
28

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Integrated Technologies for Communication Security and Secure Deletion on

Android Smartphones

 Alexandre Melo Braga, Daniela Castilho Schwab, Eduardo Moraes de Morais,

Romulo Zanco Neto, and André Luiz Vannucci
Centro de Pesquisa e Desenvolvimento em Telecomunicações (Fundação CPqD)

Campinas, São Paulo, Brazil

{ambraga,dschwab,emorais,romulozn,vannucci}@cpqd.com.br

Abstract— Nowadays, mobile devices are powerful enough to

accomplish most of the tasks previously accomplished only by

personal computers; that includes, for example, file

management and instant messaging. On the other hand, in

order to protect final user’s interests, there is also an

increasing need for security hardenings on ordinary, off-the-

shelf devices. In fact, there is a need for practical security

technologies that work at the application level, above the

operating system and under the control of the user. This

technology has to be easy to use in everyday activities and

easily integrated into mobile devices with minimal

maintenance and installation costs. The main contribution of

this paper is to describe design and implementation issues

concerning the construction of an integrated framework for

securing both communication and storage of sensitive

information of Android smartphones. Four aspects of the

framework are detailed in this paper: the construction of a

cryptographic library, its use in the development of a

cryptographically secure instant message service, the

integration with an encrypted file system, and the addition of

secure deletion technologies. Also, an analysis of non-standard

cryptography is provided, as well as performance evaluation of

a novel secure deletion technique. The proposed framework is

supposed to work in user-mode, as an ordinary group of

mobile apps, without root access, with no need for operating

system modification, in everyday devices.

Keywords-cryptography; surveillance; security; Android;

instant message; secure deletion; secure storage; encrypted file

system; flash memory.

I. INTRODUCTION

Nowadays, the proliferation of smartphones and tablets
and the advent of cloud computing are changing the way
people handle their personal, maybe private, information. In
fact, many users keep their sensitive data on mobile devices
as well as on cloud servers.

The current generation of mobile devices is powerful
enough to accomplish most of the tasks previously
accomplished only by personal computers. That includes, for
example, file management operations (such as create, read,
update, and delete) and instant message capabilities. Also,
today‟s devices possess operating systems that are hardware-
agnostic by design and abstract from ordinary users all
hardware details, such as writing procedures for flash
memory cards.

However, there is no free lunch, and mobile devices, as
any other on-line computer system, are vulnerable to many
kinds of data leakage. Unfortunately, as the amount of digital
data in mobile devices grows, so does the theft of sensitive
data through loss of the device, exploitation of vulnerabilities
or misplaced security controls. Sensitive data may also be
leaked accidentally due to improper disposal of devices.

Contemporary to this paradigm shift from ordinary
computers to mobile devices, the use in software systems of
security functions based on cryptographic techniques seems
to be increasing as well, maybe as a response to the new
security landscape. The scale of cryptography-based security
in use today seems to have increased not only in terms of
volume of encrypted data, but also relating to the amount of
applications with cryptographic services incorporated within
their functionalities. In addition to the traditional use cases
historically associated to stand-alone cryptography (e.g.,
encryption/decryption and signing/verification), there are
new application-specific usages bringing diversity to the
otherwise known threats to cryptographic software.

For example, today‟s secure phone communication does
not mean only voice encryption, but encompasses a plethora
of security services built over the ordinary smartphone
capabilities. To name just a few of them, these are SMS
encryption, Instant Message (IM) encryption, voice and
video chat encryption, secure conferencing, secure file
transfer, secure data storage, secure application containment,
and remote security management on the device, including
management of cryptographic keys. It is not surprisingly
that, with the increasing use of encryption systems, an
attacker wishing to gain access to sensitive data is directed to
weaker targets. On mobile devices, one such attack is the
recovery of supposedly erased data from internal storage,
possibly a flash memory card. Also, embedded security
technologies can suffer from backdoors or inaccurate
implementations, in an attempt to facilitate unauthorized
access to supposedly secure data.

This paper describes design and implementation issues
concerning the construction of an integrated framework for
securing both communication and storage of sensitive
information of Android smartphones. Preliminary versions of
this work have been addressed in previous publications
[1][2][3], as part of a research project [4][5][6] targeting
security technologies on off-the-shelf mobile devices.

Additionally, it is a real threat the misuse of security
standards by intelligence agencies. The motivation behind

29

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the special attention given to the selection of cryptographic
algorithms lies in the recently revealed weakness, which may
be intentionally included by foreign intelligence agencies, in
international encryption standards [7][8]. This fact alone
raises doubt on all standardized algorithms, which are
internationally adopted. In this context, a need arose to treat
what has been called “alternative” or “non-standard”
cryptography in opposition to standardized cryptography.

This work contributes to the state of the practice by
discussing the technical aspects and challenges of
cryptographic implementations, as well as their integration
into security-ware applications on modern, Android-based,
mobile devices. The main contributions of this paper are the
following:

 Discuss the construction of a cryptographic library for
Android devices, which focuses on design decisions as
well as on implementation issues of both standard and
non-standard algorithms;

 Describe the construction of a mobile application for
secure instant messaging that uses the cryptographic
library and is integrated with an encrypted file system;

 Describe an encrypted file-system that uses the
cryptographic library and integrates secure deletion
technologies;

 Propose and analyze new approaches to secure deletion
of stored data on off-the-shelf mobile devices.

The remaining parts of the text are organized as follows.
Section II offers background on the subject. Section III
presents related work. Section IV treats the construction of
the secure chat. Section V details the constructions of the
cryptographic library. Section VI describes the encrypted file
system with secure deletion. Section VII discusses
integration aspects. Section VIII concludes this text.

II. BACKGROUND

This section offers background information in the
following selected subjects of interest: Android and Java
technologies; cryptography issues in mobile devices; and
secure storage and data deletion in flash memories.

A. General concepts for Android and Java

This section briefly describes the following topics: the

Java Cryptographic Architecture (JCA) as a framework for

pluggable cryptography; the Java Virtual Machine (JVM)

along with its Garbage Collector (GC) and Just-in-Time

(JiT) compilation; and The Dalvik Virtual Machine (DVM).

1) JCA
The JVM is the runtime software ultimately responsible

for the execution of Java programs. In order to be interpreted
by JVM, Java programs are translated to bytecodes, an
intermediary representation that is neither source code nor
executable. The JCA [9] is a software framework for use and
development of cryptographic primitives in the Java
platform. JCA defines, among other facilities, Application
Program Interfaces (APIs) for digital signatures and secure
hash functions [9]. On the other hand, APIs for encryption,
key establishment and message authentication codes (MACs)
are defined in the Java Cryptography Extension (JCE) [10].

The benefit of using a software framework, such as JCA,
is to take advantage of good design decisions, reusing the
whole architecture. The API keeps the same general behavior
regardless of specific implementations. The addition of new
algorithms is facilitated by the use of a standard API [11].

2) Garbage Colletion and JiT Compilation
An architectural feature of the JVM has great influence in

the general performance of applications: the GC [12][13].
Applications have different requirements for GC. For some
applications, pauses during garbage collection may be
tolerable, or simply obscured by network latencies, in such a
way that throughput is an important metric of performance.
However, in others, even short pauses may negatively affect
the user experience.

One of the most advertised advantages of JVM is that it
shields the developer from the complexity of memory
allocation and garbage collection. However, once garbage
collection is a major bottleneck, it is worth understanding
some aspects of its implementation.

Another important consideration on performance of Java
programs is the JiT Compilation [12][14]. Historically, Java
bytecode used to be fully interpreted by the JVM and
presented serious performance issues. Nowadays, JiTC not
only compiles Java programs, but also optimizes them, while
they execute. The result of JiTC is an application that has
portions of its bytecode compiled and optimized for the
targeted hardware, while other portions are still interpreted.
It is interesting to notice that JVM has to execute the code
before to learn how to optimize it.

Unfortunately, there is a potential negative side to
security in the massive use of JiT Compilation. Security
controls put in place into source code, in order to avoid side-
channels, can be cut off by JiT optimizations. JiTC is not
able to capture programmer's intent that is not explicitly
expressed by Java‟s constructs. That is exactly the case of
constant time computations needed to avoid timing attacks.
Security-ware optimizations should be able to preserve
security decisions and not undo protections, when
transforming source code for cryptographic implementations
to machine code. Hence, to achieve higher security against
this kind of attacks, it is not recommended to use JiTC
technology, what constitutes a trade-off between security and
performance. Further discussion of cryptographic side-
channels and its detection in Java can be found in [15].

3) DVM
The DVM [16] is the virtual hardware that executes Java

bytecode in Android. DVM is quite different from the
traditional JVM, so that software developers have to be
aware of those differences, and performance measurements
over a platform independent implementation have to be
taken in both environments.

Compared to JVM, DVM is a relatively young
implementation and did not suffered extensive evaluation. In
fact, the first independent evaluation of DVM was just
recently published [17]. There are three major differences
between DVM and JVM. First of all, DVM is a register-
based machine, while JVM is stack-based. Second, DVM
applies trace-based JiTC, while JVM uses method-based

30

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

JiTC. Finally, former DVM implementations use mark-and-
sweep GC, while current JVM uses generation GC.

Also, results from that DVM evaluation [17] suggest that

current implementations of DVM are slower than current

implementations of JVM. Concerning cryptographic

requirements, a remarkable difference between these two

environments is that the source of entropy in DVM is

significantly different from the one found on JVM.

B. Security and cryptography issues on Android devices

A broad study on Android application security, especially

focused on program decompilation and source code

analysis, was performed by [18]. There are several misuse

commonly found on cryptographic software in use today.

According to a recent study [19], the most common misuse

of cryptography in mobile devices is the use of deterministic

encryption, where a symmetric cipher in Electronic Code

Book (ECB) mode appears mainly in two circumstances:

Advanced Encryption Standard (AES) in ECB mode of

operation (AES/ECB for short) and Triple Data Encryption

Standard in ECB mode (TDES/ECB). A possibly worse

variation of this misuse is the Rivest-Shamir-Adleman

(RSA) cryptosystem in Cipher-Block Chaining (CBC) mode

with Public-Key Cryptography Standards Five (PKCS#5)

padding (without randomization) [20]. Another frequent

misuse is hardcoded Initialization Vectors (IVs), even with

fixed or constant values [20]. A related misuse is the bad

habit of hardcoded seeds for PRNGs [19].
 A common misunderstanding concerning the correct use

of IVs arises when (for whatever reason) programmers need
to change operation modes of block ciphers. For instance, the
Java Cryptographic API [9] allows operation modes to be
easily changed, but without considering IV requirements.

