
88

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Firewall Analysis by Symbolic Simulation:

Advanced Optimizations
Arno Wagner

Consecom AG

Zurich, Switzerland

arno@wagner.name

Abstract—There are two primary tasks when doing a

Layer 4 firewall security analysis. First, unifying a chain

of firewalls on a given network path into a single one to

efficiently determine what it allows to pass and what it

drops, and second, comparing a firewall with a security

policy. Both tasks are work-intensive and error-prone

if performed manually and become infeasible in the

presence of large firewall rule sets. To automate the

process of unifying a chain of firewalls, we have created

the Consecom Network Analyzer that uses symbolic

simulation with an interval representation to generate

a unified equivalent firewall in a normalized, simple and

flat form. The unification process is also suitable to im-

plement comparison with a policy, by representing the

policy in a special way in the form of a firewall rule set.

We show the suitability of this approach for firewalls

with large configurations by giving benchmarks based

on deployed rule sets. In addition, we demonstrate

the effects of different optimization techniques on run-

time and memory footprint, including the use of an

advanced optimization technique that builds on ideas

from geometrical search to reduce unnecessary rule

applications by means of interval search trees. The Con-

secom Network Analyzer has been used successfully for

a number of industrial security reviews.

Keywords-Network Security; Firewall Analysis; Sym-

bolic Simulation; Interval Search Trees.

I. Introduction

This work describes the Consecom Network Analyzer

(CNA), which is the result of a collaboration between

academia and industry. It is an invited extension of results

previously published in [1]. The main improvement is the

use of Interval Search Trees as additional optimization

technique, as described in Section VII.

The CNA is a tool-set that greatly reduces the effort,

and thereby cost, for practical firewall security analysis in

the presence of firewalls with large rule sets. A firewall

security analysis is one type of network security review.

It is often done on network Layer 4, for example for TCP

and UDP traffic. Figure 1 shows the basic scenario. The

typical steps to be done include:

1) Normalize firewall configurations

2) Identify critical network paths

3) Identify firewalls along each critical path

4) Determine network reachability on each critical path

5) Compare reachability and security requirements

6) Identify non-compliant firewall rules

The primary motivation for creating the CNA lies in

steps 4, 5 and 6. In step 4, the CNA calculates the

reachability in a unified simple format. Each element of

the combined reachability is annotated with the firewall

rules that give raise to it. If a formalized or easy to

formalize security policy is available, it can be compared

automatically to the actual network reachability using the

CNA. As such a security policy is often not available in

practice, step 5 may still need to be done manually or can

be only partially automatized.

S D. . .
FW 1 FW n

Fig. 1. Unidirectional reachability along a critical network path.

Figure 2 shows the typical data flow for a firewall

analysis task. The Rule-Set Converter is not part of the

core CNA system and has to be adapted for each different

firewall description format. The CNA uses a normalized

symbolic Layer 4 format internally that is based on in-

tervals. As core contribution of this paper, we show this

representation is suitable for calculating reachability even

in the presence of large firewall configurations. To this end,

we present benchmark calculations on deployed rule-sets.

The CNA has been used successfully in several industrial

firewall security reviews.

raw

Converter Calculation
Reachability

rule sets

Policy
Comparator

Reachability

Policy

violations

rule
sets

Network
FW

formalized Policy

normalizedRule−Set

Fig. 2. Typical analysis data-flow with the CNA.

The rest of the paper is organized as follows: Section

II introduces our network and firewall model, and the

89

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

symbolic representation used. Section III gives the opera-

tions used for single firewalls. Section IV explains how to

calculate unidirectional reachability. A complexity analysis

is sketched briefly in Section V. Section VI describes

the implementation, while Section VI states benchmark

results and the effects of different optimization techniques.

Section VII explains how interval search trees can be

used to speed up the CNA core loop and justifies their

effectiveness with a separate set of benchmarks. Section

VIII explains how to extend the approach to two-sided

reachability and to automated comparison with a policy.

The paper finishes with a discussion of related work in

Section X and a conclusion in Section XI.

II. Approach

The reachability calculation process starts with a repre-

sentation of the initial reachability (disregarding firewalls),

which will often be unconstrained. This initial reachability

is then successively reduced by applying firewall rules. The

end-result is a flat, unified representation of the firewall-

chain, restricted by the initial reachability.

A. Network Model

We are primarily interested in network reachability as

restricted by firewalls. Given a source network S, sequence

of firewalls FW1, . . . , FWn and a destination network

D (see also Figure 1), we say that D is reachable from

S if there are network packets that can traverse FW1,

. . ., FWn without being dropped by any FWi. Note that

some attacks will need two-sided reachability. For example

services used over TCP can usually only be attacked if

response packets can traverse the firewall sequence in

reverse order. See Section VIII-A for a discussion on how

to check for two-sided reachability.

We restrict the packet information visible to firewalls to

IP addresses and ports, which results in a Layer 4 model.

Each protocol is treated separately, although it is possible

to mix protocols, for example by doing a forward analysis

with TCP and a backward analysis with ICMP in order

to determine whether an ICMP response to a TCP packet

would get through. This situation arises, for example,

when determining whether a firewall configuration allows

port scanning. Routing is out of scope for this work, as we

do not see it as a security mechanism; see Section IV-A

for a brief discussion.

