International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

The All Seeing Eye and Apate: Bridging the Gap
between IDS and Honeypots

Christoph Pohl and Hans-Joachim Hof

MuSe - Munich IT Security Research Group
Munich University of Applied Sciences
Munich, Germany
Email: {christoph.pohl0, hof }@hm.edu

Abstract—Timing attacks are a challenge for current in-
trusion detection solutions. Timing attacks are dangerous for
web applications because they may leak information about side
channel vulnerabilities. This paper presents a methodology that
is especially good at detecting timing attacks. Unlike current
solutions, the proposed Intrusion Detection System uses a huge
number of sensors for vulnerability detection. Honeypots are used
in IT Security to detect and gather information about ongoing
intrusions by presenting an interactive system as attractive target
to an attacker. The longer an attacker interacts with a honeypot,
the more valuable information about the attack can be collected.
Honeypots should appear like a valuable target to motivate an
attacker. This paper presents, in addition to the possibilities of
timing attack vulnerabilities, a novel way to inject honeypot
and analysis capabilities in any software based on x64 or 1386
architecture. It fulfills two basic requirements: it can be injected
into machine code without the need of recompilation and it
can be configured during runtime. This means the honeypot is
able to change the behavior of any function during runtime.
The concept uses sophisticated stealth technologies to provide
stealthiness. In conclusion, the research presents a novel way
to detect side channel vulnerabilities and an inbuilt hypervisor
to provide configurable honeypot capabilities to explore these
vulnerabilities to an attacker. The proposed solution in this
paper offers a highly configurable injection technology, which
can change the behavior of any function without the need of
recompilation or even reinstallation. It is able to provide these
capabilities in the kernel or userland of actual *Nix systems.

Keywords—intrusion detection; honeypot; virtualisation; sen-
sor; brute force; timing

I. INTRODUCTION

This paper is an extended version of [1]. It also extends
another research, published by the authors in [2], [3]. Hence,
this research paper is based on those publications and extends
them with a novel way of honeypot creation.

Intrusion Detection Systems (IDS) in combination with
firewalls are the last defense line in security when protecting
web applications. The purpose of an IDS is to alert a human
operator or an Intrusion Prevention System that an attack is in
preparation or currently taking place.

One common challenge for web applications is the detec-
tion of timing attacks. A timing attack is an attack, which uses
time differences between different actions to gain information.
Intrusion Detection Systems typically use sensors to collect

data. In this work, a sensor describes a data source that
provides data useful for attack detection. Useful in this context
means that the data must be linked to actions of a web
application. Data of sensors is analyzed by All-Seeing Eye
to detect attacks.

Usually, honeypots can be classified into Low- and High
Interaction Honeypots. A Low Interaction Honeypot is able to
simulate services or system environments. A High Interaction
Honeypot provides a real exploitable system.

A common challenge in honeypot creation, is to inject ex-
ploits into a High Interaction Honeypot. The provider of such
a honeypot needs to install exploitable software or to inject
vulnerabilities into a software. This means a high consumption
of resources.

The major reasearch question in this research is twofold:

e Is it possible to detect timing attack vulnerabilities
and to identify the correct function, reponsible for this
leak?

e How to change the behavior of functions to deploy
a honeypot (for example to provide timing attack
vulnerabilities), but without the need of reinstallation,
recompilation or resource expensive development?

The proposed solution in this paper offers a highly con-
figurable injection technology, which can change the behavior
of any function without the need of recompilation or even
reinstallation. It is able to provide these capabilities in the
kernel or userland of actual *Nix systems. This manipulation
technology allows the provider to present different environ-
ments or behavior depending on current system status. For
example: the attacker knows that a system is based on ext4-File
system and uses a standard hard drive (SATA based) without
any virtualisation. He expects that the system will have a
throughput of about 65 MB/s. The real honeypot system, based
on ESXI virtualisation with extensive caching has a throughput
of 550MB/s (ESXI will cache all IO in RAM). To scale down
the system, the provider needs to install the honeypot on the
expected system, or to rewrite the syscall for writing and
reading. This means a lot of overhead in recompilation the
kernel or installation on specific hardware.

