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Abstract— Nowadays, mobile devices are powerful enough to 

accomplish most of the tasks previously accomplished only by 

personal computers; that includes, for example, file 

management and instant messaging. On the other hand, in 

order to protect final user’s interests, there is also an 

increasing need for security hardenings on ordinary, off-the-

shelf devices. In fact, there is a need for practical security 

technologies that work at the application level, above the 

operating system and under the control of the user. This 

technology has to be easy to use in everyday activities and 

easily integrated into mobile devices with minimal 

maintenance and installation costs. The main contribution of 

this paper is to describe design and implementation issues 

concerning the construction of an integrated framework for 

securing both communication and storage of sensitive 

information of Android smartphones. Four aspects of the 

framework are detailed in this paper: the construction of a 

cryptographic library, its use in the development of a 

cryptographically secure instant message service, the 

integration with an encrypted file system, and the addition of 

secure deletion technologies. Also, an analysis of non-standard 

cryptography is provided, as well as performance evaluation of 

a novel secure deletion technique. The proposed framework is 

supposed to work in user-mode, as an ordinary group of 

mobile apps, without root access, with no need for operating 

system modification, in everyday devices. 
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I.  INTRODUCTION 

Nowadays, the proliferation of smartphones and tablets 
and the advent of cloud computing are changing the way 
people handle their personal, maybe private, information. In 
fact, many users keep their sensitive data on mobile devices 
as well as on cloud servers. 

The current generation of mobile devices is powerful 
enough to accomplish most of the tasks previously 
accomplished only by personal computers. That includes, for 
example, file management operations (such as create, read, 
update, and delete) and instant message capabilities. Also, 
today‟s devices possess operating systems that are hardware-
agnostic by design and abstract from ordinary users all 
hardware details, such as writing procedures for flash 
memory cards. 

However, there is no free lunch, and mobile devices, as 
any other on-line computer system, are vulnerable to many 
kinds of data leakage. Unfortunately, as the amount of digital 
data in mobile devices grows, so does the theft of sensitive 
data through loss of the device, exploitation of vulnerabilities 
or misplaced security controls. Sensitive data may also be 
leaked accidentally due to improper disposal of devices. 

Contemporary to this paradigm shift from ordinary 
computers to mobile devices, the use in software systems of 
security functions based on cryptographic techniques seems 
to be increasing as well, maybe as a response to the new 
security landscape. The scale of cryptography-based security 
in use today seems to have increased not only in terms of 
volume of encrypted data, but also relating to the amount of 
applications with cryptographic services incorporated within 
their functionalities. In addition to the traditional use cases 
historically associated to stand-alone cryptography (e.g., 
encryption/decryption and signing/verification), there are 
new application-specific usages bringing diversity to the 
otherwise known threats to cryptographic software. 

For example, today‟s secure phone communication does 
not mean only voice encryption, but encompasses a plethora 
of security services built over the ordinary smartphone 
capabilities. To name just a few of them, these are SMS 
encryption, Instant Message (IM) encryption, voice and 
video chat encryption, secure conferencing, secure file 
transfer, secure data storage, secure application containment, 
and remote security management on the device, including 
management of cryptographic keys. It is not surprisingly 
that, with the increasing use of encryption systems, an 
attacker wishing to gain access to sensitive data is directed to 
weaker targets. On mobile devices, one such attack is the 
recovery of supposedly erased data from internal storage, 
possibly a flash memory card. Also, embedded security 
technologies can suffer from backdoors or inaccurate 
implementations, in an attempt to facilitate unauthorized 
access to supposedly secure data.  

This paper describes design and implementation issues 
concerning the construction of an integrated framework for 
securing both communication and storage of sensitive 
information of Android smartphones. Preliminary versions of 
this work have been addressed in previous publications 
[1][2][3], as part of a research project [4][5][6] targeting 
security technologies on off-the-shelf mobile devices. 

Additionally, it is a real threat the misuse of security 
standards by intelligence agencies. The motivation behind 
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the special attention given to the selection of cryptographic 
algorithms lies in the recently revealed weakness, which may 
be intentionally included by foreign intelligence agencies, in 
international encryption standards [7][8]. This fact alone 
raises doubt on all standardized algorithms, which are 
internationally adopted. In this context, a need arose to treat 
what has been called “alternative” or “non-standard” 
cryptography in opposition to standardized cryptography. 

This work contributes to the state of the practice by 
discussing the technical aspects and challenges of 
cryptographic implementations, as well as their integration 
into security-ware applications on modern, Android-based, 
mobile devices. The main contributions of this paper are the 
following: 

 Discuss the construction of a cryptographic library for 
Android devices, which focuses on design decisions as 
well as on implementation issues of both standard and 
non-standard algorithms; 

 Describe the construction of a mobile application for 
secure instant messaging that uses the cryptographic 
library and is integrated with an encrypted file system; 

 Describe an encrypted file-system that uses the 
cryptographic library and integrates secure deletion 
technologies; 

 Propose and analyze new approaches to secure deletion 
of stored data on off-the-shelf mobile devices. 

The remaining parts of the text are organized as follows. 
Section II offers background on the subject. Section III 
presents related work. Section IV treats the construction of 
the secure chat. Section V details the constructions of the 
cryptographic library. Section VI describes the encrypted file 
system with secure deletion. Section VII discusses 
integration aspects. Section VIII concludes this text. 

II. BACKGROUND 

This section offers background information in the 
following selected subjects of interest: Android and Java 
technologies; cryptography issues in mobile devices; and 
secure storage and data deletion in flash memories. 

A. General concepts for Android and Java 

This section briefly describes the following topics: the 

Java Cryptographic Architecture (JCA) as a framework for 

pluggable cryptography; the Java Virtual Machine (JVM) 

along with its Garbage Collector (GC) and Just-in-Time 

(JiT) compilation; and The Dalvik Virtual Machine (DVM). 

1) JCA 
The JVM is the runtime software ultimately responsible 

for the execution of Java programs. In order to be interpreted 
by JVM, Java programs are translated to bytecodes, an 
intermediary representation that is neither source code nor 
executable. The JCA [9] is a software framework for use and 
development of cryptographic primitives in the Java 
platform. JCA defines, among other facilities, Application 
Program Interfaces (APIs) for digital signatures and secure 
hash functions [9]. On the other hand, APIs for encryption, 
key establishment and message authentication codes (MACs) 
are defined in the Java Cryptography Extension (JCE) [10].  

The benefit of using a software framework, such as JCA, 
is to take advantage of good design decisions, reusing the 
whole architecture. The API keeps the same general behavior 
regardless of specific implementations. The addition of new 
algorithms is facilitated by the use of a standard API [11]. 

2) Garbage Colletion and JiT Compilation 
An architectural feature of the JVM has great influence in 

the general performance of applications: the GC [12][13]. 
Applications have different requirements for GC. For some 
applications, pauses during garbage collection may be 
tolerable, or simply obscured by network latencies, in such a 
way that throughput is an important metric of performance. 
However, in others, even short pauses may negatively affect 
the user experience. 

One of the most advertised advantages of JVM is that it 
shields the developer from the complexity of memory 
allocation and garbage collection. However, once garbage 
collection is a major bottleneck, it is worth understanding 
some aspects of its implementation. 

Another important consideration on performance of Java 
programs is the JiT Compilation [12][14]. Historically, Java 
bytecode used to be fully interpreted by the JVM and 
presented serious performance issues. Nowadays, JiTC not 
only compiles Java programs, but also optimizes them, while 
they execute. The result of JiTC is an application that has 
portions of its bytecode compiled and optimized for the 
targeted hardware, while other portions are still interpreted. 
It is interesting to notice that JVM has to execute the code 
before to learn how to optimize it.  

Unfortunately, there is a potential negative side to 
security in the massive use of JiT Compilation. Security 
controls put in place into source code, in order to avoid side-
channels, can be cut off by JiT optimizations. JiTC is not 
able to capture programmer's intent that is not explicitly 
expressed by Java‟s constructs. That is exactly the case of 
constant time computations needed to avoid timing attacks. 
Security-ware optimizations should be able to preserve 
security decisions and not undo protections, when 
transforming source code for cryptographic implementations 
to machine code. Hence, to achieve higher security against 
this kind of attacks, it is not recommended to use JiTC 
technology, what constitutes a trade-off between security and 
performance. Further discussion of cryptographic side-
channels and its detection in Java can be found in [15].  