B. Subspaces, Boxes and Intervals

Reachability is represented by subspaces of

M = {src IPs} × {src ports} × {dst IPs} × {dst ports}

with the four fields representing the corresponding IP

v4 layer 4 header address fields for TCP and UDP, and

the port fields being misused to represent ICMP Type

and Code for ICMP. Other layer 4 protocols that fit this

scheme can also be represented.
We organize these subspaces into sets of axis-aligned

hyperrectangles in M , also called axis aligned boxes [2],

[3]. In this paper, boxes will always be axis-aligned, hence

we will simply call them boxes for short.
Note that any non-empty subspace of M that has an

interval for each of its 4 components trivially is a box. At

the same time, any subspace of M can be represented as

the union of a set of boxes. A subspace A of M can hence

be represented by

A ⊆ M and

A = {b1, . . . , bn} with bi ∈ M and bi is a box.

The matching expressions of a firewall rule can be

represented by a single box. Security policies can also be

represented this way, by giving a set of boxes that specifies

forbidden reachability. If the intersection between network

reachability and a policy represented this way is non-

empty, then the policy is violated. In the implementation,

boxes can have attached information. In particular, trace

information can be attached in order to document which

firewall rules were applied to a box. Trace information

is critical to determine why a specific box is in the final

reachability or why it was dropped.
A box can be represented as a 4-tuple of intervals, which

allows symbolic computations. As far as we know, Eronen

and Zitting [4] were the first to use intervals in this context.

Box example:

b = (10.0.0.0− 10.0.0.255, 1024− 65535, 10.1.1.1, 80)

We use intervals with wrap-around, where IP and port

number spaces are regarded as circles. This facilitates

representing complements and reduces the number of el-

ements in the complement of a box, see below. Figures

3 and 4 gives graphical examples of three boxes in two

dimensions represented this way. Some textual examples

for intervals with wrap-around are:

• Port interval [81, 80) represents all ports except port

80, i.e., port 81-65535 and port 0-79. Without wrap-

around this complemented interval would need to be

represented as [0, 80) and [81, 65535)

• IP interval [127.0.0.256, 127.0.0.0) represents all IP

addresses except 127.0.0.0− 127.0.0.255.

4 70 1 2 3 5 6

1
2
3
4
5
6
7

0

x2

x1

A

B

4 70 1 2 3 5 6

1
2
3
4
5
6
7

0

x2

x1

C

4 70 1 2 3 5 6

1
2
3
4
5
6
7

0

x2

x1

Fig. 3. Boxes in two dimensions.

90

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4 70 1 2 3 5 6

1
2
3
4
5
6
7

0

x2

x1

4 70 1 2 3 5 6

1
2
3
4
5
6
7

0

x2

x1

4 70 1 2 3 5 6

1
2
3
4
5
6
7

0

x2

x1

D

D

E E F

F F

F

Fig. 4. Boxes with wrap-around in two dimensions.

C. Firewall Model

The CNA uses a simple firewall model, where each

firewall consists of a linear sequence of rules r that each

have a box describing their applicability and one of the

target actions accept or drop, with a default drop at the

end of sequence. This corresponds to the “simple” model

used in [5].

D. Rule Application and Set Operations

In order to apply a firewall rule r = (b,<action>) to

a subspace A = {b1, . . . , bn} ⊆ M , we intersect b with

the different bi in turn and apply the action to the result

A ∩ {b} = {b ∩ b1, . . . , b ∩ bn}.
The usual set operations are defined on boxes and, by

extension, on subspaces of M . Some deserve additional

comments.

4 70 1 2 3 5 6

1
2
3
4
5
6
7

0

x2

x1

4 70 1 2 3 5 6

1
2
3
4
5
6
7

0

x2

x1

4 70 1 2 3 5 6

1
2
3
4
5
6
7

0

x2

x1

Fig. 5. Box intersections in two dimensions.

4 70 1 2 3 5 6

1
2
3
4
5
6
7

0

x2

x1

4 70 1 2 3 5 6

1
2
3
4
5
6
7

0

x2

x1

4 70 1 3 5 6

1
2
3
4
5
6
7

0

x2

x1

2

Fig. 6. Box intersection in two dimensions with wrap-around.

Intersection: Intersecting two boxes in d dimensions can

have up to 2d result boxes. Figures 5 and 6 illustrates this

in two dimensions. For b1, b2 ∈ M , the intersection b1 ∩ b2
may consist of up to 16 boxes as M has 4 dimensions.

Box complement: The complement of an interval is

derived by adjusting the boundaries. The complement of

a box is derived by complementing each interval in turn

and setting all other intervals to full range. Hence, a 4-

dimensional box has up to four boxes as its complement.

Without wrap-around, the complement of a box could have

up to 8 elements.

Subtraction: Calculating a− b for boxes a and b is done

by using the relation a− b = a ∩ b̄ from set calculus.

III. Restricting Reachability by a Single

Firewall

The core operations used in determining reachability

through a single firewall are apply_firewall() and ap-

ply_rule(), shown in Figure 7 in simplified form. The

task of apply_firewall() is to take a given reachability

description, stated as a set of boxes, called here a Work

Set (WS) and, using the rules of the firewall, determine

both an Accept Set (AS), which is the part of the WS

that can pass the firewall, and a Drop Set (DS) that is

the part of the WS that cannot pass the firewall. AS

and DS are represented as sets of boxes. The function

apply_rule() forms the basis of apply_firewall() and

implements calculation of the intersection I between a

given rule and WS. The intersection I is then added to

the AS for an accept rule or to the DS for a drop rule.

apply_firewall(WS, FW):

AS := ∅ /* Accept Set */

DS := ∅ /* Drop Set */

for r ∈ in FW: /* r: box of a rule */

I := apply_rule(WS, r)

WS := WS - I /* reduce Work Set */

if r is accept: AS := AS ∪ I

if r is drop: DS := DS ∪ I

return(AS, DS)

apply_rule(WS, r):

I := ∅
for b ∈ WS: /* b is a box */

i := b ∩ r

I := I ∪ i

return(I)

Fig. 7. Pseudo-code for apply_firewall() and apply_rule() (sim-
plified).