According to a NIST standard [21], CBC and Cipher
feedback (CFB) modes require unpredictable IVs. However,
Output feedback (OFB) mode does not need unpredictable
IVs, but it must be unique to each execution of the
encryption operation. Considering these restrictions, IVs
must be both unique and unpredictable, in order to work
interchangeably with almost all common operation modes of
block ciphers. The Counter (CTR) mode requires unique IVs
and this constraint is inherited by authenticated encryption
with Galois/Counter mode (GCM) [22].

C. Secure storage and deletion on flash memory

Traditionally, the importance of secure deletion is well
understood by almost everyone and several real-world
examples can be given on the subject: sensitive mail is
shredded; published government information is selectively
redacted; access to top secret documents ensures all copies
can be destroyed; and blackboards at meeting rooms are
erased after sensitive appointments.

In mobile devices, that metaphor is not easily
implemented. All modern file systems allow users to
“delete” their files. However, on many devices the remove-
file command misleads the user into thinking that her file has
been permanently removed, when that is not the case. File
deletion is usually implemented by unlinking files, which

only changes file system metadata to indicate that the file is
“deleted”; while the file‟s full content remains available in
physical medium. This process is known as logical deletion.

Unfortunately, despite the fact that deleted data are not
actually destroyed in the device, logical deletion has the
additional drawback that ordinary users are generally unable
to completely remove her files. On the other hand, advanced
users or adversaries can easily recover logically deleted files.

Deleting a file from a storage medium serves two
purposes: (i) it reclaims storage to operating system and (ii)
ensures that any sensitive information contained in the file
becomes inaccessible. The second purpose requires that files
are securely deleted.

Secure data deletion can be defined as the task of

deleting data from a physical medium so that the data is

irrecoverable. That means its content does not persist on the

storage medium after the secure deletion operation.
Secure deletion enables users to protect the

confidentiality of their data if their device is logically
compromised (e.g., hacked) or stolen. Until recently, the
only user-level deletion solution available for mobile devices
was the factory reset, which deletes all user data on the
device by returning it to its initial state. However, the
assurance or security of such a deletion cannot be taken for
granted, as it is highly dependent on device‟s manufacturer.
Also, it is inappropriate for users who wish to selectively
delete data, such as some files, but still retain their address
books, emails and installed applications.

Older technologies [23] claim to securely delete files by
overwriting them with random data. However, due the nature
of log-structured file systems used by most flash cards, this
solution is no more effective than logically deleting the file,
since the new copy invalidates the old one but does not
physically overwrite it. Old secure deletion approaches that
work at the granularity of a file are inadequate for mobile
devices with flash memory cards.

Today, secure deletion is not only useful before
discarding a device. On modern mobile devices, sensitive
data can be compromised at unexpected times by adversaries
capable of obtaining unauthorized access to it. Therefore,
sensitive data should be securely deleted in a timely fashion.

Secure deletion approaches that target sensitive files, in
the few cases where it is appropriate, must also address
usability concerns. A user should be able to reliably mark
their data as sensitive and subject to secure deletion. That is
exactly the case when a file is securely removed from an
encrypted file system. On the other hand, approaches that
securely delete all logically deleted data, while less efficient,
suffer no false negatives. That is the case for purging.

III. RELATED WORK

This section discusses related work on following
subjects: cryptography implementation on mobile devices,
security of IM applications, and secure storage and deletion.

A. Cryptography implementation on mobile devices

A couple of years ago, the U.S. National Security
Agency (NSA) started to encourage the use of off-the-shelf
mobile devices, in particular smartphones with Android, for

31

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

communication of classified information [24]. The document
fosters the adoption of two layers of cryptography for
communication security. One is provided by infrastructure
(e.g., VPN) and other implemented at the application layer.

Regarding the performance evaluation of cryptographic
libraries on Android smartphones, there are tests made on the
Android platform for the BouncyCastle and Harmony
cryptographic libraries, both already available on the
platform [25].

A few works could be found concerning efficient
implementation of cryptography on smartphones. The first
one [26] presented an efficient Java implementation of
elliptic curve cryptography for J2ME-enabled mobile
devices. That Java implementation has an optimized scalar
multiplication that combines efficient finite-field arithmetic
with efficient group arithmetic. A second work [27]
presented an identity-based key agreement protocol for
securing mobile telephony in GSM and UMTS networks.
The paper proposes an approach to speed up client-side
cryptography using server-aided cryptography, by
outsourcing computationally expensive cryptographic
operations to a high-performance backend computing server.

Another work [28] presents a Java port (jPBC) of the
PBC library written in C, which provides simplified use of
bilinear maps and supports different types of elliptic curves.

A recent study [6] showed that despite the observed

diversity of cryptographic libraries in academic literature,

this does not mean those implementations are publicly

available or ready for integration with third party software.

In spite of many claims on generality, almost all of them

were constructed with a narrow scope in mind and

prioritizes academic interest for non-standard cryptography.

Furthermore, portability to Android used to be a commonly

neglected concern on cryptographic libraries [6].

Recently, the European Union Agency for Network and

Information Security (ENISA) has published two technical

reports [29][30] about the correct and safe use of

cryptography to protect private data in on-line system,

giving attention to cloud and mobile environments. One

report [29] focuses on algorithms, key size and parameters.

Other report [30] gives attention to cryptographic protocols,

and tries to point legacy issues and design vulnerabilities.

B. Security issues in IM protocols and applications

The work of Xuefu and Ming [31] shows the use of

eXtensible Messaging and Presence Protocol (XMPP) for

IM on web and smartphones. Massandy and Munir [32]

have done experiments on security aspects of

communication, but there are unsolved issues, such as

strong authentication, secure storage, and implementation of

good cryptography, as shown by Schrittwieser et al. [33].

It seems that the most popular protocol for secure IM in

use today is the Off-the-Record (OTR) Messaging [34], as it

is used by several secure IM apps. OTR Messaging

handshake is based upon the SIGMA key exchange protocol

[35], a variant of Authenticated Diffie-Hellman (ADH) [36],

just like Station-to-Station (STS) [37][38].

 A good example of security issues found in current IM

software is a recently discovered vulnerability in WhatsApp

[39]. The vulnerability resulting from misuse of the Rivest

Cipher 4 (RC4) stream cipher in a secure communication

protocol allowed the decryption, by a malicious third party

able to observe conversations, of encrypted messages

exchanged between two WhatsApp users.

In order to be fair, it is worth note that WhatsApp has

recently announced an effort for hardening its

communication security with end-to-end encryption [40].

C. Secure storage and deletion

This section briefly describes related work on the
subjects of secure deletion and encrypted file systems on
mobile devices, particularly Android.

The use of cryptography as a mechanism to securely
delete files was first discussed by Boneh and Lipton [41].
Their paper presented a system which enables a user to
remove a file from both file system and backup tapes on
which the file is stored, just by forgetting the key used to
encrypt the file.

Gutman [23] covered methods available to recover erased
data and presented actual solutions to make the recovery
from magnetic media significantly more difficult by an
adversary. Flash memory barely existed at the time it was
written, so it was not considered by him.

K. Sun et al. [42] proposed an efficient secure deletion
scheme for flash memory storage. This solution resides
inside the operating system and close to the memory card
controller.

Diesburg and Wang [43] presented a survey summarizing
and comparing existing methods of providing confidential
storage and deletion of data in personal computing
environments, including flash memory issues.

Wang et al. [44] present a FUSE (File-system in
USErspace) encryption file system to protect both removable
and persistent storage on devices running the Android
platform. They concluded that the encryption engine was
easily portable to any Android device and the overhead due
to encryption is an acceptable trade-off for achieving the
confidentiality requirement.

Reardon et al. [45]-[49] have shown plenty of results
concerning both encrypted file system and secure deletion.
First, Reardon et al. [45] proposed the Data Node Encrypted
File System (DNEFS), which uses on-the-fly encryption and
decryption of file system data nodes to efficiently and
securely delete data on flash memory systems. DNEFS is a
modification of existing flash file systems or controllers that
extended a Linux implementation and was integrated in
Android operating system, running on a Google Nexus One
smartphone.

Reardon et al. [46] also propose user-level solutions for
secure deletion in log-structured file systems: purging, which
provides guaranteed time-bounded deletion of all data
previously marked to be deleted, and ballooning, which
continuously reduces the expected time that any piece of
deleted data remains on the medium. The solutions empower
users to ensure the secure deletion of their data without

32

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

relying on the manufacturer to provide this functionality.
These solutions were implemented on an Android
smartphone (Nexus One).

In two recent papers, Reardon et al. [47][48] study the
issue of secure deletion in details. First, in [47], they identify
ways to classify different approaches to securely deleting
data. They also describe adversaries that differ in their
capabilities, show how secure deletion approaches can be
integrated into systems at different interface layers. Second,
in [48], they survey the related work in detail and organize
existing approaches in terms of their interfaces to physical
media. More recently, Reardon et al. [49] presented a general
approach to the design and analysis of secure deletion for
persistent storage that relies on encryption and key wrapping.

Finally, Skillen and Mannan [50] designed and
implemented a system called Mobiflage that enables
plausibly deniable encryption (PDE) on mobile devices by
hiding encrypted volumes within random data on a device‟s
external storage. They also provide [51] two different
implementations for the Android OS to assess the feasibility
and performance of Mobiflage: One for removable SD cards
and other for internal partition for both apps and user
accessible data.

The above mentioned works suffer from at last one of the
following disadvantages:

 Requires modification of the host operating system or
device, so the solution does not work on off-the-shelf
devices without modification of OS internals;

 Limits the available (free) storage to ordinary
applications, possibly leading apps to starvation by
lack of storage;

 Inserts abnormal behavior to storage usage that can
potentially slow down the whole system, when using
incremental memory sweeping by a single-file,
single-thread application.

The secure deletion approach proposed in this paper
provides alternative solutions to these disadvantages.

IV. CONSTRUCTION OF A SECURE CHAT APPLICATION

This section describes design and implementation issues

concerning the construction of CryptoIM, a prototype app

for cryptographically secure, end-to-end communication,

which operates on a device-to-device basis, exchanging

encrypted instant messages via standard transport protocols.