3) DVM 
The DVM [16] is the virtual hardware that executes Java 

bytecode in Android. DVM is quite different from the 
traditional JVM, so that software developers have to be 
aware of those differences, and performance measurements 
over a platform independent implementation have to be 
taken in both environments. 

Compared to JVM, DVM is a relatively young 
implementation and did not suffered extensive evaluation. In 
fact, the first independent evaluation of DVM was just 
recently published [17]. There are three major differences 
between DVM and JVM. First of all, DVM is a register-
based machine, while JVM is stack-based. Second, DVM 
applies trace-based JiTC, while JVM uses method-based 
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JiTC. Finally, former DVM implementations use mark-and-
sweep GC, while current JVM uses generation GC. 

Also, results from that DVM evaluation [17] suggest that 

current implementations of DVM are slower than current 

implementations of JVM. Concerning cryptographic 

requirements, a remarkable difference between these two 

environments is that the source of entropy in DVM is 

significantly different from the one found on JVM. 

B. Security and cryptography issues on Android devices 

A broad study on Android application security, especially 

focused on program decompilation and source code 

analysis, was performed by [18]. There are several misuse 

commonly found on cryptographic software in use today. 

According to a recent study [19], the most common misuse 

of cryptography in mobile devices is the use of deterministic 

encryption, where a symmetric cipher in Electronic Code 

Book (ECB) mode appears mainly in two circumstances: 

Advanced Encryption Standard (AES) in ECB mode of 

operation (AES/ECB for short) and Triple Data Encryption 

Standard in ECB mode (TDES/ECB). A possibly worse 

variation of this misuse is the Rivest-Shamir-Adleman 

(RSA) cryptosystem in Cipher-Block Chaining (CBC) mode 

with Public-Key Cryptography Standards Five (PKCS#5) 

padding (without randomization) [20]. Another frequent 

misuse is hardcoded Initialization Vectors (IVs), even with 

fixed or constant values [20]. A related misuse is the bad 

habit of hardcoded seeds for PRNGs [19]. 
 A common misunderstanding concerning the correct use 

of IVs arises when (for whatever reason) programmers need 
to change operation modes of block ciphers. For instance, the 
Java Cryptographic API [9] allows operation modes to be 
easily changed, but without considering IV requirements. 

According to a NIST standard [21], CBC and Cipher 
feedback (CFB) modes require unpredictable IVs. However, 
Output feedback (OFB) mode does not need unpredictable 
IVs, but it must be unique to each execution of the 
encryption operation. Considering these restrictions, IVs 
must be both unique and unpredictable, in order to work 
interchangeably with almost all common operation modes of 
block ciphers. The Counter (CTR) mode requires unique IVs 
and this constraint is inherited by authenticated encryption 
with Galois/Counter mode (GCM) [22].  

C. Secure storage and deletion on flash memory 

Traditionally, the importance of secure deletion is well 
understood by almost everyone and several real-world 
examples can be given on the subject: sensitive mail is 
shredded; published government information is selectively 
redacted; access to top secret documents ensures all copies 
can be destroyed; and blackboards at meeting rooms are 
erased after sensitive appointments. 

In mobile devices, that metaphor is not easily 
implemented. All modern file systems allow users to 
“delete” their files. However, on many devices the remove-
file command misleads the user into thinking that her file has 
been permanently removed, when that is not the case. File 
deletion is usually implemented by unlinking files, which 

only changes file system metadata to indicate that the file is 
“deleted”; while the file‟s full content remains available in 
physical medium. This process is known as logical deletion. 

Unfortunately, despite the fact that deleted data are not 
actually destroyed in the device, logical deletion has the 
additional drawback that ordinary users are generally unable 
to completely remove her files. On the other hand, advanced 
users or adversaries can easily recover logically deleted files. 

Deleting a file from a storage medium serves two 
purposes: (i) it reclaims storage to operating system and (ii) 
ensures that any sensitive information contained in the file 
becomes inaccessible. The second purpose requires that files 
are securely deleted. 

Secure data deletion can be defined as the task of 

deleting data from a physical medium so that the data is 

irrecoverable. That means its content does not persist on the 

storage medium after the secure deletion operation. 
Secure deletion enables users to protect the 

confidentiality of their data if their device is logically 
compromised (e.g., hacked) or stolen. Until recently, the 
only user-level deletion solution available for mobile devices 
was the factory reset, which deletes all user data on the 
device by returning it to its initial state. However, the 
assurance or security of such a deletion cannot be taken for 
granted, as it is highly dependent on device‟s manufacturer. 
Also, it is inappropriate for users who wish to selectively 
delete data, such as some files, but still retain their address 
books, emails and installed applications. 

Older technologies [23] claim to securely delete files by 
overwriting them with random data. However, due the nature 
of log-structured file systems used by most flash cards, this 
solution is no more effective than logically deleting the file, 
since the new copy invalidates the old one but does not 
physically overwrite it. Old secure deletion approaches that 
work at the granularity of a file are inadequate for mobile 
devices with flash memory cards.  

Today, secure deletion is not only useful before 
discarding a device. On modern mobile devices, sensitive 
data can be compromised at unexpected times by adversaries 
capable of obtaining unauthorized access to it. Therefore, 
sensitive data should be securely deleted in a timely fashion. 

Secure deletion approaches that target sensitive files, in 
the few cases where it is appropriate, must also address 
usability concerns. A user should be able to reliably mark 
their data as sensitive and subject to secure deletion. That is 
exactly the case when a file is securely removed from an 
encrypted file system. On the other hand, approaches that 
securely delete all logically deleted data, while less efficient, 
suffer no false negatives. That is the case for purging. 

III. RELATED WORK 

This section discusses related work on following 
subjects: cryptography implementation on mobile devices, 
security of IM applications, and secure storage and deletion. 

A. Cryptography implementation on mobile devices 

A couple of years ago, the U.S. National Security 
Agency (NSA) started to encourage the use of off-the-shelf 
mobile devices, in particular smartphones with Android, for 
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communication of classified information [24]. The document 
fosters the adoption of two layers of cryptography for 
communication security. One is provided by infrastructure 
(e.g., VPN) and other implemented at the application layer. 

Regarding the performance evaluation of cryptographic 
libraries on Android smartphones, there are tests made on the 
Android platform for the BouncyCastle and Harmony 
cryptographic libraries, both already available on the 
platform [25]. 

A few works could be found concerning efficient 
implementation of cryptography on smartphones. The first 
one [26] presented an efficient Java implementation of 
elliptic curve cryptography for J2ME-enabled mobile 
devices. That Java implementation has an optimized scalar 
multiplication that combines efficient finite-field arithmetic 
with efficient group arithmetic. A second work [27] 
presented an identity-based key agreement protocol for 
securing mobile telephony in GSM and UMTS networks. 
The paper proposes an approach to speed up client-side 
cryptography using server-aided cryptography, by 
outsourcing computationally expensive cryptographic 
operations to a high-performance backend computing server. 

Another work [28] presents a Java port (jPBC) of the 
PBC library written in C, which provides simplified use of 
bilinear maps and supports different types of elliptic curves.  

A recent study [6] showed that despite the observed 

diversity of cryptographic libraries in academic literature, 

this does not mean those implementations are publicly 

available or ready for integration with third party software. 

In spite of many claims on generality, almost all of them 

were constructed with a narrow scope in mind and 

prioritizes academic interest for non-standard cryptography. 

Furthermore, portability to Android used to be a commonly 

neglected concern on cryptographic libraries [6]. 

Recently, the European Union Agency for Network and 

Information Security (ENISA) has published two technical 

reports [29][30] about the correct and safe use of 

cryptography to protect private data in on-line system, 

giving attention to cloud and mobile environments. One 

report [29] focuses on algorithms, key size and parameters. 

Other report [30] gives attention to cryptographic protocols, 

and tries to point legacy issues and design vulnerabilities. 