The proposed solution is able to hook functions and pro-
vide a hypervisor-like technology, which makes it possible to

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

change the behavior without the need of any compilation, nor
installation.

Another possibility is to inject a rule engine for function
parameter, system parameters and the result generation of any
function. The honeypot provider is able to formulate rules
which can change the behavior based on those parameters. For
example, the provider is able to present a file structure for PID
42 and a completely different file structure for PID 84. This
manipulation is able to decoy an attacker or even to suppress
harmful actions. A rule just needs to prevent a system call by
returning an error code.

For productive usage, the honeypot should not be detectable
by an attacker (or just with sophisticated analysis tools).
It must also provide a low overhead in time consumption
(performance).

The proposed solution fulfills all requirements. Hence, it
is a novel way to build easy to configure honeypot systems.

The rest of this paper is structured as follows: Section II
presents related work. Section III describes the concept and
implementation of the sensors used by All-Seeing Eye. The use
of multiple sensors to detect intrusions is described in Section
IV. Section V evaluates All-Seeing Eye under different attacks,
especially timing attacks. Section VI describes a novel way to
inject honeypot technologies in a running system. Section VII
evaluates this technology with different settings. Section VIII
concludes the paper and gives an outlook on future work.

II. RELATED WORK

Anomaly detection is based on the hypothesis that there
are deviations between normal behavior and behavior under
intrusion [4], [5], [6], [7]. Many techniques have been re-
searched for the detection like network traffic analysis [8], [9],
[10], statistical analysis in records [11] or sequence analysis
with system calls [12], [13], [14], [15]. A combination of this
research with anomaly detection methods based on multiple
sensors allows to find yet unknown attacks. Configuring intru-
sion detecting systems for one distinct system or one distinct
vulnerability needs configuration with current solutions. The
solution presented in this paper does not need any configura-
tion.

In [13], [14], it is proved that call chains of system calls
show different behavior under normal conditions and under
intrusion, hence intrusion detection is possible. However, a
normal model must be trained using learning data to detect
attacks. In [14], it is shown that normal behavior produces
fingerprintable signatures in system call data. A deviation
from these signatures is defined as intrusion. This method is
restricted to the usage of system calls and does not use more
fine granular sensor data. In [16], a way to detect anomalies
with information flow analysis is shown. Profiling techniques
are used, injecting small sensors in a running application. They
propose a model with clusters of allowed information flows and
compare this normal model against actual information flow.
Similar models are proposed in [17], [18], [19]. This approach
is similar to our approach, but [16] focuses on offline audits
for penetration testing. The approach presented in this paper
is intended to be used online, hence it does not analyze the
whole information flow but focuses on the method call chain,
and is therefore more efficient.

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

2

In [20], it is shown that vulnerability probing can be
detected using multiple sensors, especially sensor that calculate
the possibility a resource is called by a user. These sensors are
called access frequency based sensors. However, the system
presented in [20] needs a lot of information about the system
to protect (e.g., patterns describing legitimate resource calls),
hence is difficult to deploy in the field. The solution presented
in this paper does not need any configuration.

A well known honeypot tool, based on LKM for 2.6
Linux Kernel, is Sebek [21][22]. Sebek is primarily used
for logging purposes in High Interaction Honeypot. Thus, it
provides several possibilities focused on logging (like logging
via network or GUI). In [23][24], ways to detect Sebek are
described. Sebek does not provide the possibility to manipulate
system calls as Apate does.

Another approach for monitoring systems is to use virtual
machine introspection and system view reconstruction. This
approach is used, e.g., in [25][26][27]. This approach is
stealthier then Apate, because the introspection is done by the
hardware layer of the virtual machine. However, Apate also
provides means to manipulate the behavior of system calls,
which is not supported by [25][26][27].

SELinux [28] is a well known tool, which inserts hooks at
different locations inside the kernel. This provides the possibil-
ity for access control on critical kernel routines. SELinux can
be controlled on a very fine granular level with an embedded
configuration language. While SELinux is very useful in
hardening a kernel, it is not designed for honeypot purposes.
Especially, it lacks in the possibility to decoy the attacker with
“wrong” information.