A. Cryptographic services for IM applications

CryptoIM implements the basic architecture used by all

IM applications, using the standard protocol XMPP [52] at

the transport layer. The application then adds a security

layer to XMPP, which is composed of a protocol for session

key agreement and cryptographic transaction to transport

encrypted messages. The security negotiation is indeed a

protocol for key agreement, as illustrated by Figure 1.
To accomplish cryptographically secure communication,

Alice and Bob agree on the following general requirements:

 An authentication mechanism of individual messages;

 An encryption algorithm and modes of operation;

 A key agreement protocol;

 A mechanism to protect cryptographic keys at rest.
To avoid known security issues in instant messaging

applications [33][39], the key agreement protocol must
provide the following security properties [53]:

 Mutual authentication of entities;

 Mutually authenticated key agreement;

 Mutual confirmation of secret possession;

 Perfect Forward Secrecy (PFS).
As a general goal, the CryptoIM is intended to be used in

the protection of cryptographically secure communication
via mobile devices. In order to be useful, the underlying
cryptographic library had to accomplish a minimum set of
functional requirements.

Once JCA [9] was defined as the architectural
framework, as it is the standard API for cryptographic
services on Android, the next design decision was to choose
the algorithms minimally necessary to implement a scenario
of secure communication via mobile devices. The choice of a
minimalist set was an important design decision in order to
provide a fully functional Cryptographic Service Provider
(CSP) in a relatively short period of time. This minimalist
construction had to provide the following set of functions:

a) A symmetric algorithm to be used as block cipher,

along with the corresponding key generation

function, and modes of operation and padding;

b) An asymmetric algorithm for digital signatures,

along with the key-pair generation function. This

requirement brings with it the need for some sort of

digital certification of public keys;

c) A one-way secure hash function. This is a support

function to be used in MACs and signatures;

d) A Message Authentication Code (MAC), based on a

secure hash or on a block cipher;

e) A key agreement mechanism or protocol to be used

by communicating parties that have never met

before, but need to share an authentic secret key;

f) A simple way to keep keys safe at rest and that does

not depend on hardware features;

g) A Pseudo-Random Number Generator (PRNG) to

be used by key generators and nonce generators.
The cryptographic library supporting CryptoIM was

designed to meet each one of these general requirements,
resulting in an extensive implementation.

Figure 1. Station to Station (STS) protocol.

33

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Advanced cryptographic features

Three improvements to CryptoIM were necessary to
integrate it to other apps in the framework. The first is a
mobile PKI for digital certification, which is fully integrated
to the mobile security framework. PKI‟s Server-side is based
upon the EJBCA [54]. Client-side follows recommendations
for handling certificates on mobile devices [55].

The second is a secure text conference (or group chat) via
instant messages. As depicted in Figure 2, the Organizer or
Chair of the conference requests the conference creation to
the Server, as this is an ordinary XMPP feature. The key
agreement for the requested conference proceeds as follows,
where Enck(x) means encryption of x with key k:

1. Chair (C) creates the key for that conference (ck);

2. For each guest (g[i]), Chair (C) does:

a) Opens a STS channel with key k: C g[i], key k;

b) Sends ck on time t to g[i]: C g[i]: Enck(ck).

These steps constitute a point-to-point key transport
using symmetric encryption, which is carried out by STS
protocol. After that, all guests share the same group key and
conference proceeds as a multicast of encrypted messages.

The third improvement is a secure file transfer that is
fully integrated to the encrypted file system described in
Section VI. Figure 3 illustrated the secure transfer as a step-
by-step procedure. The encrypted file system and its file
management tool are jointly referred as CryptoFM. The
eleven steps for secure file transfer are as follows:

1. Alice activates the file transfer function;
2. Alice‟s CryptoIM activates the local instance of

CryptoFM and passes to it the key KFT (key derived
from KSTS conversation) for secure transport of files;

3. Alice chooses, from her CryptoFM, the file to be
transferred and exports it from encrypted file system;

4. The exported file is encrypted with the key KFT and
stored in a public folder;

5. CryptoIM gets the encrypted file from public folder;
6. The encrypted file and related metadata are

transmitted from Alice to Bob through a secure
channel (STS channel) over XMPP;

7. The file is received by Bob, who accepts the transfer
in his CryptoIM and saves the file;

8. The encrypted file is temporarily saved in a public
folder recognized by the Bob‟s CryptoFM;

9. Bob‟s CryptoIM activates its local CryptoFM and
passes to it the key KFT (key derived from KSTS

Figure 2. Key agreement for secure conference.

Figure 3. Secure file transfer is integrated to both CryptoIM and CryptoFM.

34

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

conversation) used to securely transport of the file;
10. Bob‟s CryptoFM, in a secure import operation, gets

the encrypted file from the public folder and
decrypts with key KFT;

11. CryptoFM saves the received file into its encrypted
file system.

This procedure has the possible vulnerability of leaving
temporary files or residual, unencrypted information at local
storage. This vulnerability can show up at both sides of file
transfer. In fact, this issue raised the need for a method for
secure deletion and memory purging.

In summary, the three remarkable differences between
CryptoIM and the related work are the following. First, the
prototype uses STS protocol and its variants to accomplish
authenticated key agreement. This has the benefit of
facilitating protocol extension to use alternative
cryptographic primitives. Also, STS is used as building
block for both multi-user conference and secure file transfer.
Second, authenticated encryption is the preferred encryption
mechanism to protect messages, so the burden of IV
management is minimized. Third, it is fully integrated to an
encrypted file system.

V. CONSTRUCTION OF A CRYPTOGRAPHIC LIBRARY

This section describes both the design decisions and
implementation issues concerning the construction of a
cryptographic library for Android devices. This library
support all secure apps included in the secure framework,
including CryptoIM, a secure chat detailed in Section IV,
and CryptoFM, an encrypted file-system introduced in
Section IV and detailed in Section VI.

Four aspects of the implementation were discussed in this
paper: selection of cryptographic primitives, architecture of
components, performance evaluation on Android devices,
and the implementation of non-standard cryptographic
algorithms.

As previously stated, a need arose to treat what has been
called “alternative” or “non-standard” cryptography in
opposition to standardized cryptographic schemes. The final
intent was strengthening the implementation of advanced
cryptography and fostering their use. Non-standard
cryptography provides advanced mathematical concepts,
such as bilinear pairings and elliptic curves, which are not
fully standardized by foreign organizations, and suffer
constant improvements.

In order to facilitate the portability of the cryptographic
library for mobile devices, in particular for the Android
platform, the implementation was performed according to
standard cryptographic API for Java, the JCA [9][56], its
name conventions [57], and design principles [10][58].

Once JCA was defined as the architectural framework,
the next design decision was to choose the algorithms
minimally necessary to a workable cryptographic library.
The current version of this implementation is illustrated by
Figure 4 and presents the cryptographic algorithms and
protocols described in the following paragraphs. The figure
shows that frameworks, components, services and
applications are all on top of JCA API. The Cryptographic
Service Provider (CSP) is in the middle, along with

BouncyCastle and Oracle providers. Arithmetic libraries are
at the bottom.

Figure 4 shows the CSP divided in two distinct
cryptographic libraries. The left side shows only
standardized algorithms and comprises a conventional
cryptographic library. The right side features only non-
standard cryptography and is an alternative library. The
following subsections describe these two libraries.

A. Standard cryptography

This subsection details the implementation choices for
the standard cryptographic library. The motivations behind
this implementation were all characteristics of standardized
algorithms: interoperability, documentation, and testability.
The standard cryptography is packaged as a pure-Java library
according to the JCA specifications.

The block cipher is the AES algorithm, which was
implemented along with the modes of operation: ECB, and
CBC [21], as well as the GCM mode for authenticated
encryption [22]. PKCS#5 [59] is the simplest padding
mechanism and was chosen for compatibility with other
CSPs. As GCM mode for authenticated encryption only uses
AES encryption, the optimization of encryption received
more attention than AES decryption. Implementation aspects
of AES and other cryptographic algorithms can be found on
literature [60][61][62], in particular [63].

The Signature algorithm is the RSA-PSS that is a
Probabilistic Signature Scheme (PSS) constructed over the
RSA signature algorithm. RSA-PSS is supposed to be more
secure than ordinary RSA [62][64]. Asymmetric encryption
is provided by the RSA-OAEP [62][64].

Two cryptographically secure hashes were implemented,
SHA-1 [65] and MD5. It is well known by now that MD5 is
considered broken and is not to be used in serious
applications, it is present for ease of implementation. In
current version, there is no intended use for these two hashes.
Their primary use will be as the underling hash function in
MACs, digital signatures and PRNGs. The Message
Authentication Codes chosen were the HMAC [66] with
SHA-1 and SHA2 as the underling hash functions, and the

Figure 4. Cryptographic Service Provider Architecture.

35

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

GMAC [22], which can be directly derived from GCM
mode. SHA-2 family of secure hashes supplies the need for
direct use of single hashes.

The need for key agreement was fulfilled by the Station-
to-Station (STS) protocol, which is based upon
Authenticated Diffie-Hellman [36], and provides mutual key
authentication and confirmation [37][38].

Finally, the mechanism for Password-based Encryption
(PBE) is based on the Password-Based Key Derivation
Function 2 (PBKDF2) [59], and provides a simple and
secure way to store keys in encrypted form. In PBE, a key-
encryption-key is derived from a password.

B. Non-standard cryptography

This subsection details the implementation choices for
the alternative cryptographic library. The non-standard
cryptography is a dynamic library written in C and accessible
to Java programs through a Java Native Interface (JNI)
connector, which acts as a bridge to a JCA adapter.