Building on these two operations, more complex oper-

ations can be constructed. Note that apply_rule() may

attach trace information to boxes, for example to docu-

ment rule application. If desired, the full history of each

box can be recorded in the trace. This allows to determine

the specific firewall rules that are responsible for a box

being in the final reachability and represents information

needed in any report about firewall configuration issues.

IV. Unidirectional Reachability Computation

Pseudo-code for the calculation of unidirection reach-

ability through a sequence of firewalls is given in Figure

8.

91

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We will typically choose the initial reachability as un-

restricted. This is a sound practice, as network routing

can usually not be regarded as a security feature and

quite a few customers cannot specify source network S

and destination network D with the required exactness.

Starting with full, unconstrained reachability will ensure

the final results only rely on the given firewall configu-

rations. A more restricted initial reachability can still be

used when appropriate. Ports are unconstrained in the

initial reachability.

A. Comments on Routing

A frequent issue that crops up when doing a firewall

security analysis in the field is that often routing is mixed

with firewalling. This view gives flawed results. There are

several reasons:

• The primary task of routing is to get packets to a

specific destination, while the primary task of a fire-

wall is to prevent packets reaching a specific destina-

tion. Routing configuration and firewall configuration

hence have diametrically opposed primary tasks and

this is reflected in procedures and mind-sets.

• Due to the different primary tasks, often the teams

responsible for routing and for firewalls are different.

• While firewall configurations are handled securely and

all updates are done with the security model in mind,

routing configurations are typically changed with the

network model in mind and handled in a less secure

fashion. Routing is hence easier to compromise.

• Sometimes customers cannot even specify the IP

ranges of S and D precisely, but have precise firewall

information. This may sound surprising, but if routing

delivers more to a physical target network than ex-

pected, this is not necessarily a problem. For firewalls,

it is a critical error.

• Routing works on Layer 3, while firewalls work on

Layer 4. Mixing the two complicates things and in-

creases maintenance effort.

• Firewall configurations often do not include informa-

tion about physical or virtual interfaces, but solely

refer to layer 4 information. If routing were regarded

as a security feature, interface information would be

needed in addition and would be critical for security.

This would also complicate firewall configuration and

make network security critically dependent on the

details of physical or virtual network cabling.

Overall, it is far more practical to separate routing and

firewalls and to require that all restrictions on reachability

must be implemented by firewalls placed into the critical

network paths. This is especially true for customers with

complex firewall configurations.

It should be noted that with this approach, the ques-

tion arises whether a specific firewall actually is on the

critical network paths it is supposed to be on. Answering

S D. . .
FW 1 FW n

in: S, D /* Source, Destination networks */

FW1, ..., FWn /* firewalls */

out: ASn /* final reachability */

DS1,. . .,DSn /* Drop Sets */

WS1 := S × <all> × D × <all>

(AS1, DS1) := apply_firewall(WS1, FW1)

WS2 := AS1

(AS2, DS2) := apply_firewall(WS2, FW2)

WS3 := AS2

...

(ASn, DSn) := apply_firewall(FWn− 1, WSn− 1)

Fig. 8. Pseudo-code for calculating unidirectional reachability with
apply_firewall() for the scenario shown in Figure 1.

this question requires a network topology analysis and is

outside of the scope of this work.

It should also be noted that network scanning always

takes routing into account and is restricted by it. This is

a fundamental limitation of network scanning that is not

present in firewall simulation approaches.

V. Algorithmic Complexity

We briefly sketch the complexity analysis idea. For

a worst-case scenario, start with one box and a single

firewall with n drop rules. Each drop rule can split (asymp-

totically) at most one element of the Work Set into a

maximum of 2d (with dimension d = 4) non-overlapping

parts that are kept in the working set. Hence, each rule

increases the size of the working set by a maximum of

16, giving an overall space complexity of the result of

16 ∗ n ∈ O(n) for n firewall rules. As each successive rule

application has to work on 16 more boxes, time complexity

is 1 ∗ 16 + 2 ∗ 16 + . . . + n ∗ 16 = 16 ∗ (1 + 2 + . . . + n) =
16

2
n(n − 1) ∈ O(n2). A very similar argument applies to

accept rules and mixed rule-sets.

In comparison, in [6], the authors need worst case effort

O(n4) to build a Firewall Decision Diagram (FDD) for n

firewall rules with the same firewall model as we use. It

is reasonable to expect that this worst-case is extremely

unlikely to happen in practice.

In [5], the authors claim a worst case complexity of

O(n) for processing a firewall with n rules in their “simple

model”. However, they wrongly assume constant effort for

set operations on their accept (A) and drop (D) sets.

While the BDDs used in [5] are often very efficient in

practice, they do not have constant worst case effort for set

92

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I
Benchmarks

No Firewall or rule-set size benchmark results
Firewall raw nor- opt. Python input opt. trace core-loop
sequence malized baseline reduction ported to C

1 S 27 2’000 180 4:52min 12MB 3.9s 6MB 3.2s 6MB 0.07s 6MB

2 M 67 23’000 8300 1752 min 184MB 346min 84MB 148min 48MB 29s 18MB

3 L 170 27’000 3100 2392min 292MB 21:54min 26MB 12:45min 18MB 2.8s 10MB

4 S, M 64min 34MB 191s 14MB 156s 13MB 1.8s 13MB

5 M, S 1870min 186MB 347min 84MB 146min 48MB 29s 19MB

6 M, L 5000min 187MB 660min 77MB 250min 56MB 38s 21MB

7 S, M, L 205min 58MB 370s 16MB 305s 16MB 4s 16MB

operations and the stated complexity analysis is therefore

incorrect.