Grsecurity [29] with PAX [30] is similar to Apate. How-
ever, it greatly differs in ease of deployment and ease of
configuration [31]. It also lacks in the possibility to decoy
the attacker with “wrong” information.

In conclusion, non of the mentioned related work fulfill all
requirements. Apate fulfills all requirements, hence is a useful
building block for upcoming High Interaction Honeypots.

III. SENSORS FOR A MASSIVE MULTI-SENSOR
ZERO-CONFIGURATION INTRUSION DETECTION SYSTEM

A sensor describes a data source that provides useful data
for attack detection. Useful in this context means that the data
must be linked to actions of a web application. Data of sensors
is analyzed by the proposed Intrusion Detection System All-
Seeing Eye to detect attacks. Sensors are:

e Already available data sources like memory consump-
tion of an application.

e Software sensors inserted into a web application or a
web application framework.

e Sensors in the underlying operating system p.ex. sen-
sors in the glibc or in system call routines

All-Seeing Eye depends on the availability of a large
number of sensors that can be used for attack detection.

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Sensor Implementation

Software sensors are implemented by injecting hooks at the
beginning and end of functions. Hence, hooks are called before
and after code execution of a method. With this approach,
e.g., it is possible to measure the method execution time for
each method used. It is also possible to identify the order of
method execution. Hooks are injected directly into bytecode. It
is not necessary to recompile any application protected by All-
Seeing Eye. It is not necessary to perform any configuration
for the web application that should be protected, hence All-
Seeing Eye is called “zero configuration”. As injection the
technology proposed in [1], [2] is used. For the testbed used
for the evaluation presented in this paper the sensors are placed
in OpenCMS [32]. OpenCMS is a well known and widely used
framework for Content Management. All-Seeing Eye takes
care that methods used by the protected web application do
not clash with method names used by All-Seeing Eye. Sensor
data is written to a log file for further analyses.

One way to minimize the output of sensors (and the number
of data to write to the log file) is to produce no output for
methods that have an execution time lower than the resolution
of the timestamps (1 ms). It is suspected that these methods
would not generate any interesting output as these methods are
usually helper methods or wrappers.

IV. MASSIVE MULTI-SENSOR ZERO-CONFIGURATION
INTRUSION DETECTION SYSTEM

This section describes the design of the proposed massive
multi-sensor zero-configuration intrusion detection system All-
Seeing Eye. All-Seeing Eye uses the software sensors, de-
scribed in more detail in the last section, to calculate intrusion
metrics. The metrics described in the following are focused
on detection of outliers in timeline data values to detect brute
force attacks. However, the approach presented in this paper is
not limited to this attack class, it can be easily adapted to detect
various other attacks. Even attacks on the business logic can
be detected as the presented approach uses software sensors
embedded in the code of an application. This is out of scope
of this paper.

An advantage of All-Seeing Eye is that it allows to detect
side channel attacks without knowledge of the web application
which is to be protected. In the absence of an attack, there is
a high correlation between method calls defined in a method
chain. As shown in Section V a single call results in correlated
calls (method chain) of other methods. The system under load
shows the same correlations. These correlations are further
called as fingerprint s. Under attack, however, the system
shows a different behavior, hence allows to identify attacks,
see Section V for details. All-Seeing Eye does not need a
preconfigured or constructed normal model. For this approach
the normal model is created from history. At time ¢ = 0 it
is always assumed that there is no attack, hence status c is
always c! = attack. If there is no attack, the same fingerprint
s should show up in each distinct time period 7' with the
same probability. A deviation from the number of fingerprints
(written as |s|) in a time period T is defined as possible
intrusion. This behavior is well known, as stated in Section
II. The new approach here is the lack of need to define what a
similar request is. The normal model is built using a quantile

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

3

function, where the result is called «. « uses a floating history
time period, which is defined as n x T and ¢t € T are in state
¢! = attack.The multiplier n defines how much of the history
is used. To control the sensitivity of the system, a configuration
parameter p is used. In normal model «, a deviation is detected
by:

if ‘ScurrentTl > a X p
if ‘Scu7"rentT| <aXxXp

ey

_ [attack
~ \lattack

This calculation is robust against statistical outliers and can
be evaluated fast enough for real time calculation, in combi-
nation with structures related to sort optimization. In further
researches these calculations will be done (together with other
sensor calculations) with a graphical processing unit.

