” in
Proceedings of the 11th International Conference on Neural
Information Processing, ser. Lecture Notes in Computer
Science, N. R. Pal, N. Kasabov, R. K. Mudi, S. Pal, and
S. K. Parui, Eds., vol. 3316. Calcutta, India: Springer, Nov.
2004, pp. 1020–1025.

[25] ——, “Feature deduction and ensemble design of intrusion
detection systems,” Computers & Security, vol. 24, no. 4, pp.
295–307, Jun. 2005.

[26] A. Abraham and J. P. Thomas, “Distributed intrusion detection
systems: A computational intelligence approach,” in Informa-
tion Security and Ethics: Concepts, Methodologies, Tools, and
Applications, H. Nemati, Ed. Hershey, Pennsylvania: IGI
Global, Sep. 2005, vol. 5, pp. 105–135.

[27] S. Peddabachigari, A. Abraham, C. Grosan, and J. P. Thomas,
“Modeling intrusion detection system using hybrid intelligent
systems,” Journal of Network and Computer Applications,
vol. 30, no. 1, pp. 114–132, 2007.

[28] A. Abraham and R. Jain, “Soft computing models for network
intrusion detection systems,” in Classification and Clustering
for Knowledge Discovery, ser. Studies in Computational
Intelligence, S. K. Halgamuge and L. Wang, Eds. Berlin
Heidelberg, Germany: Springer, Oct. 2005, vol. 4, pp. 191–
207.

[29] A. Abraham, R. Jain, J. P. Thomas, and S.-Y. Han, “D-SCIDS:
Distributed soft computing intrusion detection system,” Journal
of Network and Computer Applications, vol. 30, no. 1, pp.
81–98, Jan. 2007.

[30] A. Zainal, M. A. Maarof, S. M. Shamsuddin, and A. Abra-
ham, “Ensemble of one-class classifiers for network intrusion
detection system,” in Proceedings of the Fourth International
Conference on Information Assurance and Security. Naples,
Italy: IEEE Computer Society, Sep. 2008, pp. 180–185.

[31] G. Folino, C. Pizzuti, and G. Spezzano, “GP ensemble for
distributed intrusion detection systems,” in Proceedings of
the 3rd International Conference on Advances in Pattern
Recognition, Bath, England, Aug. 2005, pp. 54–62.

[32] ——, “An ensemble-based evolutionary framework for coping
with distributed intrusion detection,” Genetic Programming
and Evolvable Machines, vol. 11, no. 2, pp. 131–146, Jun.
2010.

[33] E. Bahri, N. Harbi, and H. N. Huu, “Approach based ensemble
methods for better and faster intrusion detection,” in Proceed-
ings of the 4th International Conference on Computational
Intelligence in Security for Information Systems, ser. Lecture
Notes in Computer Science. Torremolinos-Málaga, Spain:
Springer, Jun. 2011, pp. 17–24.

[34] Y. Freund and R. E. Schapire, “A decision-theoretic generaliza-
tion of on-line learning and application to boosting,” Journal
of Computer and System Sciences, vol. 55, no. 1, pp. 119–139,
Aug. 1997.

[35] P. Zhang, X. Zhu, Y. Shi, L. Guo, and X. Wu, “Robust
ensemble learning for mining noisy data streams,” Decision
Support Systems, vol. 50, no. 2, pp. 469–479, Jan. 2011.

[36] H. Gunes Kayacik, A. Nur Zincir-Heywood, and M. I.
Heywood, “A hierarchical SOM-based intrusion detection
system,” Engineering of Applied Artificial Intelligence, vol. 20,
no. 4, pp. 439–451, Jun. 2007.

[37] K. Kendall, “A database of computer attacks for the evaluation
of intrusion detection systems,” Master’s thesis, Department of
Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, Massachusetts, Jun. 1999.

[38] ——, “Intrusion detection attacks database,”
Webpage (last accessed: June 12, 2013), 2007,
http://www.ll.mit.edu/mission/communications/cyber/
CSTcorpora/ideval/docs/attackDB.html.