VI. Implementation, Optimization and

Benchmarks

The CNA is implemented in Python 3 [7] with C

extensions. This allows a clean and flexible OO design

and facilitates targeted optimization. IP addresses and

port numbers are represented directly by Python integers.

Boxes are represented as Python 8-tuples (representing

4 intervals) and encapsulated into class objects in order

to allow attachment of traces, annotations and firewall

rule actions. Subspaces are represented as Python lists.

The pure-Python prototype is relatively slow and has high

memory consumption, but can already be used for security

reviews involving firewalls with small and medium-sized

rule-sets.

First, note that in the absence of Network Address

Translation (NAT), which is rarely deployed in security

critical networks, firewalls can be arbitrarily reordered, as

exactly those packets that make it through all of them are

part of the final reachability space. In particular, a good

selection of the first firewall to be processed can have sig-

nificant performance benefits. Benchmarks must therefore

always be seen together not only with the relevant firewall

configurations, but also their processing order.

A. Benchmarks

In order to determine performance and to examine the

performance impact of different optimizations, we give

a selection of benchmark results1 in Table I. Times are

CPU times including input data parsing and result output.

Memory sizes are the whole process memory footprint,

excluding shared areas (libraries). The calculations were

done using Linux (Debian Squeeze 32bit) on an AMD

Phenom II X4 970 CPU with 3.5GHz, using only one CPU

at a time. Memory was set to the 4GB memory model

1While in theory there is no difference between theory and practice,
in practice there is and benchmark results are very much subject
to this limitation. Hence the stated benchmark results only give a
rough idea about runtime, memory footprint and effects of different
optimizations.

and the machine was running kernel 3.4.7 from kernel.org

without any special optimizations. Python version used

was 3.1.

Lines 1, 2, 3 of Table I describe the firewall configura-

tions used. These are firewall configurations deployed in

the real world. They have a flat form (no sub-chains) and

a default-drop policy.

Line 4 and following lines of Table I give benchmarks for

different firewall combinations. The order of the firewalls is

important as the first one has to be completely represented

in memory, which causes effort O(|FW1|
2) (where |FWk|

is the number of rules in firewall FWk). The effort for each

additional firewall in the chain is O((|WSi|+|FWi|)·|FWi|)
and hence higher in the worst case. But when starting

with a firewall with small rule-set, we observed that a later

combination with a firewall with a large rule-set does often

not increase the WS size significantly, as most rules of the

larger firewall do not apply. For that case, the complexity

goes effectively down to O(|WSi| · |FWi|), which is a lot

smaller than O(|FWi|
2) if |FWi| is large but |WSi| is small.

If the firewall processed first has a much larger rule-set

than the others, we have observed that processing it will

often dominate the runtime.

The columns “rule-set size” give the number of rules in

the raw input in vendor format (including groupings, lists,

etc.), the normalized number of rules without optimization

and the optimized rule-set size. Benchmarks are given only

for TCP for brevity, UDP and ICMP analysis have compa-

rable results. We do not have benchmarks for comparison

against a policy, as we do not have a sufficiently formalized

policy and hence looking directly at reachability was more

efficient. Comparison with a policy would incur effort

comparable to adding one more firewall configuration in

the size of the negated policy specification. The idea is that

nothing must be able to pass through the given firewall

chain and an additional firewall representing the negated

policy, with the negated policy representing all forbidden

traffic.

As can be seen in Table I, each evaluated optimization

step has significant impact on observed run-time. The final

implementation with all optimizations included has very

reasonable performance even in the presence of firewalls

93

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with large rule-sets.

B. Firewall Evaluation Sequence Optimization

The benchmarks demonstrate that the selection of the

first firewall to be processed has a huge impact on perfor-

mance. For the first firewall, the Work Set can grow for

each rule application as it has to be completely represented

in memory, while for later firewalls only rules that have

a non-empty intersection with the Work Set can increase

Work Set size by splitting elements already contained in

it.

If the first firewall contains a large number of rules

that allow traffic through that is later dropped by the

other firewalls, then all these irrelevant rules will cause

significant load on the memory allocator that can be

avoided with a different selection for the first firewall to be

processed. Our experiences show that the most restrictive

firewall configuration should be processed first. In many

scenarios, this will be the smallest firewall configuration,

measured in number of rules.

C. Rule-Set Representation Optimization

Firewall configurations in a vendor-format often allow

more complex specifications, such as lists or groupings

of multiple sources, destinations or services. Decomposing

such input rules into rules using a single box each can

results in a number of normalized rules that is a lot

higher than needed. The reason is that many resulting

rules will be overlapping or adjacent in such a way that

they can be combined. The column “opt.” under “rule-

set size” in Table I states the reduced number of rules

after optimization and the column “input opt.” gives the

improved run times and memory footprints. The runtime

for the input optimization itself is small, as it only works

with a focus of one raw input rule at a time.

Note that global box combination would be possible,

but combining boxes from different raw rules has two

problems: First, if both accept and drop rules are present,

the combination algorithm has to take rule sequence into

account. And second, in this approach a box cannot be

labeled with the single raw firewall rule it originated from.

This makes the identification of policy-violating rules in

the end-result difficult.

D. Trace Reduction

While the original prototype retained traces for all

operations that changed a box, it turns out these full traces

are only beneficial for debugging. In a security analysis,

only accept and drop actions are relevant and hence it

is enough to add trace information to a box when it is

added to the Accept Set or Drop Set. It is not necessary

to trace when boxes are reduced or split in the Work Set.