V. EVALUATION

For the evaluation of the massive multi-sensor zero-
configuration intrusion detection system, two typical attacks
on web applications are used: timing attacks and vulnerability
probing. Especially timing attacks are hard to detect for
common intrusion detection systems. For our test environment
OpenCMS version 8.5.1 [32] is used as web application to
protect. OpenCMS is a well known and widely used framework
for Content Management.

A. Evaluation Environment

For the evaluation of All-Seeing Eye, a paravirtualized,
openvz solution [33] is used. This approach has the advantage
that is is very realistic compared to simulations. The presented
hardware settings are the settings of the corresponding virtual
machine. Table I lists hardware and software used for the
evaluation.

TABLE I: Experimental setup

Hardware(Server)
CPU 4 Cores (2.1GHZ on hostsystem)
Memory 6 GB Ram
Ethernet Bridged at 1 GBit Nic
Software(Server)
Server Version Apache Tomcat 7.0.28 [34]
JVM Sun 1.6.0.27-b27

B. Fingerprints of Normal Behavior

To validate the hypothesis, that requests to the same target
have the same fingerprint, the following experiment has been
conducted.

First, a baseline is established for all other experiments.
To do so, several requests are sent to the server and the server
is restarted after each request. No interfering processes are
running on this server.

After establishing the baseline, the whole website is
crawled in a second step, ensuring that requests are sequential.
The crawler is configured to request a single page and all
depending images and scripts. To test the software under load
in the third step, another crawler requests the server with 20
concurrent users, with a delay of one second between each
request/user. Overall, there were in average 20 requests per
second for different websites. The second and third step have
been repeated 100 times. In each run of the experiment, the

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Measurement opencms 2 req

50 , 6 €
calls/10ms == | p 5
'g 40 duration | 5 é
(5] hd =
2 30 I [l [l 4 E
g - i | . 9
< 2
.5 M 2 o
© ©
g * —H-H-‘ “V ' :
® g
0 0o
€
116460 116470 116480 116490 116500 116510
millisecond
Figure 1: Two fingerprints of different requests
Measurement opencms 100 req

70 400
calls/sec | 350 T
T 60 ration m ; 8 c
S W OLRVET A .]
3 50 ﬂ';:: L \\F/\ M VALY] 300 8
2 2 1250 3
g g e ChC A Q
£ 30 : U U 1 200 2
= : v ! {150 §
£ 20 3
8 1 100 2
=} Q
© €

200000 300000 400000 500000 600000
millisecond

Figure 2: 100 requests on the same page

metrics described above produced unique fingerprints for every
requested target. This can be seen in Figure 1. In this figure the
fingerprint of the start page and the request to the login page
are extracted from the logged data. Under load the signature
looks like the picture presented in Figure 2.

The result in Figure 1 shows that there are stable correla-
tions between method calls. For better readability, points that
differ less then 3 milliseconds are averaged. The experiments
show that it is possible with All-Seeing Eye to identify similar
requests using their fingerprint.

C. Fingerprints of Information Leakage and Probing for Vul-
nerabilities

OpenCMS version 8.5.1 has a known information leakage
vulnerability, as described in [35]: using the default setting
there is no limit for failed logins per time period. Also, a large
amount of information is given in error messages, especially
the error message ’this username is unknown”, if the given
user name does not exist and “password is wrong”, if the
given password is wrong for an existing user allow an attacker
to find valid user names, by trying possible user names from
a dictionary and using error messages to find out if an user
name is valid. This attack can be detected with a statistical
analysis to detect the brute force analysis II. To do so, a
detection technique needs to identify if a single resource is
called many times but with different parameter in the request
header. A normal model is needed for allowing patterns to test
for deviations of the normal model. This needs deep knowledge
of the system to protect and the vulnerability itself. All-Seeing
Eye is able to detect this attack (and also other probings using
brute force attacks), without this knowledge about system and
vulnerability.