B. Security issues in IM protocols and applications 

The work of Xuefu and Ming [31] shows the use of 

eXtensible Messaging and Presence Protocol (XMPP) for 

IM on web and smartphones. Massandy and Munir [32] 

have done experiments on security aspects of 

communication, but there are unsolved issues, such as 

strong authentication, secure storage, and implementation of 

good cryptography, as shown by Schrittwieser et al. [33]. 

It seems that the most popular protocol for secure IM in 

use today is the Off-the-Record (OTR) Messaging [34], as it 

is used by several secure IM apps. OTR Messaging 

handshake is based upon the SIGMA key exchange protocol 

[35], a variant of Authenticated Diffie-Hellman (ADH) [36], 

just like Station-to-Station (STS) [37][38]. 

 A good example of security issues found in current IM 

software is a recently discovered vulnerability in WhatsApp 

[39]. The vulnerability resulting from misuse of the Rivest 

Cipher 4 (RC4) stream cipher in a secure communication 

protocol allowed the decryption, by a malicious third party 

able to observe conversations, of encrypted messages 

exchanged between two WhatsApp users. 

In order to be fair, it is worth note that WhatsApp has 

recently announced an effort for hardening its 

communication security with end-to-end encryption [40]. 

C. Secure storage and deletion 

This section briefly describes related work on the 
subjects of secure deletion and encrypted file systems on 
mobile devices, particularly Android. 

The use of cryptography as a mechanism to securely 
delete files was first discussed by Boneh and Lipton [41]. 
Their paper presented a system which enables a user to 
remove a file from both file system and backup tapes on 
which the file is stored, just by forgetting the key used to 
encrypt the file.  

Gutman [23] covered methods available to recover erased 
data and presented actual solutions to make the recovery 
from magnetic media significantly more difficult by an 
adversary. Flash memory barely existed at the time it was 
written, so it was not considered by him.  

K. Sun et al. [42] proposed an efficient secure deletion 
scheme for flash memory storage. This solution resides 
inside the operating system and close to the memory card 
controller.  

Diesburg and Wang [43] presented a survey summarizing 
and comparing existing methods of providing confidential 
storage and deletion of data in personal computing 
environments, including flash memory issues. 

Wang et al. [44] present a FUSE (File-system in 
USErspace) encryption file system to protect both removable 
and persistent storage on devices running the Android 
platform. They concluded that the encryption engine was 
easily portable to any Android device and the overhead due 
to encryption is an acceptable trade-off for achieving the 
confidentiality requirement.  

Reardon et al. [45]-[49] have shown plenty of results 
concerning both encrypted file system and secure deletion. 
First, Reardon et al. [45] proposed the Data Node Encrypted 
File System (DNEFS), which uses on-the-fly encryption and 
decryption of file system data nodes to efficiently and 
securely delete data on flash memory systems. DNEFS is a 
modification of existing flash file systems or controllers that 
extended a Linux implementation and was integrated in 
Android operating system, running on a Google Nexus One 
smartphone. 

Reardon et al. [46] also propose user-level solutions for 
secure deletion in log-structured file systems: purging, which 
provides guaranteed time-bounded deletion of all data 
previously marked to be deleted, and ballooning, which 
continuously reduces the expected time that any piece of 
deleted data remains on the medium. The solutions empower 
users to ensure the secure deletion of their data without 
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relying on the manufacturer to provide this functionality. 
These solutions were implemented on an Android 
smartphone (Nexus One). 

In two recent papers, Reardon et al. [47][48] study the 
issue of secure deletion in details. First, in [47], they identify 
ways to classify different approaches to securely deleting 
data. They also describe adversaries that differ in their 
capabilities, show how secure deletion approaches can be 
integrated into systems at different interface layers. Second, 
in [48], they survey the related work in detail and organize 
existing approaches in terms of their interfaces to physical 
media. More recently, Reardon et al. [49] presented a general 
approach to the design and analysis of secure deletion for 
persistent storage that relies on encryption and key wrapping. 

Finally, Skillen and Mannan [50] designed and 
implemented a system called Mobiflage that enables 
plausibly deniable encryption (PDE) on mobile devices by 
hiding encrypted volumes within random data on a device‟s 
external storage. They also provide [51] two different 
implementations for the Android OS to assess the feasibility 
and performance of Mobiflage: One for removable SD cards 
and other for internal partition for both apps and user 
accessible data. 

The above mentioned works suffer from at last one of the 
following disadvantages: 

 Requires modification of the host operating system or 
device, so the solution does not work on off-the-shelf 
devices without modification of OS internals; 

 Limits the available (free) storage to ordinary 
applications, possibly leading apps to starvation by 
lack of storage; 

 Inserts abnormal behavior to storage usage that can 
potentially slow down the whole system, when using 
incremental memory sweeping by a single-file, 
single-thread application.   

The secure deletion approach proposed in this paper 
provides alternative solutions to these disadvantages.  

IV. CONSTRUCTION OF A SECURE CHAT APPLICATION 

This section describes design and implementation issues 

concerning the construction of CryptoIM, a prototype app 

for cryptographically secure, end-to-end communication, 

which operates on a device-to-device basis, exchanging 

encrypted instant messages via standard transport protocols. 

A. Cryptographic services for IM applications 

CryptoIM implements the basic architecture used by all 

IM applications, using the standard protocol XMPP [52] at 

the transport layer. The application then adds a security 

layer to XMPP, which is composed of a protocol for session 

key agreement and cryptographic transaction to transport 

encrypted messages. The security negotiation is indeed a 

protocol for key agreement, as illustrated by Figure 1. 
To accomplish cryptographically secure communication, 

Alice and Bob agree on the following general requirements: 

 An authentication mechanism of individual messages; 

 An encryption algorithm and modes of operation; 

 A key agreement protocol;  

 A mechanism to protect cryptographic keys at rest. 
To avoid known security issues in instant messaging 

applications [33][39], the key agreement protocol must 
provide the following security properties [53]: 

 Mutual authentication of entities; 

 Mutually authenticated key agreement; 

 Mutual confirmation of secret possession; 

 Perfect Forward Secrecy (PFS). 
As a general goal, the CryptoIM is intended to be used in 

the protection of cryptographically secure communication 
via mobile devices. In order to be useful, the underlying 
cryptographic library had to accomplish a minimum set of 
functional requirements. 

Once JCA [9] was defined as the architectural 
framework, as it is the standard API for cryptographic 
services on Android, the next design decision was to choose 
the algorithms minimally necessary to implement a scenario 
of secure communication via mobile devices. The choice of a 
minimalist set was an important design decision in order to 
provide a fully functional Cryptographic Service Provider 
(CSP) in a relatively short period of time. This minimalist 
construction had to provide the following set of functions:  

a) A symmetric algorithm to be used as block cipher, 

along with the corresponding key generation 

function, and modes of operation and padding; 

b) An asymmetric algorithm for digital signatures, 

along with the key-pair generation function. This 

requirement brings with it the need for some sort of 

digital certification of public keys; 

c) A one-way secure hash function. This is a support 

function to be used in MACs and signatures; 

d) A Message Authentication Code (MAC), based on a 

secure hash or on a block cipher;  

e) A key agreement mechanism or protocol to be used 

by communicating parties that have never met 

before, but need to share an authentic secret key; 

f) A simple way to keep keys safe at rest and that does 

not depend on hardware features; 

g) A Pseudo-Random Number Generator (PRNG) to 

be used by key generators and nonce generators. 
The cryptographic library supporting CryptoIM was 

designed to meet each one of these general requirements, 
resulting in an extensive implementation. 

 
Figure 1. Station to Station (STS) protocol. 
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B. Advanced cryptographic features 

Three improvements to CryptoIM were necessary to 
integrate it to other apps in the framework. The first is a 
mobile PKI for digital certification, which is fully integrated 
to the mobile security framework. PKI‟s Server-side is based 
upon the EJBCA [54]. Client-side follows recommendations 
for handling certificates on mobile devices [55].  

The second is a secure text conference (or group chat) via 
instant messages. As depicted in Figure 2, the Organizer or 
Chair of the conference requests the conference creation to 
the Server, as this is an ordinary XMPP feature. The key 
agreement for the requested conference proceeds as follows, 
where Enck(x) means encryption of x with key k: 

1. Chair (C) creates the key for that conference (ck); 

2. For each guest (g[i]), Chair (C) does: 

a) Opens a STS channel with key k: C  g[i], key k; 

b) Sends ck on time t to g[i]: C  g[i]: Enck(ck). 