Hence, traces were reduced accordingly. This also means

that there can be at most one trace entry per firewall

in each box contained in the result. The column “trace

reduction” in Table I states the additional performance

gains. Note that trace reduction was benchmarked with

input optimization applied as well.

E. Core-Loop Ported to C

In a last step, the core loop function apply_rule()

was ported to C and embedded into the Python code.

Contrary to Figure 7, WS, AS and DS are passed to

apply_rule() and are manipulated in-place according to

the rule action. This puts expensive operations, such as

data-structure manipulations, into the C code. No other

special optimizations were done for the C code and in

particular the standard GNU libc memory allocator was

used. The column“core-loop ported to C” in Table I states

final performance figures. Note that trace reduction and

rule-set representation optimization was applied as well.

In addition, we performed a benchmark calculation for

deployed firewall configuration “XL”. It has a normalized

rule-set size of 2.8 million rules, which reduces to 300’000

rules after input optimization. Raw rule number is 95.

Representing configuration XL in memory took 20h of

CPU time and resulted in a memory footprint of 900MB.

This shows that firewall configurations of this size can still

be processed with the CNA with reasonable effort.

The C code can keep box description efficiently in

structs and does not need any wrapping and unwrapping of

tuple elements and can therefore speed up execution mas-

sively, while at the same time reducing memory footprint

significantly. However, the unit tests written in Python can

still be applied by exposing the interval and box operations

implemented in C to Python via the class interface. This

helped significantly in the optimization effort.

VII. Advanced Optimization

The algorithm described so far compares each working

set element against each rule. This leads to effort linear in

the size of the Work Set and linear in the size of the rule

set. This is problematic for large inputs. At the same time,

for typical firewall rule sets, most elements of any given

Work Set do not intersect most rules and hence a large

part of the effort is wasted. If it were possible determine

a subset of the Work Set that has a higher likelihood of

intersecting a given rule r efficiently, a significant speed-up

could be obtained. One such possibility is represented by

interval search trees.

A. Interval Search Trees

Different types of interval search trees are known. They

include trees that support searching with a point, where

the result consists of all intervals in a given set that

include the point, and searching with an interval, where

the result includes all intervals that intersect the given

search interval. We need the second variant.

94

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II
Benchmarks: Work Set as Array vs. Work Set as interval search tree

No Firewall or Firewall sequence rule-set size(s) (opt.) array interval search tree

1 A 100 0.06s, 8.5MB 0.06s, 8.5MB

2 B 7.5k 4.8s, 27MB 1.2s, 28MB

3 C 1.3M 163h, 15GB 96min, 15GB

4 A,B 100, 7.5k 1s, 22MB 1s, 22MB

5 B,C 7.5k, 1.3M 16:05min, 2.6GB 2:47min, 2.6GB

6 A,B,C 100, 7.5k, 1.3M 2:49min, 2.6GB 2:45min, 2.6GB

As we want to represent the Work Set in an interval

search tree, we also need efficient insertion and deletion of

intervals from an already constructed tree. Unfortunately,

many interval search tree variant do not support these

operations efficiently and to the best or our knowledge,

no multi-dimensional interval search tree variant can sup-

port insertion, deletion and searching with an interval,

efficiently.

Due to these restrictions, we selected the interval trees

from [8], Section 14.3. These are one-dimensional interval

search trees constructed from balanced trees and support

all operations we need efficiently. In [8], they are con-

structed on top of red-black trees as they are claimed

to be simpler to implement than alternatives. As an

implementation using AVL trees generally gives a smaller

tree-height, we adapted the idea from [8] to AVL trees and

used them as basis for our implementation.

The complexity of performing an interval search on an

interval search tree with n elements is O(k · log(n)), with
k the number of results. For large k, the overall effort is

bound by n, as each tree element is at most inspected once.

For example, when the search result includes the full set of

tree elements, the effort is only O(n) and not O(n·log(n)).

As one-dimensional interval search trees can only handle

one component of the 4 different dimensions represented

in a box, the idea is to use the most selective dimension

of the set of multi-dimensional sets in the interval search,

and then iterate linearly over the results as before. For

typical large firewall rule sets, the most selective interval

is the destination IP address interval. It is possible to use a

different dimension. It would also be possible to use several

interval search trees for the different dimensions, and

then, for a given rule, perform the interval search in each

dimension and then continue processing with the smallest

result. It should be noted that using one-dimensional

interval trees does not decrease the theoretical worst-case

complexity of the algorithm and hence effectiveness has to

be demonstrated by benchmark calculations.

B. Adjusting the Implementation

The core loop modified to use an interval search tree

is shown in Figure 9. The WS, AS and DS are now kept

as elements of an interval search tree, different from the

linear array that was used before. The key effort reduction

lies in reducing the Work Set size in apply_rule() by per-

forming an interval search on the complete Work Set with

the destination IP interval of the rule r. Only elements

of the WS that intersect this interval in their destination

IP component are added to the WS_reduced and have the

complex box intersection algorithm applied to them.

apply_firewall(WS, FW):

AS := ∅ /* Accept Set */

DS := ∅ /* Drop Set */

for r ∈ in FW: /* r: box of a rule */

I := apply_rule(WS, r)

WS := WS - I /* reduce Work Set */

if r is accept: AS := AS ∪ I

if r is drop: DS := DS ∪ I

return(AS, DS)

apply_rule(WS, r):

I := ∅
WS_reduced := interval_search(WS, r)

for b ∈ WS_reduced: /* b is a box */

i := b ∩ r

I := I ∪ i

return(I)

Fig. 9. Pseudo code from Figure 7 modified for interval search trees

C. Rules in an Interval Search Tree

An alternative to putting the Work Set elements into

an interval search tree is putting the rules into one. The

core loop in apply_rule() of Figure 9 would then have to

be changed to select an element of the Work Set and then

apply all rules to it in turn. The set of all rules would first

be restricted using the interval search tree to those rules

that intersect, for example, the destination IP interval of

the Work Set element being processed.
At a first glance, this looks attractive: the rule-set does

not change and hence tree construction does only happen

once and no additions or deletions are performed on the

tree. Unfortunately, the use of the interval search tree for

the rules changes the application order of the rules. Rule

sets with accept and drop rules can change their semantics

whenever an accept and a drop rule are switched with

regard to application order.