Some of the constructs are based upon a reference
implementation [67]. The most advanced cryptographic
protocols currently implemented are listed below:

a) Curve25519 [68] is used to provide a key agreement
protocol equivalent to the Elliptic Curve Diffie–
Hellman (ECDH) [69], but over a non-standard
curve. The key agreement protocol ECDH is a
variation of the Diffie-Hellman (DH) protocol using
elliptic curves as the underlying algebraic structure;

b) ED25519 [70] is utilized to construct a digital
signature scheme that corresponds to the Elliptic
Curve Digital Signature Algorithm (ECDSA) [71],
but over a non-standard curve that is birationally
equivalent to Curve25519. ECSS [69] is a variation
of ECDSA that does not require the computation of
inverses in the underlying finite field, obtaining a
signature algorithm with better performance;

c) Sakai-Ohgishi-Kasahara (SOK) [72]. This protocol
is a key agreement for Identity-Based Encryption
(IBE). Sometimes, it is called SOKAKA for SOK
Authenticated Key Agreement;

d) Boneh-Lynn-Shacham (BLS) [73]. A short digital
signature scheme in which given a message m, it is
computed S = H (m), where S is a point on an
elliptic curve and H() is a secure hash;

e) Zhang-Safavi-Susilo (ZSS) [74]. Similar to the
previous case, it is a more efficient short signature,
because it utilizes fixed-point multiplication on an
elliptic curve rather arbitrary point;

f) Blake [75]. Cryptographic hash function submitted
to the worldwide contest for selecting the new SHA-
3 standard and was ranked among the five finalists;

g) Elliptic Curve Integrated Encryption Scheme
(ECIES) [69]. This is an asymmetric encryption
algorithm over elliptic curves. This algorithm is non-
deterministic and can be used as a substitute of the
RSA-OAEP, with the benefit of shorter
cryptographic keys;

h) Elliptic Curve Station-to-Station (ECSTS) [69].
Variation of STS protocol using elliptic curves and
ECDH as a replacement for ADH;

i) Salsa20 [76]. This is a family of 256-bit stream
ciphers submitted to the ECRYPT Project
(eSTREAM);

j) Serpent [77]. A 128-bit block cipher designed to be a
candidate to contest that chose the AES. Serpent did
not win, but it was the second finalist and enjoys
good reputation in the cryptographic community;

k) CipherPRNG based upon the construction described
by Petit et al. [78], which offers protection against
side channel attacks. There is a security proof that
the scheme produces a sequence of random numbers
indistinguishable from the uniform distribution.

C. Security decisions for non-standard cryptography

Among the characteristics that were considered in the
choice of alternative cryptographic primitives, side channels
protection was a prevailing factor and had distinguished role
in the design of the library. For instance, schemes with
known issues were avoided, while primitives that were
constructed to resist against such attacks are currently being
regarded for inclusion in the architecture. Furthermore,
constant-time programming techniques, like for example in
table accessing operations for AES, are being surveyed in
order to became part of the implementation.

Concerning mathematical security of non-standard
cryptography, the implementation offers alternatives for 256-
bit security for both symmetric and asymmetric encryption.
For instance, Serpent-256 corresponds to AES-256 block
cipher, while the same security level is achieved in
asymmetric world using elliptic curves over 521-bit finite
fields, what can only be possible in standard cryptography
using 15360-bit RSA key size. Thus, in higher security
levels, non-standard primitives performance is significantly
improved in relation to standard algorithms, but an extensive
analysis of this scenario, with concrete timing comparisons,
is left as future work.

Short signatures, such as BLS and ZSS (BBS), are not as
fast as EC, since this kind of constructions are based on
bilinear pairings. Here, there is a tradeoff, because the
signature can be roughly half the size of a regular ECDSA
signature, but the verification algorithm must compute a
bilinear pairing and, therefore, is less efficient. It is important
to remark that the ability to compute bilinear pairings allows
us to achieve many new cryptographic functionalities, such
as identity based cryptography and certificateless encryption.
Furthermore, the scheme ED25519 is a recently proposed
digital signature cryptosystem that has been built over
elligator curves [70], which offers advantages against side
channel attacks and is a non-standard construction which
may not be susceptible to surveillance manipulation.

A final remark about the use of non-standard
cryptography is that working with advanced cryptographic
techniques that have not been sufficiently analyzed by the
scientific community has its own challenges and risks. There
are occasions when the design of a non-standard

36

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cryptographic library has to be conservative in order to
preserve security.

For instance, a recent improvement in mathematics
[79][80] had eliminated an entire line of research in
theoretical cryptography. Such advancement affected elliptic
curve cryptography using a special kind of binary curves
called supersingular curves, but had no effect on the bilinear
pairings over primes fields or encryption on ordinary
(common) binary curves. Thus, these two technologies
remain cryptographically secure. Unfortunately, the
compromised curves were in use and had to be eliminated
from the cryptographic library.

As pairings on prime fields can still be securely used in
cryptographic applications, the implementation was adapted
to that new restricted context. Additionally, ordinary elliptic
curves may still be used for cryptographic purposes,
considering they are not supersingular curves, and the
implementation had to adapt to that fact, too.

D. Performance Evaluation

Performance evaluation of Java programs, either in
standard JVM or DVM/Android, is a stimulating task due to
many sources of interference that can affect measurements.
As discussed in previous sections, GC and JiTC have great
influence over the performance of Java programs. For
instance, Garbage Collections (GC) as well as optimizations
and recompilations can be clearly identified in diagrams, as
shown in Figure 5(A). The figure shows the time consumed
by the first 300 executions of a pure-Java implementation of
the AES algorithm, for both encryptions (E) and decryptions
(D) of a small block of data, with a 128-bit key. The
measurements were taken on a Samsung Galaxy S III (Quad-
core 1.4 GHz Cortex-A9 processor, 1GB of RAM, and
Android 4.1). The figure shows that at the very first
moments of execution, the algorithm has a relatively poor
performance, since the bytecode is been interpreted,
analyzed for optimizations, and compiled at the same time.
After this short period, the overall performance of the
application improves and the execution tends to stabilize at
an acceptable level of performance, despite a few GC calls.

Due to the above mentioned limitations, two approaches
of measurement have been used for the evaluation of
cryptographic functions. The first one was the measurement
of elapsed time for single cryptographic functions processing
a single (small) block of data. This approach suffers from the
interference of GC and JiTC. The JiTC interference can be
eliminated by discarding all the measurements collected
before code optimization. The GC interference cannot be
completely eliminated, though.

Figure 5(B) exemplifies the first approach and shows the
comparative performance of AES‟s encryptions (E) and
decryptions (D) of a single block of data, for two
cryptographic providers for Android: this CryptoLib (CSP),
and BouncyCastle‟s [81] deployment for Android,
SpongeCastle (SC) [82]. AES were setup to ECB mode and
128-bit key. The measurements were taken on a smartphone
Samsung Galaxy S III (Quad-core 1.4 GHz Cortex-A9
processor, 1GB of RAM, and Android 4.1). The procedure

consisted of processing a single block of data in a loop of
10,000 iterations.

In order to inhibit the negative influence of GC and JiTC,
two metrics were taken: the average of all iterations and the
9th centile. None of them resulted in a perfect metric, but the
9th centile were able to reduce negative influence from GC
and JiTC. For small data chunks, CSP is faster than SC.

The second approach for performance evaluation
supposes that final users of mobile devices will not tuning
their Java VMs with obscure configuration options in order

0,00

0,05

0,10

0,15

0,20

0,25

0,30

1 51 101 151 201 251
Ti

m
e

(m
s)

Single operation for AES-ECB-128 (300 iterations)

Encrypt Decrypt

(A)

0,00

0,01

0,02

0,03

0,04

SC CSP

Ti
m

e(
m

s)

AES-ECB-128 on two cryptographic providers

9th Centile(E) 9th Centile(D) Average(E) Average(D)

(B)

0

0,5

1

1,5

2

2,5

3

SHA-512 HMAC-SHA-512 PRNG

M
B/

s

Throughput for SHA-512, HMAC, and PRNG

SC/Crypto CSP

(C)

Figure 5. Approaches for performance evaluation on Android. (A) Single

measurements suffer from GC and JiTC. (B) 9th centile and average show

expected behavior, but are less accurate. (C) Throughput gives user‟s

perceived responsiveness.

37

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to achieve maximum performance. On the contrary, almost
certainly, they will use default configurations, with minor
changes on device‟s settings. Thus, the responsiveness of an
application tends to be more relevant to final users than the
performance of single operations.

The second approach of measurement takes into account
the responsiveness of cryptographic services and considers
the velocity with which a huge amount of data can be
processed, despite the interferences of GC and JiTC. The
amount of work performed per unit of time is called the
throughput of the cryptographic implementation.

Figure 5(C) shows the throughput of SHA-256 and
HMAC-SHA-256 implemented by CryptoLib (CSP)
compared to SC. Also it shows the throughput for two
instances of Pseudo Random Number Generator (PRNG):
CSP‟s CipherPRNG compared to a SHA1PRNG available to
Android apps through a provider called Crypto. The
measurements were taken on a smartphone of type Samsung
Galaxy S III (Quad-core 1.4 GHz Cortex-A9 processor, 1GB
of RAM, and Android 4.1).

The procedure consisted of processing an input file of 5
MB, in a loop of 500 iterations. It is interesting to observe

that CSP and SC are quite similar in performance for SHA-
256 and HMAC, CSP is slightly better. However, CSP‟s
CipherPRNG has shown a low throughput, mostly because
its construction is relatively inefficient, since it is based on
block ciphers instead of hash functions. Nonetheless, this
implementation is still a proof of concept and better timings
are expected in the future.

Performance measurements for other implementations of
non-standard cryptography were taken as well. Despite been
implemented in C and not been subjected to GC and JiTC
influences, non-standard cryptography usually has no
standard specifications or safe reference implementations.
Neither it is in broad use by other cryptographic libraries.
Because of that, comparisons among implementations of the
same algorithm are barely possible. On the other hand, it is
feasible to compare alternative and standard cryptography,
considering the same type of service.

For the non-standard cryptography implementations,
performance measurements were taken in two smartphones:
(i) LG Nexus 5 with processor 2.3 GHz quad-core Krait 400,
2GB of RAM, and 16GB of storage and (ii) Samsung Galaxy
S III with processor of 1.4 GHz quad-core Cortex-A9, 1 GB

0

10

20

30

40

50

RSA-PSS ECDSA
(SHA256)

ED25519 ZSS BLS

Ti
m

e
(m

s)

Signature generation

Samsung Galaxy S III LG Nexus 5

(A)

0

20

40

60

80

100

120

140

160

RSA-PSS ECDSA
(SHA256)

ED25519 ZSS BLS

Ti
m

e
(m

s)

Signature verification

Samsung Galaxy S III LG Nexus 5

(B)

0

5

10

15

20

25

30

35

40

45

ECDSA ED25519 ZSS BLS SOKAKA

Ti
m

e(
m

s)

Key pair generation

Samsung Galaxy S III LG Nexus 5

(C)

0

4

8

12

16

20

ECDH
Phase0

ECDH
Phase1

Curve
25519
Phase0

Curve
25519
Phase1

SOKAKA
Phase0

SOKAKA
Phase1

Ti
m

e
(m

s)

Shared-key generation

Samsung Galaxy S III LG Nexus 5

(D)

Figure 6. Performance evaluation of non-standard cryptography compared to standards. RSA uses 1024-bit key, all others have security level of 256-bit.