These steps constitute a point-to-point key transport 
using symmetric encryption, which is carried out by STS 
protocol. After that, all guests share the same group key and 
conference proceeds as a multicast of encrypted messages. 

The third improvement is a secure file transfer that is 
fully integrated to the encrypted file system described in 
Section VI. Figure 3 illustrated the secure transfer as a step-
by-step procedure. The encrypted file system and its file 
management tool are jointly referred as CryptoFM. The 
eleven steps for secure file transfer are as follows: 

1. Alice activates the file transfer function; 
2. Alice‟s CryptoIM activates the local instance of 

CryptoFM and passes to it the key KFT (key derived 
from KSTS conversation) for secure transport of files; 

3. Alice chooses, from her CryptoFM, the file to be 
transferred and exports it from encrypted file system; 

4. The exported file is encrypted with the key KFT and 
stored in a public folder; 

5. CryptoIM gets the encrypted file from public folder; 
6. The encrypted file and related metadata are 

transmitted from Alice to Bob through a secure 
channel (STS channel) over XMPP; 

7. The file is received by Bob, who accepts the transfer 
in his CryptoIM and saves the file; 

8. The encrypted file is temporarily saved in a public 
folder recognized by the Bob‟s CryptoFM; 

9. Bob‟s CryptoIM activates its local CryptoFM and 
passes to it the key KFT (key derived from KSTS 

 
Figure 2. Key agreement for secure conference. 

 
Figure 3. Secure file transfer is integrated to both CryptoIM and CryptoFM. 
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conversation) used to securely transport of the file; 
10. Bob‟s CryptoFM, in a secure import operation, gets 

the encrypted file from the public folder and 
decrypts with key KFT; 

11. CryptoFM saves the received file into its encrypted 
file system. 

This procedure has the possible vulnerability of leaving 
temporary files or residual, unencrypted information at local 
storage. This vulnerability can show up at both sides of file 
transfer. In fact, this issue raised the need for a method for 
secure deletion and memory purging.  

In summary, the three remarkable differences between 
CryptoIM and the related work are the following. First, the 
prototype uses STS protocol and its variants to accomplish 
authenticated key agreement. This has the benefit of 
facilitating protocol extension to use alternative 
cryptographic primitives. Also, STS is used as building 
block for both multi-user conference and secure file transfer. 
Second, authenticated encryption is the preferred encryption 
mechanism to protect messages, so the burden of IV 
management is minimized. Third, it is fully integrated to an 
encrypted file system. 

V. CONSTRUCTION OF A CRYPTOGRAPHIC LIBRARY 

This section describes both the design decisions and 
implementation issues concerning the construction of a 
cryptographic library for Android devices. This library 
support all secure apps included in the secure framework, 
including CryptoIM, a secure chat detailed in Section IV, 
and CryptoFM, an encrypted file-system introduced in 
Section IV and detailed in Section VI.  

Four aspects of the implementation were discussed in this 
paper: selection of cryptographic primitives, architecture of 
components, performance evaluation on Android devices, 
and the implementation of non-standard cryptographic 
algorithms.  

As previously stated, a need arose to treat what has been 
called “alternative” or “non-standard” cryptography in 
opposition to standardized cryptographic schemes. The final 
intent was strengthening the implementation of advanced 
cryptography and fostering their use. Non-standard 
cryptography provides advanced mathematical concepts, 
such as bilinear pairings and elliptic curves, which are not 
fully standardized by foreign organizations, and suffer 
constant improvements. 

In order to facilitate the portability of the cryptographic 
library for mobile devices, in particular for the Android 
platform, the implementation was performed according to 
standard cryptographic API for Java, the JCA [9][56], its 
name conventions [57], and design principles [10][58]. 

Once JCA was defined as the architectural framework, 
the next design decision was to choose the algorithms 
minimally necessary to a workable cryptographic library. 
The current version of this implementation is illustrated by 
Figure 4 and presents the cryptographic algorithms and 
protocols described in the following paragraphs. The figure 
shows that frameworks, components, services and 
applications are all on top of JCA API. The Cryptographic 
Service Provider (CSP) is in the middle, along with 

BouncyCastle and Oracle providers. Arithmetic libraries are 
at the bottom. 

Figure 4 shows the CSP divided in two distinct 
cryptographic libraries. The left side shows only 
standardized algorithms and comprises a conventional 
cryptographic library. The right side features only non-
standard cryptography and is an alternative library. The 
following subsections describe these two libraries. 

A. Standard cryptography 

This subsection details the implementation choices for 
the standard cryptographic library. The motivations behind 
this implementation were all characteristics of standardized 
algorithms:  interoperability, documentation, and testability. 
The standard cryptography is packaged as a pure-Java library 
according to the JCA specifications.  

The block cipher is the AES algorithm, which was 
implemented along with the modes of operation: ECB, and 
CBC [21], as well as the GCM mode for authenticated 
encryption [22]. PKCS#5 [59] is the simplest padding 
mechanism and was chosen for compatibility with other 
CSPs. As GCM mode for authenticated encryption only uses 
AES encryption, the optimization of encryption received 
more attention than AES decryption. Implementation aspects 
of AES and other cryptographic algorithms can be found on 
literature [60][61][62], in particular [63]. 

The Signature algorithm is the RSA-PSS that is a 
Probabilistic Signature Scheme (PSS) constructed over the 
RSA signature algorithm. RSA-PSS is supposed to be more 
secure than ordinary RSA [62][64]. Asymmetric encryption 
is provided by the RSA-OAEP [62][64]. 

Two cryptographically secure hashes were implemented, 
SHA-1 [65] and MD5. It is well known by now that MD5 is 
considered broken and is not to be used in serious 
applications, it is present for ease of implementation. In 
current version, there is no intended use for these two hashes. 
Their primary use will be as the underling hash function in 
MACs, digital signatures and PRNGs. The Message 
Authentication Codes chosen were the HMAC [66] with 
SHA-1 and SHA2 as the underling hash functions, and the 

 
Figure 4. Cryptographic Service Provider Architecture. 
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GMAC [22], which can be directly derived from GCM 
mode. SHA-2 family of secure hashes supplies the need for 
direct use of single hashes. 

The need for key agreement was fulfilled by the Station-
to-Station (STS) protocol, which is based upon 
Authenticated Diffie-Hellman [36], and provides mutual key 
authentication and confirmation  [37][38]. 

Finally, the mechanism for Password-based Encryption 
(PBE) is based on the Password-Based Key Derivation 
Function 2 (PBKDF2) [59], and provides a simple and 
secure way to store keys in encrypted form. In PBE, a key-
encryption-key is derived from a password. 

B. Non-standard cryptography 

This subsection details the implementation choices for 
the alternative cryptographic library. The non-standard 
cryptography is a dynamic library written in C and accessible 
to Java programs through a Java Native Interface (JNI) 
connector, which acts as a bridge to a JCA adapter. 