95

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This means that while it is possible to apply the idea of

using interval search trees for the rule sets, it only works

correctly for rule sets that are all accept or all drop rules,

with a possible final drop or accept, respectively. While

many rule sets observed in practice have this form, some

of the largest ones we have encountered do not and hence

we are unwilling to accept this limitation.

A second, less problematic, limitation is that if rule

application order is changed, it becomes more difficult

to determine which rule actually accepted or dropped

a specific packet. This ambiguity arises when a specific

packet could have been accepted (dropped) by a rule

R1 or a rule R2, but rule order determines which one

actually does it. This becomes meaningful if it is necessary

to determine which rule exactly processed a packet, for

example if the packet is to be tagged for policy-based

routing or a similar application.

D. Benchmarks for the Interval Search Tree Optimization

As the CNA is subject to on-going optimization, the

experimental setup and base-line have changed. In partic-

ular redundant element copying and inefficient handling of

element traces has been eliminated, resulting in a different

baseline than thr one given in Table I. At the same time

an updated benchmark firewall set was used that is similar

in nature to the older one used for Table I, but changes

all firewalls to some degree and includes one much larger

firewall rule set. To prevent accidental confusion of the

benchmark rule sets in the two tables, the firewalls in Table

II have been named differently.

The Benchmarks in Table II were performed on an

AMD Phenom II core with 3.4GHz core clock and 32GB

available memory. The benchmarks were compiled and run

in 64 bit mode, using gcc 4.7.2, Python 3.1.3 on Linux

kernel 3.10.11. The characteristics of this setup are very

similar to the one used for Table I, except for the 64 bit

memory model.

The second column of Table II gives the firewall or

firewall sequence processed left-to-right. Single firewalls

are given as the process of representing a single firewall

in memory is the same as processing it as the first element

of a chain. The 3rd column lists the optimized rule-set

sizes, similar to the 5th column of Table I. For a sequence

of firewalls, the individual sizes are stated. The 4th column

of Table II gives the runtimes and memory footprint with

the classical array-based Work Set representation. These

numbers include the full process including input parsing

and result output. Finally, the last column of Table II lists

execution time and memory footprint with the Work Set

placed into an interval search tree.

E. Discussion

As can be seen, for some benchmarks, the advantage

of using interval search trees is significant. In particular

for computations with large reachabilities and hence large

Work Set sizes, a massive speed improvement can be

observed.
For computations with small Work Sets, like the firewall

sequences ABC or AB, the speed-up is small or non-

existent. The main reason is that storing the Work Set

in an interval search tree is slower than storing it in an

array. At the same time we do not observe any measurable

slow-down due to the use of interval search trees and the

memory footprint remains nearly the same.
The benchmark results support the claim that repre-

senting the Work Set in an interval search tree is supe-

rior, as the overhead created by the tree is compensated

by smaller box intersection effort even in cases where

restrictive firewalls are processed first and small Work

Sets ensue. Tests with a synthetic, tiny first firewall that

generates a Work Set of only 4 elements combined with

firewalls B and C from Table II confirm that even in this

extreme case, use of interval search trees does not slow

down the computation to any measurable degree. Hence

there is no need to retain the old, array-based Work Set

representation.
As the optimization using interval search tree retains

the full flexibility and expressiveness of the original CNA

implementation, and does not increase memory consump-

tion or CPU load even in the worst cases examined, use of

interval search trees represents a significant improvement

in the usefulness of the CNA for the processing and

analysis of large firewall rule sets.

VIII. Performing Advanced Analysis Tasks

There are two common analysis tasks we have not yet

described in detail. One is checking for presence or absence

of bidirectional reachability. This answers the question

whether a connection can be established through a series

of firewalls. The second one is checking a chain of firewalls

for compliance with a formalized policy. While we have

anticipated this task earlier, we now describe how to

perform it.

A. Computing Two-Sided Reachability

Two-sided Reachability allows determining whether an

agent in the source network S can use a service offered

in the destination network D that needs a connection, for

example any service offered over TCP, or a response, as for

example TCP port scanning, where TCP SYN packets are

sent and potentially answered by ICMP packets. It allows

limited comparison with scan results (for example from

nmap [9]), which are sometimes used to verify a firewall

deployment. Figure 10 gives the idea on how to obtain a

two-sided reachability result.

B. Verifying Policy Compliance

Policies can be represented as an undesired reachability

U , with the meaning that if anything in U ⊆ M is actually

reachable through the firewalls, then the policy is violated.

96

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

S D. . .
FW 1 FW n

1.
2.

3.

swap
src, dst

in: S, D, FW_0, ..., FW_n

out: AS2n (final reachability), DS0,...,DS2n

WS0 := S × <all> × D × <all>

(AS0, DS0) := apply_firewall(FW0, WS0)

WS1 := AS0

...

(ASn, DSn) := apply_firewall(FWn− 1, WSn− 1)

WSn+ 1 := swap_src_and_dst(ASn)

(ASn+ 1, DSn+ 1) :=

apply_firewall(FWn, WSn+ 1)

WSn+ 2 := ASn+ 1

...