Digital signatures: (A) generation, (B) verification, and (C) key pair generation. Key Agreement: (D) parameters generation and secret agreement.

38

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of RAM, and 16 GB of storage.
 Figure 6 shows two types of services: digital signatures

at the top and key agreement (KA) at the bottom. The bar
chart Figure 6(A) shows generation of digital signatures for
five algorithms: RSA (1024-bit key), ECDSA (with SHA-
256), ED25519, BLS and ZSS (BBS), all of them for 256-bit
security. Traditionally, RSA is the slowest one. Elliptic curve
cryptography, as in ECDSA, is faster. Short signatures, such
as BLS and ZSS (BBS), are not as fast as EC. The scheme
ED25519 is the slowest one. This implementation is still a
proof of concept and better timings are expected after
optimizations.

Bar chart of Figure 6(B) shows verification of digital
signatures for five algorithms: RSA (1024-bit key), ECDSA
(with SHA-256), ED25519, BLS and ZSS (BBS), with 256-
bit security. Traditionally, RSA verification is the fastest
one. Elliptic curve cryptography, as in ECDSA, is not that
fast. Short signatures, such as BLS and ZSS (BBS), are
terribly slow, due to complex arithmetic involved in bilinear
pairings computations. ED25519 is the slowest one.

Figure 6(C) shows key pair generation for ED25519,
BLS, ZSS (BBS) and SOKAKA, a pairings-based KA
scheme, compared to ECDSA. Again, performance is slow
for BLS, ZSS (BBS), and SOKAKA. ED25519 is the
slowest. Figure 6(D) shows two KA schemes (Curve25519
and SOKAKA) compared to ECDH. ECDH is quite fast.
Curve25519 is faster than SOKAKA.

Additional measurements were taken for symmetric, non-
standard algorithms on the same Samsung Galaxy S III.
Figure 7 shows time measurements of single-block
operations for the following algorithms: (i) Blake 512 and
HMAC with Blake compared to SHA-512; (ii) Serpent and
Salsa20 compared to AES. Algorithms were setup with a
256-bit key, if needed. The bar chart shows both average and
the 8

th
 centile of 10 thousand operations. Serpent is faster

than homegrown AES, but Salsa20 is the fastest. Blake 512
is quite competitive to SHA-512 for small amounts of data.

Figure 8 tries to capture the perceived responsiveness and
considers the throughput for the same symmetric algorithms,
in megabytes per seconds (MB/s), to process a single file of

5MB, in a cycle of 500 iterations. The best throughput is
given by Salsa20. Interestingly, Blake has shown slower
performance than SHA-512 for large amounts of data.

VI. ENCRYPTTED FILESYSTEM WITH SECURE DELETION

In order to protect the secrecy of data during its entire

lifetime, encrypted file systems must provide not only ways

to securely store, but also reliably delete data, in such a way

that recovering them from physical medium is almost

impossible. The rationale behind the proposed solution is

the actual possibility of performing secure deletion of files

from ordinary Android applications, in user mode, without

administrative privileges or operating system customization.

A. General description of the proposed solution

The proposed solution handles two cases according to the
place where the deleted (or about to be deleted) file is stored:

1. The file is kept by the encrypted file system;

2. The file is logically deleted by the O.S.

1) Secure Deletion of Encrypted Files
The simplest way to fulfill the task of securely delete a

file from an encrypted file system is to simply lose the
encryption key of that file and then logically remove the file.
This method does not need memory cleaning (purging) and
is very fast. A prototype was built upon an Android port [44]
for the EncFS encrypted file system [83]. Figure 9 illustrates
the general behavior and functioning of the encrypted file
system and its management application, called CryptoFM.
The figure shows CryptoFM usage:

1. Inside CryptoFM, user sees a file system;
2. Inside, file names are decrypted on-the-fly;
3. Outside CryptoFM, user sees encrypted folders;
4. Inside, all file names are encrypted as well;
5. Outside, the file type is hidden;
6. Inside, corruptions are detected and monitored.
To accomplish the task of secure file deletion, the way

EncFS manages cryptographic keys had to be modified.
EncFS encrypts all files with a single master key derived
from a password based encryption (PBE) function. It seems
quite obvious that it is not feasible to change a master key

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

Ti
m

e(
m

s)

8th centile Average

Figure 7. Performance of non-standard cryptography (symmetric

encryption, secure hash, and MACs) compared to AES and SHA-512.

0

5

10

15

20

25

M
B/

s

8th centile Average

Figure 8. Throughput of non-standard cryptography (symmetric encryption,

secure hash, and MACs) compared to AES and SHA-512.

39

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and encrypt the whole file system every time a single file is
deleted. On the other hand, if each file were encrypted with
its own key, then that key could be easily thrown away,
turning the deleted file irrecoverable.

The modification to EncFS consists of the following:
a) Use PBE to derive a master key MK;
b) Use a Key Derivation Function (KDF) to derive a

File System Encryption Key (FSEK) from MK;
c) Use an ordinary key generation function (e.g.,

PRNG) to generate a File Encryption Key (FEK);
d) Encrypt files along with their names using FEK and

encrypts FEK with FSEK and random IV;
e) Keep a mapping mechanism from FEK and IV to

encrypted file (FEK||IV file).
A simple way to keep that mapping is to have a table file

stored in user space as application‟s data. Care must be

taken to avoid accidentally or purposely remove that file

when cleaning device‟s user space. In Android devices, this

can be done by rewriting the default activity responsible for

deleting application‟s data. An application-specific delete

activity would provide a selective deletion of application‟s

data or deny any deletion at all. The removal from table of

the FEK and IV makes a file irrecoverable. The ordinary

delete operation then return storage space of that file to

operating system. Figure 10 depicts the solution.
Another way to keep track of keys and files is to store the

pair {FEK, IV} inside the encrypted name of the encrypted
file. In this situation, a file has to be renamed before
removed from the encrypted file system. The rename
operation destroys the FEK and makes file irrecoverable.
The ordinary delete operation then return storage space to

operating system.
It is interesting to note that the proposed solution

contributes to solve some known security issues of EncFS
[84][85]. By using distinct keys for every file, a Chosen
Ciphertext Attack (CCA) against the master key is inhibited.
Also, it reduces the impact of IV reuse across encrypted files.
Finally, it eliminates the watermarking vulnerability, because
a single file imported twice to EncFS will be encrypted with
two distinct keys and IVs.

Finally, the key derivation function is based upon
PBKDF2 standard [59], keys and IVs are both 256 bits, and
the table for mapping the pair {key, IVs} to files is kept by
an SQLite scheme accessible only by the application.

2) Secure deletion of ordinary files

In this context, a bunch of files were logically deleted by

the operating system for the benefit of the user, but they left

sensitive garbage in the memory. Traditional solutions for

purging memory cells occupied by those files are innocuous,

because there is no way to know, from user‟s point of view,

where purging data will be written.

An instance of this situation occurs when a temporary

file is left behind by an application and manually deleted.

This temporary file may be a decrypted copy of an

encrypted file kept by the encrypted file system. Temporary

unencrypted copies of files are necessary in order to allow

other applications to handle specific file types, e.g., images,

documents, and spreadsheets.
Whether temporary files will or will not be imported

back to the encrypted file system, they have to be securely
removed anyway. A premise is that the files to be removed
are not in use by any application. The secure deletion occurs

Figure 9. General behavior and functioning of the encrypted file system and its management application CryptoFM.

40

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in three steps:
1) Logically remove targeted files with ordinary deletion;
2) Write a temporary file of randomized content that

occupies all storage‟s free space;
3) When there is no free space anymore, logically delete

that random file. That action purges all free storage in a
way that no sensitive data is left behind.

The final result of this procedure is a flash storage free of
sensitive garbage. Steps two and three can be encapsulated as
a single function, called memory purging, and performed by
an autonomous application. That application would be
activated by the user whenever she needs to clean storage
from sensitive garbage. The proposed solution adopted
variations of this behavior.

Unfortunately, this procedure has two drawbacks. First, it
takes time proportional to the size of the free space to be
cleaned and the speed of memory writes. Second, this
procedure, in the long term, if used with high frequency, has
the potential to shorten the lifetime of flash memories.

In order to minimize the negative impact over memory
life and avoid excessive delays during operation, steps two
and three from above should not be carried out for every
single file deleted from the system.

3) Limitations of the solution
The protection of cryptographic keys is of major

importance. In spite of being stored encrypted, decrypted just
before being used, and then released, the protection of
cryptographic keys relies on Android security and the
application confinement provided by that operating system.
The proposed solution for memory purging is supposed to
work in user-mode, as an ordinary mobile app, without
administrative access, with no need for operating system
modification, and using off-the-shelf devices. These
decisions have consequences for security.

First of all, the solution is highly dependent on the way
flash-based file systems and controllers behave. Briefly
speaking, when the flash storage is updated, the file system
writes a new copy of the changed data to a fresh memory
block, remaps file pointers, and then erases the old memory
blocks, if possible, but not certainly. This constrained design
actually enables alternative implementations discussed
further.

A second issue is that the solution is not specifically
concerned about the type of physical memory (e.g., internal,
external SD, NAND, and NOR) as long as it behaves like a
flash-based file system. The consequence is that only
software-based attacks are considered and physical attacks
are out of scope.

Additionally, the use of random files is not supposed to
have any effect on the purging assurance, but provides a kind
of low-cost camouflage for cryptographic material (e.g., keys
or parameters) accidentally stored on persistent media. An
entropy analysis would not be able to easily distinguish
specific random data as potential security material, because
huge amounts of space would look random. Of course, this
software-based camouflage cannot be the only way to
prevent such attacks, but it adds to a defense in depth
approach to security at almost no cost.

Finally, the purging technology described has passed all
recovery tests performed with publicly available recovery
tools, such as PhotoRec [86] and similar. That means, after
purging, none of the recovery tools were able to recovery
any deleted file. This confirms the feasibility of the purging
technology for final users. On the other hand, advanced users
may need deeper security assessments over physical
hardware in order to trust the actual extend of the security
provided by the proposed solution.

B. Alternative implementaions

The proposed solution for memory purging is a general
policy for purging flash memories, and can be implemented
in various ways, ranging from simple to complex
implementations. In fact, a general solution has to offer
different trade-offs among security requirements, memory
life, and system responsiveness. The authors have identified
three points for customization:

1. The period of execution for the purging procedure;
2. The size and quantity of random files;
3. The frequency of files creation/deletion.
Different trade-offs among the three customization points

previously identified were implemented and evaluated. In all
of them, the random file created in order to clean storage free
space is called bubble, after the metaphor of soap cleaning
bubbles over a dirty surface. These alternatives are discussed
in next paragraphs.