Some of the constructs are based upon a reference 
implementation [67]. The most advanced cryptographic 
protocols currently implemented are listed below: 

a) Curve25519 [68] is used to provide a key agreement 
protocol equivalent to the Elliptic Curve Diffie–
Hellman (ECDH) [69], but over a non-standard 
curve. The key agreement protocol ECDH is a 
variation of the Diffie-Hellman (DH) protocol using 
elliptic curves as the underlying algebraic structure; 

b) ED25519 [70] is utilized to construct a digital 
signature scheme that corresponds to the Elliptic 
Curve Digital Signature Algorithm (ECDSA) [71], 
but over a non-standard curve that is birationally 
equivalent to Curve25519. ECSS [69] is a variation 
of ECDSA that does not require the computation of 
inverses in the underlying finite field, obtaining a 
signature algorithm with better performance; 

c) Sakai-Ohgishi-Kasahara (SOK) [72]. This protocol 
is a key agreement for Identity-Based Encryption 
(IBE). Sometimes, it is called SOKAKA for SOK 
Authenticated Key Agreement;  

d) Boneh-Lynn-Shacham (BLS) [73]. A short digital 
signature scheme in which given a message m, it is 
computed S = H (m), where S is a point on an 
elliptic curve and H() is a secure hash; 

e) Zhang-Safavi-Susilo (ZSS) [74]. Similar to the 
previous case, it is a more efficient short signature, 
because it utilizes fixed-point multiplication on an 
elliptic curve rather arbitrary point; 

f) Blake [75]. Cryptographic hash function submitted 
to the worldwide contest for selecting the new SHA-
3 standard and was ranked among the five finalists; 

g) Elliptic Curve Integrated Encryption Scheme 
(ECIES) [69]. This is an asymmetric encryption 
algorithm over elliptic curves. This algorithm is non-
deterministic and can be used as a substitute of the 
RSA-OAEP, with the benefit of shorter 
cryptographic keys; 

h) Elliptic Curve Station-to-Station (ECSTS) [69]. 
Variation of STS protocol using elliptic curves and 
ECDH as a replacement for ADH; 

i) Salsa20 [76]. This is a family of 256-bit stream 
ciphers submitted to the ECRYPT Project 
(eSTREAM); 

j) Serpent [77]. A 128-bit block cipher designed to be a 
candidate to contest that chose the AES. Serpent did 
not win, but it was the second finalist and enjoys 
good reputation in the cryptographic community; 

k) CipherPRNG based upon the construction described 
by Petit et al. [78], which offers protection against 
side channel attacks. There is a security proof that 
the scheme produces a sequence of random numbers 
indistinguishable from the uniform distribution. 

C. Security decisions for non-standard cryptography 

Among the characteristics that were considered in the 
choice of alternative cryptographic primitives, side channels 
protection was a prevailing factor and had distinguished role 
in the design of the library. For instance, schemes with 
known issues were avoided, while primitives that were 
constructed to resist against such attacks are currently being 
regarded for inclusion in the architecture. Furthermore, 
constant-time programming  techniques, like for example in 
table accessing operations for AES, are being surveyed in 
order to became part of the implementation. 

Concerning mathematical security of non-standard 
cryptography, the implementation offers alternatives for 256-
bit security for both symmetric and asymmetric encryption. 
For instance, Serpent-256 corresponds to AES-256 block 
cipher, while the same security level is achieved in 
asymmetric world using elliptic curves over 521-bit finite 
fields, what can only be possible in standard cryptography 
using 15360-bit RSA key size. Thus, in higher security 
levels, non-standard primitives performance is significantly 
improved in relation to standard algorithms, but an extensive 
analysis of this scenario, with concrete timing comparisons, 
is left as future work. 

Short signatures, such as BLS and ZSS (BBS), are not as 
fast as EC, since this kind of constructions are based on 
bilinear pairings. Here, there is a tradeoff, because the 
signature can be roughly half the size of a regular ECDSA 
signature, but the verification algorithm must compute a 
bilinear pairing and, therefore, is less efficient. It is important 
to remark that the ability to compute bilinear pairings allows 
us to achieve many new cryptographic functionalities, such 
as identity based cryptography and certificateless encryption. 
Furthermore, the scheme ED25519 is a recently proposed 
digital signature cryptosystem that has been built over 
elligator curves [70], which offers advantages against side 
channel attacks and is a non-standard construction which 
may not be susceptible to surveillance manipulation. 

A final remark about the use of non-standard 
cryptography is that working with advanced cryptographic 
techniques that have not been sufficiently analyzed by the 
scientific community has its own challenges and risks. There 
are occasions when the design of a non-standard 
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cryptographic library has to be conservative in order to 
preserve security.  

For instance, a recent improvement in mathematics 
[79][80] had eliminated an entire line of research in 
theoretical cryptography. Such advancement affected elliptic 
curve cryptography using a special kind of binary curves 
called supersingular curves, but had no effect on the bilinear 
pairings over primes fields or encryption on ordinary 
(common) binary curves. Thus, these two technologies 
remain cryptographically secure. Unfortunately, the 
compromised curves were in use and had to be eliminated 
from the cryptographic library.  

As pairings on prime fields can still be securely used in 
cryptographic applications, the implementation was adapted 
to that new restricted context. Additionally, ordinary elliptic 
curves may still be used for cryptographic purposes, 
considering they are not supersingular curves, and the 
implementation had to adapt to that fact, too. 

D. Performance Evaluation 

Performance evaluation of Java programs, either in 
standard JVM or DVM/Android, is a stimulating task due to 
many sources of interference that can affect measurements. 
As discussed in previous sections, GC and JiTC have great 
influence over the performance of Java programs. For 
instance, Garbage Collections (GC) as well as optimizations 
and recompilations can be clearly identified in diagrams, as 
shown in Figure 5(A). The figure shows the time consumed 
by the first 300 executions of a pure-Java implementation of 
the AES algorithm, for both encryptions (E) and decryptions 
(D) of a small block of data, with a 128-bit key. The 
measurements were taken on a Samsung Galaxy S III (Quad-
core 1.4 GHz Cortex-A9 processor, 1GB of RAM, and 
Android 4.1). The figure shows that at the very first 
moments of execution, the algorithm has a relatively poor 
performance, since the bytecode is been interpreted, 
analyzed for optimizations, and compiled at the same time. 
After this short period, the overall performance of the 
application improves and the execution tends to stabilize at 
an acceptable level of performance, despite a few GC calls. 

Due to the above mentioned limitations, two approaches 
of measurement have been used for the evaluation of 
cryptographic functions. The first one was the measurement 
of elapsed time for single cryptographic functions processing 
a single (small) block of data. This approach suffers from the 
interference of GC and JiTC. The JiTC interference can be 
eliminated by discarding all the measurements collected 
before code optimization. The GC interference cannot be 
completely eliminated, though. 

Figure 5(B) exemplifies the first approach and shows the 
comparative performance of AES‟s encryptions (E) and 
decryptions (D) of a single block of data, for two 
cryptographic providers for Android: this CryptoLib (CSP), 
and BouncyCastle‟s [81] deployment for Android, 
SpongeCastle (SC) [82]. AES were setup to ECB mode and 
128-bit key. The measurements were taken on a smartphone 
Samsung Galaxy S III (Quad-core 1.4 GHz Cortex-A9 
processor, 1GB of RAM, and Android 4.1). The procedure 

consisted of processing a single block of data in a loop of 
10,000 iterations. 

In order to inhibit the negative influence of GC and JiTC, 
two metrics were taken: the average of all iterations and the 
9th centile. None of them resulted in a perfect metric, but the 
9th centile were able to reduce negative influence from GC 
and JiTC. For small data chunks, CSP is faster than SC. 

The second approach for performance evaluation 
supposes that final users of mobile devices will not tuning 
their Java VMs with obscure configuration options in order 
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Figure 5. Approaches for performance evaluation on Android. (A) Single 

measurements suffer from GC and JiTC. (B) 9th centile and average show 
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to achieve maximum performance. On the contrary, almost 
certainly, they will use default configurations, with minor 
changes on device‟s settings. Thus, the responsiveness of an 
application tends to be more relevant to final users than the 
performance of single operations. 

The second approach of measurement takes into account 
the responsiveness of cryptographic services and considers 
the velocity with which a huge amount of data can be 
processed, despite the interferences of GC and JiTC. The 
amount of work performed per unit of time is called the 
throughput of the cryptographic implementation. 

Figure 5(C) shows the throughput of SHA-256 and 
HMAC-SHA-256 implemented by CryptoLib (CSP) 
compared to SC. Also it shows the throughput for two 
instances of Pseudo Random Number Generator (PRNG): 
CSP‟s CipherPRNG compared to a SHA1PRNG available to 
Android apps through a provider called Crypto. The 
measurements were taken on a smartphone of type Samsung 
Galaxy S III (Quad-core 1.4 GHz Cortex-A9 processor, 1GB 
of RAM, and Android 4.1).  

The procedure consisted of processing an input file of 5 
MB, in a loop of 500 iterations. It is interesting to observe 

that CSP and SC are quite similar in performance for SHA-
256 and HMAC, CSP is slightly better. However, CSP‟s 
CipherPRNG has shown a low throughput, mostly because 
its construction is relatively inefficient, since it is based on 
block ciphers instead of hash functions. Nonetheless, this 
implementation is still a proof of concept and better timings 
are expected in the future. 