(AS2n, DS2n) :=

apply_firewall(FW2n− 1, WS2n− 1)

Fig. 10. Calculating bidirectional reachability.

A firewall representing U is constructed by adding

accept rules for all traffic components that are undesirable

and a final drop rule that drops everything else. In a sense,

this firewall acts as a filter that only leaves the undesired

components of the actual reachability through a sequence

of firewalls.
To test policy compliance, the actual network reacha-

bility A on each critical network path is calculated. Let V

be the policy-violating reachability. Then V = A∩U . If V

is non-empty, all elements of V represent violations. The

non-compliant firewall rules can be identified by looking

at the trace information attached to elements of V , which

they inherit from A.
A rarer compliance test is whether desired reachability

is actually present. It can be used to determine which

firewall of a firewall chain blocks desired traffic. Here, the

desired reachability R is intersected with the subspace

D that represents all dropped packets. If the intersection

V = D∩R is nonempty, then parts of R will be dropped by

some firewall drop rule and will not be part of the network

reachability. As above, the problematic firewall rules can

be identified from the traces attached to elements (boxes)

of V , which they inherit from D.
Other compliance tests are possible and can be imple-

mented when needed.

IX. Lessons Learned

Input Data: When converting firewall configuration

data from customers, we found that significant effort may

be needed to account for deviations from expected format

convention and outright errors. We expect that for large

firewall configurations some manual adaption may be hard

to avoid. In seems that in their desire to accommodate

customer requests, firewall vendors sometimes allow their

customers to do things that are not advisable with regard

to clean structuring and consistency, such as overlapping

network groups, empty network groups and increasingly

more action keywords in new versions. Some of these

require manual intervention in order to map them to a

unified firewall model. In addition, the right mapping may

depend on the actual analysis task to be performed.

Software Engineering: Both, prototyping in Python

and providing full, meaningful unit-tests provided hugely

beneficial in creating a correctly working prototype and

in making sure optimizations did not introduce additional

errors. As the same time, keeping the Python-layer as

“glue” on top of the implementation of the core loop in

C allows for very efficient configuration and scripting of

arbitrary analyses. The chosen implementation approach

can be qualified as a success and is highly recommended

for similar projects.

Performance: We found that run-time and memory

footprint allow analysis of large and very large firewalls

on standard hardware. This result is unexpected, as the

underlying problems are algorithmically not efficient. We

theorize that the reason lies in the fact that real-world

firewall deployments only sparingly use most of the possi-

bilities that firewalls offer (for example, mixing accept and

drop rules excessively) as the firewall configuration still has

to be created and maintainable by human beings.

X. Related Work

Reachability Analysis: One alternative to using the

CNA is network scanning, for example with nmap [9].

It should be noted however that this suffers from the

limitations that routing affects scanning and that normal

scanning cannot find undesired unidirectional reachability.

Algorithmic Firewall Analysis: It is possible to for-

malize firewall functionality with a suitable logic and then

use approaches from automated theorem proving to derive

properties and check against violation of conditions. Work

in this area includes FIREMAN [5] by Yuan, Mai, Su,

Chen, Chuah and Mohapatra, which uses a BDD (Binary

Decision Diagram) representation. The idea of using BDDs

is developed further by Liu and Gouda [6], [10], with the

introduction of Firewall Decision Diagrams (FDDs).

A different approach based on Decision Diagrams is

described by Liu in [11]. It allows the checking of prop-

erties given a specific firewall rule set. The properties are

formalized as firewall rules with wildcards, e.g., that no

traffic must flow to or from IP address 1.2.*.*. This

formalization has a close relation to our policy checking

approach where we formalize a policy as an additional

firewall. Unfortunately, [11] only tested performance for

97

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

small real-world firewall rule-sets up to 661 rules and hence

a meaningful performance comparison with our approach

is not possible.

Firewall Models: Leporati and Ferretti [12] use

Tissue-like P Systems to model connected sets of firewalls.

In [13], Bourdier and Cirstea employ rewrite systems

to model firewall filtering and translation rules. Bera,

Dasgupta and Ghosh [14] is an example for the use of a

Boolean SAT solver to verify firewall ruleset properties.

Firewall Redundancy Analysis: Firewall redun-

dancy analysis is aimed at identifying and removing re-

dundancies in a firewall ruleset, such as rules that have

overlapping boxes. While a prolific theoretical field, its

relevance to practice is minor. For example, [15], [16] and

[17] deal with this aspect of firewall analysis.

Query Engines: The query-engine of Mayer, Wool

and Ziskind [18] answers questions on whether a specific

packet would traverse a set of firewalls by using a rule-

based simulator. This is mostly useful to determine the

impact of specific firewall configuration changes. Its value

in a complete firewall security analysis is limited. The

Margrave Tool [19] uses a similar approach.

Commercial Tools: A commercial firewall analyzer is

offered by AlgoSec [20]. This tool seems to be targeted at

maintenance and administration of large numbers (up to

1000) of firewalls. Commercial firewall maintenance tools

with limited audit capabilities are also offered by Tufin

[21] and FireMon [22].

XI. Conclusion and Future Work

We have designed and implemented the CNA (Con-

secom Network Analyzer), a tool that calculates network

reachability through a series of firewalls given as a Layer

4 abstraction by symbolic simulation. The primary use

is for real-world security audits that examine firewalls

with large rule-sets. While using set operations to model

firewalls is simple, to the best of our knowledge we are the

first to demonstrate that an abstraction based on inter-

vals is efficient enough to calculate reachability through

large deployed firewall configurations in practically useful

time and with moderate memory footprint, while at the

same time retaining the capability to annotate each result

sub-set with a full trace of the applied firewall rules.