1) Static single bubble

The simplest solution described in this text implements

the idea of a single static bubble that increases in size until it

reaches the limit of free space, and then bursts. This solution

is adequate for the cases when storage has to be cleaned in

the shortest period of time, with no interruption. A

disadvantage is that other concurrent application can starve

out of storage.

This solution is adequate when nothing else is happening,

but the purging. Figure 11 illustrates, in four simple steps,

the general behavior of this implementation:
1. Sensitive files are deleted logically;
2. The purging bubble is created and grows to occupy

all available storage;
3. The bubble is logically removed when it reaches the

limit of available storage;

MK

PBE

FSEK

Encrypted file

Encrypted file

KDF

Encrypted file system with
single master key.

Encrypted file system with a
single key per file.

FEK | F_ID
FEK | F_ID

...
FEK | F_ID

encrypts

derives

en
cr

yp
ts

Figure 10. Extending an encrypted file system for secure deletion.

41

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4. The removed bubble leaves its waste, which
overwrites any sensitive waste previously left in
storage.

In that figure, an actual file is shown in blue, logically

deleted files are in red, the bubble are in orange, dirty

memory is light blue and purged memory is light grey.

2) Moving or sliding (single) bubble
In this alternative, a single bubble periodically moves

itself or slides from one place to another. The moving bubble
has size of a fraction of free space. For example, if bubble
size is n

-1
 of free space, the moving bubble covers all free

storage after n moves, considering the amount of free space
does not change. A move is simply the rewriting of the
bubble file, since flash memories will perform a rewrite in a
different place. Figure 12 illustrates, in five simple steps, the
general behavior of this implementation:

1. Sensitive files are deleted logically;
2. The purging bubble is created with a fraction of the

available storage;

3. The purging bubble moves due to rewriting
behavior;

4. The bubble is logically removed when it has covered
all the free space and have reached the limit;

5. The removed bubble leaves its waste, which
overwrites any sensitive waste previously left in
storage.

In a period of time equals to (T*(n/2)), where T is the
time between moves, the chance of finding sensitive garbage
in memory is 50%. This solution is adequate when storage
has a low to moderate usage by concurrent applications. This
solution preserves system responsiveness (usability) but
diminishes security.

3) Moving or sliding (multiple) bubbles
This alternative uses more than one bubble instead of a

single one. The size and amount of bubbles are fixed. For
instance, if bubble size is n

-1
 of free space, two moving

bubble covers all free storage space after n/2 moves each.
The advantage of this method is to potentially accelerate
memory coverage, reducing opportunity for memory
compromising. Figure 13 illustrates the general behavior of
this implementation:

1. Sensitive files are deleted logically;
2. The purging bubbles are created with a fraction of

the available storage;
3. The bubbles move due to rewriting behavior;
4. Removed bubbles leave their wastes, which

overwrite any sensitive waste previously left in
storage.

In the example, two bubbles of size 1/n each can move at
every T/2 period, and then concluding in (T*n).
Alternatively, they can move at period T and terminate in
2*T*n, and so on. This solution is adequate when storage has
a moderate usage by concurrent applications. This solution is
probabilistic in the sense that as smaller the duration of T
and greater the size of bubbles, greater the chance of
successfully clean all memory.

4) Sparkling bubbles
This solution varies the size and amount of bubbles. The

idea is to create a bunch of mini bubbles that are sparkled
over free storage space. Bubbles are created and instantly
removed at period T, which can be constant or random
between zero and T. The sparking of bubbles stops when the
sum of sizes for all created bubbles surpasses free space.

Figure 11. Purging strategy #1: Static Single Bubble.

Figure 12. Purging strategy #2: Sliding single bubble.

42

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Bubble size can be small enough to not affect other
applications. Figure 14 illustrates the general behavior of this
implementation:

1. Sensitive files are deleted logically;
2. The bubbles are created with random size between a

(specified) minimum and maximum;
3. The bubbles are removed and recreated

concurrently;
4. The bubbles stop being created when the sum of

their sizes reaches the size of free space;
5. Removed bubbles leave their wastes, which

overwrite any sensitive waste previously left in
storage.

This solution is adequate when storage has a moderate to
high usage by concurrent applications. This solution is
probabilistic in the sense that as smaller the duration of T,
greater the chance of successfully clean the whole memory.

C. Performance evaluation

The four alternative implementations were compared
according to their throughput for memory cleaning. That

means, the rate at which data are purged, in gigabytes per
minute (GB/min). This measure of purging speed tends to be
more useful to compare storages of different size, such as
internal and external memory. Performance tests were
performed in two smartphones of type Motorola Atrix
MB860, with Android 2.3.6 operating system, dual core
1GHz processor, 1GB of RAM and 16GB of internal storage
(only 11 GB available to the end user). It was also used an
SD Card (Class C) of 2GB. Random files created for purging
had size of at most 2 GB or one tenth of free space.
Performance measures were carried out in three scenarios:

 Scenario 1: mostly empty storage (~ 0-19%);

 Scenario 2: partially occupied storage (~ 20-80%);

 Scenario 3: mostly occupied storage (~ 81-99%).
In each scenario, both the internal and the external

storage (SD card) were covered. Performance comparisons
are structured as follows. First, a comparison is made
between purging strategies for each occupancy scenario.
Then, comparison is made between different occupancy
scenarios for a specific strategy.

The implementations of the four purging strategies used
concurrent threads if needed. The implementations of single
static bubble and single sliding bubble used a single thread.
The implementation of multiple sliding bubbles used two
threads. The implementation of the mini-random bubbles
used a minimum of five threads and at most twenty threads.

1) Scenario 1 – mostly empty storage
Performance measures for this scenario are shown in

Figure 15(A). The storages were empty (0% occupancy). For
this scenario, the following observations can be made:

a) The second purging strategy (single sliding bubble)
is the fastest one. Apparently, this is because rewrite
a single smaller file size is more efficient than
continuously increase the size of a huge file;

b) The strategies with multiple bubbles are slower than
the strategies with a single bubble. Probably, this is
due to the overhead of managing multiple threads.

c) The higher the number of threads, worse the overall
performance of purging, in slower CPUs. However,
multi-bubble strategies are not blocking;

d) Purging of SD card was consistently slower in all
cases.

Finally, data suggest that, when there is no competition for
storage and storage is almost empty, sliding single bubble is
the strategy that offers the best throughput. In situations

Figure 13. Purging strategy #3: Sliding (multiple) bubbles.

Figure 14. Purging strategy #4: Sparking bubbles.

43

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where there is high competition for access to internal storage,
multiple sliding bubbles seem to be more appropriate than
the mini random bubbles.

2) Scenario 2 – partially occupied storage

Performance measures for this scenario are shown in

Figure 15(B). The storages were partially occupied (30%

occupancy). The following observations can be made:

a) The second strategy (single sliding bubble) is still the

fastest one;

b) The strategies with multiple bubbles are slower than

the strategies with a single bubble;

c) The higher the thread count, the worse the overall

performance of purging;

d) Purging of SD card was consistently slower in all

cases.

Finally, data suggest that, when there is no competition

for storage and it is partially occupied, the single sliding

bubble is still the strategy that offers the best throughput.

However, single static bubble is very competitive. In

situations where the competition for the internal storage is

high, the throughputs for multiple sliding bubbles and mini

random bubbles are quite similar.

3) Scenario 3 – mostly occupied storage

Performance measurements for this scenario are shown in

Figure 15(C). The storages were nearly full (94%

occupancy). The following observations can be made:

a) The first strategy (single static bubble) is just slightly

faster than the second one (single sliding bubble);

b) The throughput of the strategies with multiple

bubbles is close to the throughput of strategies with a

single bubble, but showing a slightly worse

performance;

c) The overall performance is still slightly worse with

the increase number of threads;

d) Purging of SD card was consistently slower.

Data suggest that, when there is no competition for

storage and its occupation is close to full capacity, the single

bubble strategies (static or sliding) offer the best throughput.

4) Comparisom among strategies

Figure 16 compares all four strategies in different

scenarios of occupancy (0%, 30% and 94%). All amounts

are in GB/min. The following observations can be made:

1. In Figure 16(A), throughput of the single static

bubble strategy improves with increasing storage

occupation;

2. In Figure 16(B), throughput of the single sliding

bubble gets worse with increased storage occupancy.

This may be due to the slower treatment of memory

rewriting;

3. In Figure 16(C), throughput of multiple sliding

bubbles improves with increasing storage occupation.

The use of two threads compensates for the relative

slowness of the bubble rewriting;

4. In Figure 16(D), throughput of multiple random

bubbles improves with increasing storage occupation.

The use of multiple threads is combined with rapid

generation of small bubbles.

The measurements show that the purging strategy with

single sliding bubble has the highest throughput in average,

being considered most appropriate in general. However, the

static bubble is very competitive, though. In situations

where there is high competition for internal storage, the

throughput of strategies with multiple bubbles (sliding and

random) is similar.

VII. INTEGRATED VIEW: PUTTING IT ALL TOGETHER

Among all technical challenges concerning the

development of security features for applications on

modern, Android-based, mobile devices, one of major

importance is the integration of all these features into a

security-ware framework. Figure 17 illustrates the high-

level architecture of the proposed framework, where an

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Static single Single sliding Multiple sliding Sparkling

Th
ro

u
gh

p
u

t
(G

B
/m

in
)

Purging strategy

Internal storage SD Card Both(A)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Static single Single sliding Multiple sliding Sparkling
Th

ro
u

gh
p

u
t

(G
B

/m
in

)
Purging strategy

Internal storage SD Card Both(B)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Static single Single sliding Multiple sliding Sparkling

Th
ro

u
gh

p
u

t
(G

B
/m

in
)

Purging strategy

Internal storage SD Card Both(C)

Figure 15. Throughputs for purging strategy in three scenarios.

44

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

application container encapsulates all security features,

including cryptography, key management, contact

management, secure storage and deletion, access control,

and mediated access to server-side applications. All these

features are accessible to applications by means of APIs and

services. Also, the framework promotes integration among

mobile applications. For instance, the encrypted file system

can be accessed by trusted applications inside the container.
Two main objectives drove the proposed architecture

shown in Figure 17. The first one was to build a family of
secure communication services over data packets (or over
IP), through smartphones on public networks (e.g., 3G, 4G,
Wi-Fi). The second was to develop tools for integrity
checking and remote monitoring of smartphones, as well as
techniques for active investigation on mobile platforms.