Performance measurements for other implementations of 
non-standard cryptography were taken as well. Despite been 
implemented in C and not been subjected to GC and JiTC 
influences, non-standard cryptography usually has no 
standard specifications or safe reference implementations. 
Neither it is in broad use by other cryptographic libraries. 
Because of that, comparisons among implementations of the 
same algorithm are barely possible. On the other hand, it is 
feasible to compare alternative and standard cryptography, 
considering the same type of service. 

For the non-standard cryptography implementations, 
performance measurements were taken in two smartphones: 
(i) LG Nexus 5 with processor 2.3 GHz quad-core Krait 400, 
2GB of RAM, and 16GB of storage and (ii) Samsung Galaxy 
S III with processor of 1.4 GHz quad-core Cortex-A9, 1 GB 
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Figure 6. Performance evaluation of non-standard cryptography compared to standards. RSA uses 1024-bit key, all others have security level of 256-bit. 

Digital signatures: (A) generation, (B) verification, and (C) key pair generation. Key Agreement: (D) parameters generation and secret agreement. 
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of RAM, and 16 GB of storage. 
 Figure 6 shows two types of services: digital signatures 

at the top and key agreement (KA) at the bottom. The bar 
chart Figure 6(A) shows generation of digital signatures for 
five algorithms: RSA (1024-bit key), ECDSA (with SHA-
256), ED25519, BLS and ZSS (BBS), all of them for 256-bit 
security. Traditionally, RSA is the slowest one. Elliptic curve 
cryptography, as in ECDSA, is faster. Short signatures, such 
as BLS and ZSS (BBS), are not as fast as EC. The scheme 
ED25519 is the slowest one. This implementation is still a 
proof of concept and better timings are expected after 
optimizations. 

Bar chart of Figure 6(B) shows verification of digital 
signatures for five algorithms: RSA (1024-bit key), ECDSA 
(with SHA-256), ED25519, BLS and ZSS (BBS), with 256-
bit security. Traditionally, RSA verification is the fastest 
one. Elliptic curve cryptography, as in ECDSA, is not that 
fast. Short signatures, such as BLS and ZSS (BBS), are 
terribly slow, due to complex arithmetic involved in bilinear 
pairings computations. ED25519 is the slowest one.  

Figure 6(C) shows key pair generation for ED25519, 
BLS, ZSS (BBS) and SOKAKA, a pairings-based KA 
scheme, compared to ECDSA. Again, performance is slow 
for BLS, ZSS (BBS), and SOKAKA. ED25519 is the 
slowest. Figure 6(D) shows two KA schemes (Curve25519 
and SOKAKA) compared to ECDH. ECDH is quite fast. 
Curve25519 is faster than SOKAKA. 

Additional measurements were taken for symmetric, non-
standard algorithms on the same Samsung Galaxy S III. 
Figure 7 shows time measurements of single-block 
operations for the following algorithms: (i) Blake 512 and 
HMAC with Blake compared to SHA-512; (ii) Serpent and 
Salsa20 compared to AES. Algorithms were setup with a 
256-bit key, if needed. The bar chart shows both average and 
the 8

th
 centile of 10 thousand operations. Serpent is faster 

than homegrown AES, but Salsa20 is the fastest. Blake 512 
is quite competitive to SHA-512 for small amounts of data. 

Figure 8 tries to capture the perceived responsiveness and 
considers the throughput for the same symmetric algorithms, 
in megabytes per seconds (MB/s), to process a single file of 

5MB, in a cycle of 500 iterations. The best throughput is 
given by Salsa20. Interestingly, Blake has shown slower 
performance than SHA-512 for large amounts of data. 

VI. ENCRYPTTED FILESYSTEM WITH SECURE DELETION 

In order to protect the secrecy of data during its entire 

lifetime, encrypted file systems must provide not only ways 

to securely store, but also reliably delete data, in such a way 

that recovering them from physical medium is almost 

impossible. The rationale behind the proposed solution is 

the actual possibility of performing secure deletion of files 

from ordinary Android applications, in user mode, without 

administrative privileges or operating system customization. 

A. General description of the proposed solution 

The proposed solution handles two cases according to the 
place where the deleted (or about to be deleted) file is stored: 

1. The file is kept by the encrypted file system;  

2. The file is logically deleted by the O.S. 

1) Secure Deletion of Encrypted Files 
The simplest way to fulfill the task of securely delete a 

file from an encrypted file system is to simply lose the 
encryption key of that file and then logically remove the file. 
This method does not need memory cleaning (purging) and 
is very fast. A prototype was built upon an Android port [44] 
for the EncFS encrypted file system [83]. Figure 9 illustrates 
the general behavior and functioning of the encrypted file 
system and its management application, called CryptoFM. 
The figure shows CryptoFM usage: 

1. Inside CryptoFM, user sees a file system; 
2. Inside, file names are decrypted on-the-fly; 
3. Outside CryptoFM, user sees encrypted folders;  
4. Inside, all file names are encrypted as well; 
5. Outside, the file type is hidden;  
6. Inside, corruptions are detected and monitored.  
To accomplish the task of secure file deletion, the way 

EncFS manages cryptographic keys had to be modified. 
EncFS encrypts all files with a single master key derived 
from a password based encryption (PBE) function. It seems 
quite obvious that it is not feasible to change a master key 
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Figure 7. Performance of non-standard cryptography (symmetric 

encryption, secure hash, and MACs) compared to AES and SHA-512. 
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and encrypt the whole file system every time a single file is 
deleted. On the other hand, if each file were encrypted with 
its own key, then that key could be easily thrown away, 
turning the deleted file irrecoverable. 

The modification to EncFS consists of the following: 
a) Use PBE to derive a master key MK; 
b) Use a Key Derivation Function (KDF) to derive a 

File System Encryption Key (FSEK) from MK; 
c) Use  an ordinary key generation function (e.g., 

PRNG) to generate a File Encryption Key (FEK); 
d) Encrypt files along with their names using FEK and 

encrypts FEK with FSEK and random IV; 
e) Keep a mapping mechanism from FEK and IV to 

encrypted file (FEK||IV  file). 
A simple way to keep that mapping is to have a table file 

stored in user space as application‟s data. Care must be 

taken to avoid accidentally or purposely remove that file 

when cleaning device‟s user space. In Android devices, this 

can be done by rewriting the default activity responsible for 

deleting application‟s data. An application-specific delete 

activity would provide a selective deletion of application‟s 

data or deny any deletion at all. The removal from table of 

the FEK and IV makes a file irrecoverable. The ordinary 

delete operation then return storage space of that file to 

operating system. Figure 10 depicts the solution. 
Another way to keep track of keys and files is to store the 

pair {FEK, IV} inside the encrypted name of the encrypted 
file. In this situation, a file has to be renamed before 
removed from the encrypted file system. The rename 
operation destroys the FEK and makes file irrecoverable. 
The ordinary delete operation then return storage space to 

operating system. 
It is interesting to note that the proposed solution 

contributes to solve some known security issues of EncFS 
[84][85]. By using distinct keys for every file, a Chosen 
Ciphertext Attack (CCA) against the master key is inhibited. 
Also, it reduces the impact of IV reuse across encrypted files. 
Finally, it eliminates the watermarking vulnerability, because 
a single file imported twice to EncFS will be encrypted with 
two distinct keys and IVs. 

Finally, the key derivation function is based upon 
PBKDF2 standard [59], keys and IVs are both 256 bits, and 
the table for mapping the pair {key, IVs} to files is kept by 
an SQLite scheme accessible only by the application. 

2) Secure deletion of ordinary files 

In this context, a bunch of files were logically deleted by 

the operating system for the benefit of the user, but they left 

sensitive garbage in the memory. Traditional solutions for 

purging memory cells occupied by those files are innocuous, 

because there is no way to know, from user‟s point of view, 

where purging data will be written.  

An instance of this situation occurs when a temporary 

file is left behind by an application and manually deleted. 