Automated result annotation is essential when analyzing

firewall chains that include firewalls with a large number

of rules.

We also have demonstrated the effect of a series of

implementational and algorithmic optimizations on exe-

cution time and memory-footprint. The last step is the

application of ideas from geometrical search to use one-

dimensional interval search trees for reduction of ineffec-

tive rule applications to Work Set elements. The bench-

marks given include performance on large firewall rule sets

actually deployed in real applications.

One possible direction for future work is further in-

vestigation into how multi-dimensional geometric search

structures could be used to improve efficiency even more.

Primary issues are that most known multi-dimensional

search structures do not handle updates (additions and

deletions) efficiently. Using these structures for the CNA

would mean finding design and implementation trade-offs

that work well for real problems, even if their theoretical

worst-case performance is bad.

A second possibility for future work is the adaption of

the CNA IPv6 addresses. With the current system, this

can be done by swapping out 32 bit unsigned integers for

128 bit unsigned integers in the C code. Python already

handles all integers as long-numbers and no change in

the Python code would be needed. However, input-parsing

and result output would have to be adapted. However,

the larger memory footprint may have significant impact

on the actual implementation and may require specific

additional optimizations to retain efficiency.

Finally, the CNA could be extended to handle subchains

in firewall rule sets. At this time, subchains can be handled

by a preprocessing step. A native implementation of sub-

chains into the CNA core code by adding suitable rule ac-

tions could speed up processing of subchains significantly.

Acknowledgments: We thank the Swiss KTI and Con-

secom AG for funding parts of this work and the anony-

mous reviwers for their helpful suggestions.

References

[1] A. Wagner and U. Fiedler, “Firewall Analysis by Symbolic Sim-
ulation,” in The Seventh International Conference on Internet
Monitoring and Protection (ICIMP 2012), 2012, pp. 95–100.

[2] “Wikipedia: Hyperrectangle,” http://en.wikipedia.org/wiki/
Hyperrectangle, last visited December 2013.

[3] H. S. M. Coxeter, Regular Polytopes, 3rd ed. New York: Dover,
1973.

[4] P. Eronen and J. Zitting, “An Expert System for Analyzing
Firewall Rules,” in Proc. 6th Nordic Worksh. Secure IT Systems,
2001, pp. 100–107.

[5] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mo-
hapatra, “FIREMAN: A Toolkit for FIREwall Modeling and
ANalysis,” in IEEE Symposium on Security and Privacy, 2006,
pp. 199–213.

[6] A. X. Liu and M. G. Gouda, “Diverse Direwall Design,” in
IEEE Transactions on Parallel and Distributed Systems, 19(8),
August 2008.

[7] “The Python Homepage,” http://python.org/, last visited De-
cember 2013.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 3rd ed. Mit Press, 2009.

[9] “Nmap Security Scanner,” http://nmap.org/, last visited De-
cember 2013.

[10] A. X. Liu and M. G. Gouda, “Firewall Policy Queries,” in IEEE
Transactions on Parallel and Distributed Systems, 20(6), June
2009.

[11] A. X. Liu, “Formal Verification of Firewall Policies,” in 2008
IEEE International Conference on Communications, ICC ’08,
2008, pp. 1494 – 1498.

[12] A. Leporati and C. Ferretti, “Modelling and Analysis of Fire-
walls by (Tissue-like) P Systems,” in Romanian Journal of
Information Science and Technology, Vol. 13, No 2, 2010, pp.
169–180.

98

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[13] T. Bourdier and H. Cirstea, “Symbolic Analysis of Network
Security Policies Using Rewrite Systems,” in Symposium on
Principles and Practices of Declarative Programming, 2011, pp.
77–88.

[14] P. Bera, P. Dasgupta, and S. Ghosh, “Formal Analysis of Secu-
rity Policy Implementations in Enterprise Networks,” in Inter-
national Journal of Computer Networks and Communications
(IJCNC), Vol. 1, No. 2, 2009, pp. 56–73.

[15] S. Pozo, A. Varela-Vaca, and R. Gasca,“A Quadratic, Complete,
and Minimal Consistency Diagnosis Process for Firewall ACLs,”
in 24th IEEE International Conference on Advanced Informa-
tion Networking and Applications, 2010.

[16] K. Karoui, F. B. Ftima, and H. B. Ghezala, “Formal Specifica-
tion, Verification and Correction of Security Policies Based on
the Decision Tree Approach,” in International Journal of Data
and Network Security 08/2013; 3(3):92-111, 2013.

[17] P. Rajkhowa, S. M. Hazarika, and G. R. Simari,“An Application
of Defeasible Logic Programming for Firewall Verification and
Reconfiguration,” in Quality, Reliability, Security and Robust-
ness in Heterogeneous Networks, Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunica-
tions Engineering, Volume 115, 2013, pp. 526–542.

[18] A. J. Mayer, A. Wool, and E. Ziskind, “Offline firewall analysis,”
Int. J. Inf. Sec., vol. 5, no. 3, pp. 125–144, 2006.

[19] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisher, and S. Kr-
ishnamurthi, “The Margrave Tool for Firewall Analysis,” in
USENIX Large Installation System Administration Conference
(LISA), 2010.

[20] “Algosec Homepage,”http://www.algosec.com/, last visited De-
cember 2013.

[21] “tufin Homepage,” http://www.tufin.com/, last visited Decem-
ber 2013.

[22] “FireMon Homepage,” http://www.firemon.com/, last visited
December 2013.