At the back office, the framework is supported by a
laboratory for mobile security, which is able to carry out
assessments on mobile environments, including platforms,
applications and communications, as well as security
analysis of mobile malware. The knowledge acquired by the
lab team feeds the development team with security controls
and counter measures. A private cloud provides services to
the development team. Not only security services are

provided, but also hosting for server-side applications.

VIII. CONCLUDING REMARKS

This paper discussed design and implementation issues
on the construction of an integrated framework for securing
both communication and storage of sensitive information
over Android devices.

This text has shown how cryptographic services can be
crafted to adequately fit secure communication services as
well secure storage and deletion mechanisms, in such a way
that security is kept transparent to the user, without being
sacrificed. Also, a well-defined architecture allowed the
selection and use of non-standard cryptography on a
cryptographic library for Android.

The cryptographic library actually consists of both
standard and non-standard cryptographic algorithms.
Performance measurements were taken in order to compare
cryptographic providers. Despite all difficulties to obtain
realistic data, experiments have shown that standard
cryptography can be competitive to other implementations.
On the other hand, non-standard cryptography has shown
low performance that can possibly limit its use in real time
applications. However, their value consists in offering secure
alternatives to possibly compromised standards. In fact,

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0% 30% 94%

Th
ro

u
gh

p
u

t
(G

B
/m

in
)

Memory ocuppation (%)

Static single

Internal storage SD Card Both

(A)

0

0,2

0,4

0,6

0,8

1

0% 30% 94%

Th
ro

u
gh

p
u

t
(G

B
/m

in
)

Memory ocuppation (%)

Single sliding

Internal storage SD Card Both

(B)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0% 30% 94%

Th
ro

u
gh

p
u

t
(G

B
/m

in
)

Memory ocuppation (%)

Multiple sliding

Internal storage SD Card Both

(C)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0% 30% 94%

Th
ro

u
gh

p
u

t
(G

B
/m

in
)

Memory ocuppation (%)

Sparkling

Internal storage SD Card Both

(D)

Figure 16. Throughputs by memory occupancy for purging strategy.

45

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

regarding recent global surveillance disclosures, non-
standard cryptographic primitives can be faced as part of the
usual trade-offs that directs the design of cryptographically
secure applications.

Finally, the paper discussed the implementation of two

user-level approaches to perform secure deletion of files.

One works on secure deletion of encrypted files and the

other handles deletion assurance of ordinary (unencrypted)

files. Secure deletion of encrypted files was fully integrated

to an encrypted file system and is transparent to the user.

Secure deletion of ordinary files was fulfilled by an

autonomous application activated under the discretion of the

user. Performance measurements have shown that the

approach is feasible and offers interesting trade-offs

between time and deletion assurance.

In the short term, future work comprises the inclusion of

additional secure applications to the mobile security

framework, such as SMS, email, voice mail and VoIP. In

the long run, the framework should evolve to a mobile

platform for remote monitoring and fine-grained control of

secure devices. Finally, as secure computing platforms

become common place in mobile devices, the framework

should be integrated to such features and provide strong,

hardware-based protection to cryptographic keys.

ACKNOWLEDGMENT

The authors would like to acknowledge professor Julio
Lopez, from University of Campinas, for his helpful
comments. The authors acknowledge the financial support
given to this work, under the project "Security Technologies
for Mobile Environments – TSAM", granted by the Fund for
Technological Development of Telecommunications –
FUNTTEL – of the Brazilian Ministry of Communications,

through Agreement Nr. 01.11.0028.00 with the Financier of
Studies and Projects - FINEP/MCTI.

REFERENCES

[1] A. M. Braga and A. H. G. Colito, “Adding Secure Deletion to an
Encrypted File System on Android Smartphones,” The Eighth
International Conference on Emerging Security Information, Systems
and Technologies (SECURWARE), 2014, pp. 106-110.

[2] A. M. Braga and D. C. Schwab, “Design Issues in the Construction of
a Cryptographically Secure Instant Message Service for Android
Smartphones,” The Eighth International Conference on Emerging
Security Information, Systems and Technologies (SECURWARE),
2014, pp. 7-13.

[3] A. M. Braga and E. M. Morais, “Implementation Issues in the
Construction of Standard and Non-Standard Cryptography on
Android Devices,” The Eighth International Conference on Emerging
Security Information, Systems and Technologies (SECURWARE),
2014, pp. 144-150.

[4] A. M. Braga, “Integrated Technologies for Communication Security
on Mobile Devices,” The Third International Conference on Mobile
Services, Resources, and Users (Mobility), 2013, pp. 47–51.

[5] A. M. Braga, E. N. Nascimento, and L. R. Palma, “Presenting the
Brazilian Project TSAM – Security Technologies for Mobile
Environments,” Proceeding of the 4th International Conference in
Security and Privacy in Mobile Information and Communication
Systems (MobiSec 2012). LNICST, vol. 107, 2012, pp. 53-54.

[6] A. Braga and E. Nascimento, “Portability evaluation of cryptographic
libraries on android smartphones,” In Proceedings of the 4th
international conference on Cyberspace Safety and Security (CSS'12),
Yang Xiang, Javier Lopez, C.-C. Jay Kuo, and Wanlei Zhou (Eds.),
Springer-Verlag, Berlin, Heidelberg, 2012, pp. 459-469.

[7] J. Menn, “Experts report potential software „back doors‟ in U.S.
standards,” retrived [May 2015] from http://www.reuters.com/article
/2014/07/15/usa-nsa-software-idUSL2N0PP2BM20140715?irpc=932.

[8] NIST Removes Cryptography Algorithm from Random Number
Generator Recommendations. Retrieved [May 2015] from
http://www.nist.gov/itl/csd/sp800-90-042114.cfm.

[9] Java Cryptography Architecture (JCA) Reference Guide. Retrieved
[May 2015] from docs.oracle.com/javase/7/docs/technotes/guides/
security/crypto/CryptoSpec.html.

Figure 17. Framework high-level architecture with secure communication, trust management and back office services.

46

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] Java Cryptography Extension Unlimited Strength Jurisdiction Policy
Files 7 Download. Retrieved [May 2015] from www.oracle.com/
technetwork/java/javase/downloads/jce-7-download-432124.html.

[11] Java Cryptography Architecture (JCA) Reference Guide. Retrieved
[May 2015] from docs.oracle.com/javase/7/docs/technotes/guides/
security/crypto/CryptoSpec.html.

[12] The Java HotSpot Performance Engine Architecture. Retrived [May
2015] from www.oracle.com/technetwork/java/whitepaper-
135217.html.

[13] Tuning Garbage Collection with the 5.0 Java Virtual Machine.
Retrived [May 2015] from http://www.oracle.com/technetwork/
java/gc-tuning-5-138395.html.

[14] Ergonomics in the 5.0 Java Virtual Machine. Available in:
http://www.oracle.com/technetwork/java/ergo5-140223.html.

[15] A. Lux and A. Starostin, “A tool for static detection of timing
channels in Java,” Journal of Cryptographic Engineering, vol. 1, no.
4, Oct. 2011, pp. 303–313.

[16] D. Bornstain, “Dalvik VM Internals,” retrieved [May 2015] from
sites.google.com/ site/io/dalvik-vm-internals.

[17] H. Oh, B. Kim, H. Choi, and S. Moon, “Evaluation of Android Dalvik
virtual machine,” In Proceedings of the 10th International Workshop
on Java Technologies for Real-time and Embedded Systems (JTRES
'12), ACM, New York, NY, USA, 2012, pp. 115-124.

[18] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of
Android application security,” in Proceedings of the 20th USENIX
conference on Security (SEC‟11), USENIX Association, Berkeley,
CA, USA, 2011, p. 21.

[19] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer and
Communications Security (CCS ‟13), 2013, pp. 73–84.

[20] P. Gutmann, “Lessons Learned in Implementing and Deploying
Crypto Software,” Usenix Security Symposium, 2002.

[21] NIST SP 800-38A. Recommendation for Block Cipher Modes of
Operation. 2001. Retrieved [May 2015] from
csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

[22] NIST SP 800-38D. Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC. 2007.
csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf.

[23] P. Gutmann, “Secure deletion of data from magnetic and solid-state
memory,” proceedings of the Sixth USENIX Security Symposium,
San Jose, CA, vol. 14, 1996.

[24] NSA (2012). Enterprise Mobility Architecture for Secure Voice over
Internet Protocol. Mobility Capability Package - Secure VoIP, V 1.2.

[25] A. Voyiatzis, K. G. Stefanidis, and D. N. Serpanos, “Increasing
lifetime of cryptographic keys on smartphone platforms with the
controlled randomness protocol,” in Proceeding of the Workshop on
Embedded Systems Security (WESS‟11), New York, NY, USA,
2011.

[26] J. Grosschadl and D. Page, “Efficient Java Implementation of
Elliptic Curve Cryptography for J2ME-Enabled Mobile Devices,”
Cryptology ePrint Archive, Report Nr. 2011/712, 2011.

[27] M. Smith, C. Schridde, B. Agel, and B. Freisleben, “Secure mobile
communication via identity-based cryptography and server-aided
computations,” J. Supercomput, vol. 55, no. 2, Feb. 2011, pp. 284-
306.

[28] A. De Caro and V. Iovino, “ jPBC: Java pairing based cryptography,”
In Proceedings of the IEEE Symposium on Computers and
Communications (ISCC '11). IEEE Computer Society, 2011.

[29] ENISA, “Algorithms, key size and parameters report,” nov. 2014.
Retrived [May 2015] from www.enisa.europa.eu/activities/identity-
and-trust/library/deliverables/algorithms-key-size-and-parameters-
report-2014.

[30] ENISA. “Study on cryptographic protocols,” nov. 2014. Retrived
[May 2015] from https://www.enisa.europa.eu/activities/identity-and-
trust/library/deliverables/study-on-cryptographic-protocols.

[31] B. Xuefu and Y. Ming, “Design and Implementation of Web Instant
Message System Based on XMPP,” Proc. 3rd International
Conference on Software Engineering and Service Science (ICSESS),
Jun. 2012, pp. 83-88.

[32] D. T. Massandy and I. R. Munir, “Secured Video Streaming
Development on Smartphones with Android Platform,” Proc. 7th
International Conference on Telecommunication Systems, Services,
and Applications (TSSA), Oct. 2012, pp. 339-344.