This temporary file may be a decrypted copy of an 

encrypted file kept by the encrypted file system. Temporary 

unencrypted copies of files are necessary in order to allow 

other applications to handle specific file types, e.g., images, 

documents, and spreadsheets. 
Whether temporary files will or will not be imported 

back to the encrypted file system, they have to be securely 
removed anyway. A premise is that the files to be removed 
are not in use by any application. The secure deletion occurs 

 

 
Figure 9. General behavior and functioning of the encrypted file system and its management application CryptoFM.  
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in three steps: 
1) Logically remove targeted files with ordinary deletion; 
2) Write a temporary file of randomized content that 

occupies all storage‟s free space; 
3) When there is no free space anymore, logically delete 

that random file. That action purges all free storage in a 
way that no sensitive data is left behind. 

The final result of this procedure is a flash storage free of 
sensitive garbage. Steps two and three can be encapsulated as 
a single function, called memory purging, and performed by 
an autonomous application. That application would be 
activated by the user whenever she needs to clean storage 
from sensitive garbage. The proposed solution adopted 
variations of this behavior. 

Unfortunately, this procedure has two drawbacks. First, it 
takes time proportional to the size of the free space to be 
cleaned and the speed of memory writes. Second, this 
procedure, in the long term, if used with high frequency, has 
the potential to shorten the lifetime of flash memories. 

In order to minimize the negative impact over memory 
life and avoid excessive delays during operation, steps two 
and three from above should not be carried out for every 
single file deleted from the system. 

3) Limitations of the solution 
The protection of cryptographic keys is of major 

importance. In spite of being stored encrypted, decrypted just 
before being used, and then released, the protection of 
cryptographic keys relies on Android security and the 
application confinement provided by that operating system. 
The proposed solution for memory purging is supposed to 
work in user-mode, as an ordinary mobile app, without 
administrative access, with no need for operating system 
modification, and using off-the-shelf devices. These 
decisions have consequences for security.   

First of all, the solution is highly dependent on the way 
flash-based file systems and controllers behave. Briefly 
speaking, when the flash storage is updated, the file system 
writes a new copy of the changed data to a fresh memory 
block, remaps file pointers, and then erases the old memory 
blocks, if possible, but not certainly. This constrained design 
actually enables alternative implementations discussed 
further. 

A second issue is that the solution is not specifically 
concerned about the type of physical memory (e.g., internal, 
external SD, NAND, and NOR) as long as it behaves like a 
flash-based file system. The consequence is that only 
software-based attacks are considered and physical attacks 
are out of scope.  

Additionally, the use of random files is not supposed to 
have any effect on the purging assurance, but provides a kind 
of low-cost camouflage for cryptographic material (e.g., keys 
or parameters) accidentally stored on persistent media. An 
entropy analysis would not be able to easily distinguish 
specific random data as potential security material, because 
huge amounts of space would look random. Of course, this 
software-based camouflage cannot be the only way to 
prevent such attacks, but it adds to a defense in depth 
approach to security at almost no cost. 

Finally, the purging technology described has passed all 
recovery tests performed with publicly available recovery 
tools, such as PhotoRec [86] and similar. That means, after 
purging, none of the recovery tools were able to recovery 
any deleted file. This confirms the feasibility of the purging 
technology for final users. On the other hand, advanced users 
may need deeper security assessments over physical 
hardware in order to trust the actual extend of the security 
provided by the proposed solution. 

B. Alternative implementaions 

The proposed solution for memory purging is a general 
policy for purging flash memories, and can be implemented 
in various ways, ranging from simple to complex 
implementations. In fact, a general solution has to offer 
different trade-offs among security requirements, memory 
life, and system responsiveness. The authors have identified 
three points for customization: 

1. The period of execution for the purging procedure; 
2. The size and quantity of random files; 
3. The frequency of files creation/deletion. 
Different trade-offs among the three customization points 

previously identified were implemented and evaluated. In all 
of them, the random file created in order to clean storage free 
space is called bubble, after the metaphor of soap cleaning 
bubbles over a dirty surface. These alternatives are discussed 
in next paragraphs. 

1) Static single bubble 

The simplest solution described in this text implements 

the idea of a single static bubble that increases in size until it 

reaches the limit of free space, and then bursts. This solution 

is adequate for the cases when storage has to be cleaned in 

the shortest period of time, with no interruption. A 

disadvantage is that other concurrent application can starve 

out of storage. 

This solution is adequate when nothing else is happening, 

but the purging. Figure 11 illustrates, in four simple steps, 

the general behavior of this implementation: 
1. Sensitive files are deleted logically; 
2. The purging bubble is created and grows to occupy 

all available storage; 
3. The bubble is logically removed when it reaches the 

limit of available storage; 
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Figure 10. Extending an encrypted file system for secure deletion. 
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4. The removed bubble leaves its waste, which 
overwrites any sensitive waste previously left in 
storage. 

In that figure, an actual file is shown in blue, logically 

deleted files are in red, the bubble are in orange, dirty 

memory is light blue and purged memory is light grey.    

2) Moving or sliding (single) bubble 
In this alternative, a single bubble periodically moves 

itself or slides from one place to another. The moving bubble 
has size of a fraction of free space. For example, if bubble 
size is n

-1
 of free space, the moving bubble covers all free 

storage after n moves, considering the amount of free space 
does not change. A move is simply the rewriting of the 
bubble file, since flash memories will perform a rewrite in a 
different place. Figure 12 illustrates, in five simple steps, the 
general behavior of this implementation: 

1. Sensitive files are deleted logically; 
2. The purging bubble is created with a fraction of the 

available storage; 

3. The purging bubble moves due to rewriting 
behavior; 

4. The bubble is logically removed when it has covered 
all the free space and have reached the limit; 

5. The removed bubble leaves its waste, which 
overwrites any sensitive waste previously left in 
storage. 

In a period of time equals to (T*(n/2)), where T is the 
time between moves, the chance of finding sensitive garbage 
in memory is 50%. This solution is adequate when storage 
has a low to moderate usage by concurrent applications. This 
solution preserves system responsiveness (usability) but 
diminishes security. 

3) Moving or sliding (multiple) bubbles 
This alternative uses more than one bubble instead of a 

single one. The size and amount of bubbles are fixed. For 
instance, if bubble size is n

-1
 of free space, two moving 

bubble covers all free storage space after n/2 moves each. 
The advantage of this method is to potentially accelerate 
memory coverage, reducing opportunity for memory 
compromising. Figure 13 illustrates the general behavior of 
this implementation:  

1. Sensitive files are deleted logically; 
2. The purging bubbles are created with a fraction of 

the available storage; 
3. The bubbles move due to rewriting behavior; 
4. Removed bubbles leave their wastes, which 

overwrite any sensitive waste previously left in 
storage. 

In the example, two bubbles of size 1/n each can move at 
every T/2 period, and then concluding in (T*n).  
Alternatively, they can move at period T and terminate in 
2*T*n, and so on. This solution is adequate when storage has 
a moderate usage by concurrent applications. This solution is 
probabilistic in the sense that as smaller the duration of T 
and greater the size of bubbles, greater the chance of 
successfully clean all memory. 

4) Sparkling bubbles 
This solution varies the size and amount of bubbles. The 

idea is to create a bunch of mini bubbles that are sparkled 
over free storage space. Bubbles are created and instantly 
removed at period T, which can be constant or random 
between zero and T.  The sparking of bubbles stops when the 
sum of sizes for all created bubbles surpasses free space. 

 
Figure 11. Purging strategy #1: Static Single Bubble. 

 

 

 
Figure 12. Purging strategy #2: Sliding single bubble. 
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Bubble size can be small enough to not affect other 
applications. Figure 14 illustrates the general behavior of this 
implementation: 

1. Sensitive files are deleted logically; 
2. The bubbles are created with random size between a 

(specified) minimum and maximum; 
3. The bubbles are removed and recreated 

concurrently; 
4. The bubbles stop being created when the sum of 

their sizes reaches the size of free space; 
5. Removed bubbles leave their wastes, which 

overwrite any sensitive waste previously left in 
storage. 

This solution is adequate when storage has a moderate to 
high usage by concurrent applications. This solution is 
probabilistic in the sense that as smaller the duration of T, 
greater the chance of successfully clean the whole memory.  