[33] S. Schrittwieser et al., “Guess Who's Texting You? Evaluating the
Security of Smartphone Messaging Applications,” in Proc. 19th
Network & Distributed System Security Symposium, Feb. 2012.

[34] Off-the-Record Messaging webpage. Retrieved [May 2015] from
otr.cypherpunks.ca.

[35] H. Krawczyk, “SIGMA: “The „SIGn-and-MAc‟ approach to
authenticated Diffie-Hellman and its use in the IKE protocols,”
Advances in Cryptology-CRYPTO 2003, Springer Berlin Heidelberg,
2003, pp. 400-425.

[36] W. Diffie and M. Hellman, “New Directions in Cryptography,” IEEE
Transact. on Inform. Theory, vol. 22, no. 6, Nov. 1976, pp. 644-654.

[37] B. O'Higgins, W. Diffie, L. Strawczynski, and R. do Hoog,
"Encryption and ISDN - A Natural Fit," International Switching
Symposium (ISS87), 1987.

[38] W. Diffie, P. C. van Oorschot, and M. J. Wiener, “Authentication and
Authenticated Key Exchanges,” Designs, Codes and Cryptography
(Kluwer Academic Publishers) 2 (2), 1992, pp. 107–125.

[39] Piercing Through WhatsApp‟s Encryption. Retrieved [May 2015]
from blog.thijsalkema.de/blog/2013/10/08/piercing-through-
whatsapp-s-encryption.

[40] A. Greenberg, “Whatsapp just switched on end-to-end encryption for
hundreds of millions of users,” Retrieved [May 2015] from
www.wired.com/2014/11/whatsapp-encrypted-messaging.

[41] D. Boneh and R. J. Lipton, “A Revocable Backup System,” in
USENIX Security, 1996, pp. 91-96.

[42] K. Sun, J. Choi, D. Lee, and S.H. Noh, “Models and Design of an
Adaptive Hybrid Scheme for Secure Deletion of Data in Consumer
Electronics,” IEEE Transactions on Consumer Electronics, vol. 54,
no. 1, Feb. 2008, pp.100-104.

[43] S. M. Diesburg and A. I. A. Wang, “A survey of confidential data
storage and deletion methods,” ACM Computing Surveys (CSUR),
vol. 43, no.1, p.2, 2010.

[44] Z. Wang, R. Murmuria, and A. Stavrou, “Implementing and
optimizing an encryption filesystem on android,” in IEEE 13th
International Conference on Mobile Data Management (MDM),
2012, pp. 52-62.

[45] J. Reardon, S. Capkun, and D. Basin, “Data node encrypted file
system: Efficient secure deletion for flash memory,” in USENIX
Security Symposium, 2012, pp. 333-348.

[46] J. Reardon, C. Marforio, S. Capkun, and D. Basin, “User-level secure
deletion on log-structured file systems,” in Proceedings of the 7th
ACM Symposium on Information, Computer and Communications
Security, 2012, pp. 63-64.

[47] J. Reardon, D. Basin, and S. Capkun, “On Secure Data Deletion,”
Security & Privacy, IEEE , vol. 12, no. 3, May-June 2014, pp.37-44.

[48] J. Reardon, D. Basin, and S. Capkun, “Sok: Secure data deletion,” in
IEEE Symposium on Security and Privacy, 2013, pp. 301-315.

[49] J. Reardon, H. Ritzdorf, D. Basin, and S. Capkun, “Secure data
deletion from persistent media,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security (CCS
'13). ACM, New York, NY, USA, 2013, pp. 271-284.

[50] A. Skillen and M. Mannan, “On Implementing Deniable Storage
Encryption for Mobile Devices,” in 20th Annual Network &
Distributed System Security Symposium, February 2013, pp. 24-27.

[51] A. Skillen and M. Mannan, “Mobiflage: Deniable Storage Encryption
for Mobile Devices,” IEEE Transactions on Dependable and Secure
Computing, vol. 11, no. 3, May-June 2014, pp.224-237.

47

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[52] P. Saint-Andre, K. Smith, and R. Tronçon, “XMPP: The Definitive
Guide - Building Real-Time Applications with Jabber Technologies,”
O‟reilly, 2009.

[53] W. Mao, “Modern cryptography: theory and practice”, PTR, 2004.

[54] EJBCA PKI CA. Retrieved [May 2015] from http://www.ejbca.org.

[55] S. Fahl, M. Harbach, and H. Perl, “Rethinking SSL development in
an appified world,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security - CCS ‟13
(2013), 2013, pp. 49–60.

[56] Java Cryptography Architecture Oracle Providers Documentation for
Java Platform Standard Edition 7. Retrieved [May 2015] from
docs.oracle.com/javase/7/docs/technotes/guides/security/SunProvider
s.html.

[57] Java Cryptography Architecture Standard Algorithm Name
Documentation for Java Platform Standard Edition 7. Retrieved [May
2015] from docs.oracle.com/javase/7/docs/technotes/guides/security/
StandardNames.html.

[58] How to Implement a Provider in the Java Cryptography Architecture.
Retrieved [May 2015] from docs.oracle.com/javase/7/docs/technotes/
guides/security/crypto/HowToImplAProvider.html.

[59] B. Kaliski, “PKCS #5: Password-Based Cryptography Specification,”
Version 2.0, RFC 2898. Retrieved [May 2015] from
tools.ietf.org/html/rfc2898.

[60] J. Bos, D. Osvik, and D. Stefan, “Fast Implementations of AES on
Various Platforms,” 2009. Retrieved [May 2015] from
eprint.iacr.org/2009/501.pdf.

[61] NIST FIPS-PUB-197. Announcing the ADVANCED ENCRYPTION
STANDARD (AES). Federal Information Processing Standards
Publication 197 November 26, 2001.

[62] T. St. Denis. “Cryptography for Developers,” Syngress, 2007.

[63] P. Barreto, AES Public Domain Implementation in Java. Retrieved
[May 2015] from www.larc.usp.br/~pbarreto/JAES.zip.

[64] NIST FIPS-PUB-186. Digital Signature Standard (DSS). Retrieved
[May 2015] from csrc.nist.gov/publications/fips/archive/fips186-
2/fips186-2.pdf.

[65] NIST FIPS-PUB-180-4. Secure Hash Standard (SHS). March 2012.
Retrieved [May 2015] from csrc.nist.gov/publications/fips/fips180-
4/fips-180-4.pdf.

[66] NIST FIPS-PUB-198. The Keyed-Hash Message Authentication
Code (HMAC). Retrieved [May 2015] from
csrc.nist.gov/publications/fips/fips198/fips-198a.pdf.

[67] D. Aranha and C. Gouvêa, RELIC Toolkit. Retrieved [May 2015]
from code.google.com/p/relic-toolkit.

[68] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange, “Elligator:
elliptic-curve points indistinguishable from uniform random strings,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, CCS ‟13, New York, NY, USA, 2013,
pp. 967–980.

[69] D. Hankerson, A. J. Menezes, and S. Vanstone. “Guide to Elliptic
Curve Cryptography,” Springer-Verlag, New York, Inc., Secaucus,
NJ, USA, 2003.

[70] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and Bo-YinYang,
“High-speed high-security signatures,” Journal of Cryptographic En-
gineering, vol. 2, no. 2, pp. 77–89, 2012.

[71] NIST FIPS PUB 186-2. Digital Signature Standard (DSS). Retrieved
[May 2015] from csrc.nist.gov/publications/fips/archive/fips186-
2/fips186-2.pdf.

[72] R. Sakai, K. Ohgishi, and M. Kasahara. “Cryptosystems based on
pairing,” in Proceedings of the 2000 Symposium on Cryptography
and Information Security (SCIS 2000), Okinawa, Japan, January
2000, pp. 26–28.

[73] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” J. Cryptology, 17(4), Sept. 2004, pp. 297–319.

[74] F. Zhang, R. Safavi-Naini, and W. Susilo, “An Efficient Signature
Scheme from Bilinear Pairings and Its Applications,” in F. Bao, R. H.
Deng and J. Zhou, ed., 'Public Key Cryptography', 2004, pp. 277-290.

[75] SHA-3 proposal BLAKE webpage. Retrieved [May 2015] from
https://131002.net/blake.

[76] J. D. Bernstein, “The Salsa20 family of stream ciphers,” Retrieved
[May 2015] from cr.yp.to/papers.html#salsafamily.

[77] SERPENT webpage, “SERPENT A Candidate Block Cipher for the
Advanced Encryption Standard,” retrieved [May 2015] from
www.cl.cam.ac.uk/~rja14/serpent.html.

[78] C. Petit, F. Standaert, O. Pereira, T. G. Malkin, and M. Yung, “A
Block Cipher Based Pseudorandom Number Generator Secure
Against Side-Channel Key Recovery,” in Proceedings of the ACM
Symposium on Information, Computer and Communications Security
(ASIACCS ‟08), 2008, pp. 56–65.

[79] G. Anthes, “French team invents faster code-breaking algorithm,”
Communications of the ACM, vol. 57, no.1, January 2014, pp. 21-23.

[80] R. Barbulescu, P. Gaudrey, A. Joux, and E. Thomé, “A quasi-
polynomial algorithm for discrete logarithm in finite fields of small
characteristic,” June 2013, preprint available at
http://eprint.iacr.org/2013/400.pdf.

[81] The Legion of the Bouncy Castle webpage. Legion of the Bouncy
Castle Java cryptography APIs. Retrieved [May 2015] from
www.bouncycastle.org/java.html.

[82] SpongyCastle webpage, Spongy Castle: Repackage of Bouncy Castle
for Android, Bouncy Castle Project (2012), Retrieved [May 2015]
from rtyley.github.com/spongycastle/.

[83] V. Gough, “EncFS Encrypted Filesystem,” stable release 1.7.4
(2010). Retrived [May 2015] from http://www.arg0.net/encfs.

[84] M. Riser, “Multiple Vulnerabilities in EncFS,” 2010. Retrieve [May
2015] from: http://archives.neohapsis.com/archives/fulldisclosure/
2010-08/0316.html.

[85] T. Hornby, “EncFS Security Audit,” retrived [May 2015] from:
https://defuse.ca/audits/encfs.htm.

[86] PhotoRec, Digital Picture and File Recovery. Retrived [May 2015]
from: http://www.cgsecurity.org/wiki/PhotoRec.