C. Performance evaluation 

The four alternative implementations were compared 
according to their throughput for memory cleaning. That 

means, the rate at which data are purged, in gigabytes per 
minute (GB/min). This measure of purging speed tends to be 
more useful to compare storages of different size, such as 
internal and external memory. Performance tests were 
performed in two smartphones of type Motorola Atrix 
MB860, with Android 2.3.6 operating system, dual core 
1GHz processor, 1GB of RAM and 16GB of internal storage 
(only 11 GB available to the end user). It was also used an 
SD Card (Class C) of 2GB. Random files created for purging 
had size of at most 2 GB or one tenth of free space. 
Performance measures were carried out in three scenarios: 

 Scenario 1: mostly empty storage (~ 0-19%); 

 Scenario 2: partially occupied storage (~ 20-80%); 

 Scenario 3: mostly occupied storage (~ 81-99%). 
In each scenario, both the internal and the external 

storage (SD card) were covered. Performance comparisons 
are structured as follows. First, a comparison is made 
between purging strategies for each occupancy scenario. 
Then, comparison is made between different occupancy 
scenarios for a specific strategy. 

The implementations of the four purging strategies used 
concurrent threads if needed. The implementations of single 
static bubble and single sliding bubble used a single thread. 
The implementation of multiple sliding bubbles used two 
threads. The implementation of the mini-random bubbles 
used a minimum of five threads and at most twenty threads. 

1) Scenario 1 – mostly empty storage 
Performance measures for this scenario are shown in 

Figure 15(A). The storages were empty (0% occupancy). For 
this scenario, the following observations can be made: 

a) The second purging strategy (single sliding bubble) 
is the fastest one. Apparently, this is because rewrite 
a single smaller file size is more efficient than 
continuously increase the size of a huge file; 

b) The strategies with multiple bubbles are slower than 
the strategies with a single bubble. Probably, this is 
due to the overhead of managing multiple threads. 

c) The higher the number of threads, worse the overall 
performance of purging, in slower CPUs. However, 
multi-bubble strategies are not blocking; 

d) Purging of SD card was consistently slower in all 
cases. 

Finally, data suggest that, when there is no competition for 
storage and storage is almost empty, sliding single bubble is 
the strategy that offers the best throughput. In situations 

 
Figure 13. Purging strategy #3: Sliding (multiple) bubbles. 

 

 

 
Figure 14. Purging strategy #4: Sparking bubbles. 
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where there is high competition for access to internal storage, 
multiple sliding bubbles seem to be more appropriate than 
the mini random bubbles.  

2) Scenario 2 – partially occupied storage 

Performance measures for this scenario are shown in 

Figure 15(B). The storages were partially occupied (30% 

occupancy). The following observations can be made: 

a) The second strategy (single sliding bubble) is still the 

fastest one; 

b) The strategies with multiple bubbles are slower than 

the strategies with a single bubble;  

c) The higher the thread count, the worse the overall 

performance of purging; 

d) Purging of SD card was consistently slower in all 

cases. 

Finally, data suggest that, when there is no competition 

for storage and it is partially occupied, the single sliding 

bubble is still the strategy that offers the best throughput. 

However, single static bubble is very competitive. In 

situations where the competition for the internal storage is 

high, the throughputs for multiple sliding bubbles and mini 

random bubbles are quite similar. 

3) Scenario 3 – mostly occupied storage 

Performance measurements for this scenario are shown in 

Figure 15(C). The storages were nearly full (94% 

occupancy). The following observations can be made: 

a) The first strategy (single static bubble) is just slightly 

faster than the second one (single sliding bubble); 

b) The throughput of the strategies with multiple 

bubbles is close to the throughput of strategies with a 

single bubble, but showing a slightly worse 

performance; 

c) The overall performance is still slightly worse with 

the increase number of threads; 

d) Purging of SD card was consistently slower. 

Data suggest that, when there is no competition for 

storage and its occupation is close to full capacity, the single 

bubble strategies (static or sliding) offer the best throughput. 

4) Comparisom among strategies 

Figure 16 compares all four strategies in different 

scenarios of occupancy (0%, 30% and 94%). All amounts 

are in GB/min. The following observations can be made:  

1. In Figure 16(A), throughput of the single static 

bubble strategy improves with increasing storage 

occupation; 

2. In Figure 16(B), throughput of the single sliding 

bubble gets worse with increased storage occupancy. 

This may be due to the slower treatment of memory 

rewriting;  

3. In Figure 16(C), throughput of multiple sliding 

bubbles improves with increasing storage occupation. 

The use of two threads compensates for the relative 

slowness of the bubble rewriting; 

4. In Figure 16(D), throughput of multiple random 

bubbles improves with increasing storage occupation. 

The use of multiple threads is combined with rapid 

generation of small bubbles. 

The measurements show that the purging strategy with 

single sliding bubble has the highest throughput in average, 

being considered most appropriate in general. However, the 

static bubble is very competitive, though. In situations 

where there is high competition for internal storage, the 

throughput of strategies with multiple bubbles (sliding and 

random) is similar. 

VII. INTEGRATED VIEW: PUTTING IT ALL TOGETHER 

Among all technical challenges concerning the 

development of security features for applications on 

modern, Android-based, mobile devices, one of major 

importance is the integration of all these features into a 

security-ware framework. Figure 17 illustrates the high-

level architecture of the proposed framework, where an 
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Figure 15. Throughputs for purging strategy in three scenarios. 
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application container encapsulates all security features, 

including cryptography, key management, contact 

management, secure storage and deletion, access control, 

and mediated access to server-side applications. All these 

features are accessible to applications by means of APIs and 

services. Also, the framework promotes integration among 

mobile applications. For instance, the encrypted file system 

can be accessed by trusted applications inside the container. 
Two main objectives drove the proposed architecture 

shown in Figure 17. The first one was to build a family of 
secure communication services over data packets (or over 
IP), through smartphones on public networks (e.g., 3G, 4G, 
Wi-Fi). The second was to develop tools for integrity 
checking and remote monitoring of smartphones, as well as 
techniques for active investigation on mobile platforms.  

At the back office, the framework is supported by a 
laboratory for mobile security, which is able to carry out 
assessments on mobile environments, including platforms, 
applications and communications, as well as security 
analysis of mobile malware. The knowledge acquired by the 
lab team feeds the development team with security controls 
and counter measures. A private cloud provides services to 
the development team. Not only security services are 

provided, but also hosting for server-side applications. 

VIII. CONCLUDING REMARKS 

This paper discussed design and implementation issues 
on the construction of an integrated framework for securing 
both communication and storage of sensitive information 
over Android devices. 

This text has shown how cryptographic services can be 
crafted to adequately fit secure communication services as 
well secure storage and deletion mechanisms, in such a way 
that security is kept transparent to the user, without being 
sacrificed. Also, a well-defined architecture allowed the 
selection and use of non-standard cryptography on a 
cryptographic library for Android.  

The cryptographic library actually consists of both 
standard and non-standard cryptographic algorithms. 
Performance measurements were taken in order to compare 
cryptographic providers. Despite all difficulties to obtain 
realistic data, experiments have shown that standard 
cryptography can be competitive to other implementations. 
On the other hand, non-standard cryptography has shown 
low performance that can possibly limit its use in real time 
applications. However, their value consists in offering secure 
alternatives to possibly compromised standards. In fact, 
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Figure 16. Throughputs by memory occupancy for purging strategy. 
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regarding recent global surveillance disclosures, non-
standard cryptographic primitives can be faced as part of the 
usual trade-offs that directs the design of cryptographically 
secure applications. 

Finally, the paper discussed the implementation of two 

user-level approaches to perform secure deletion of files. 

One works on secure deletion of encrypted files and the 

other handles deletion assurance of ordinary (unencrypted) 

files. Secure deletion of encrypted files was fully integrated 

to an encrypted file system and is transparent to the user. 

Secure deletion of ordinary files was fulfilled by an 

autonomous application activated under the discretion of the 

user. Performance measurements have shown that the 

approach is feasible and offers interesting trade-offs 

between time and deletion assurance. 

In the short term, future work comprises the inclusion of 

additional secure applications to the mobile security 

framework, such as SMS, email, voice mail and VoIP. In 

the long run, the framework should evolve to a mobile 

platform for remote monitoring and fine-grained control of 

secure devices. Finally, as secure computing platforms 

become common place in mobile devices, the framework 

should be integrated to such features and provide strong, 

hardware-based protection to cryptographic keys.  
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