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

Measurement opencms 2 req
60

Get Req duration in ms loggedin =~ + |

g 50 F duration in ms loggedout x
S x
gor
c 30
§ 2071
g
3 10
0
50000 60000 70000 80000 90000 100000
millisecond

Figure 3: Time difference between logged in users and users not
logged in on the start page

To evaluate if All-Seeing Eye can recognize brute-force
attacks, an experiment has been conducted where an attacker
probes the login page and tries to identify valid user names.
The following pattern was used to generate the login requests:

http://192.168.2.89:8080/opencms /.../ index.html?
action=login&username=username_l&password=
passwordnotindb ... snippedEnd

//username _1..username_n in dictionary

http://192.168.2.89:8080/opencms /.../index.html?
action=login&username=username_n&password=
passwordnotindb ... snippedEnd

The attacker used a dictionary with 1000 names for the
brute-force attack. To make detection harder, the attacker uses
50 different user agents as well as 20 different IPs. Only one
valid username exists in the database.

Figure 2 shows a subset of 100 requests. From the figure,
it is obvious that the probing attempts produce many similar
fingerprints. It shows a high correlation between different
requests, the sensor values and the order different sensors are
called in one requests. This order and the values are stable
over all requests. Hence, All-Seeing Eyes can easily detect a
probing attack even if someone uses different header data. No
a-priory knowledge of the system which is to be protected or
the vulnerability itself is necessary.

D. Fingerprints of Timing attacks

OpenCMS version 8.5.1 is vulnerable to timing attacks as
can be seen in Figure 3. The figure shows the times for loading
of the start page for users that are already logged in as well as
for users that are not logged in. A significant difference (849
ms to 798 ms) exists.

Using this timing difference an attacker can brute force
user names by a dictionary attack. All logged in users can be
detected. As with the information leakage and probing attack
in Subsection V-C, current intrusion detection solutions need
information about the system which is to be protected and the
vulnerability to detect this attack.

To test if All-Seeing Eye is able to detect timing attacks
without knowledge (zero-Configuration), the following exper-
iment has been conducted: An attacker uses a dictionary of
1000 user names to execute the timing attack. Each request
has different header data in the request only in the login name
and the password as shown in listing 1.

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Listing 1: Header Data

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

Function
T

// successful login

http://192.168.2.89:8080/opencms /.../index.html?
action=login&username=admin98&password=admin
1...snippedEnd

//username not present, pwd not present

http://192.168.2.89:8080/opencms /.../index.html?
action=login&username=usernamenotpresent&
password=wrongpwd . .. snippedEnd

//username present with wrong password

http://192.168.2.89:8080/opencms /.../index.html?
action=login&username=admin832&password=
wrongpwd ... snippedEnd

Measurement opencms timingexample

10000 3000

. calls/ms === c

E m . duration . 1 2500 8
§ 1000 } 2] y=798¢ [1 8
8 { 2000 F
E 100 b {58 i g A4 1500 &
= . il 5 M X%)
s SE R s { 1000 §
s wol EEEE] £
> =\ ifE==s = 4 500 £
© | E

1 Ll 0

550000 555000 560000 565000 570000 575000 580000
millisecond

Figure 4: 100 requests on the same page

Figure 4 shows an example of fingerprints of the experi-
ment.

The first fingerprint shows a successful login, the second
fingerprint shows a login with no present username and third
fingerprint shows a login with present username but wrong
password. The results clearly show a correlation of the dif-
ferences in order, time, and amount of method calls for each
request.

VI. BRIDGING THE GAP TO HONEYPOT DEPLOYMENT

As stated in Section III, it is possible to analyze an
application for timing attack vulnerabilities without the need of
sophisticated penetrations tests. However, whenever a provider
wants to offer a vulnerability, he needs to install this ex-
ploitable piece of software. In the proposed example of timing
attacks, the provider is able to identify the place where such
a vulnerability has to be installed.

More generally, this place can be any function or a set of
functions available on the target system. The provider needs to
change this function or set of functions to change the behavior
of this functionality.

This solution, further called APATE, intercepts functions
and allows to execute custom routines in those functions.
Figure 5 shows this interception strategy.

Any function call to the hooked function will be intercepted
by a preprocessor hook. This hook leads to the hypervisor.
Inside the hypervisor some custom code gets processed. The
hypervisor and its language is explained in Section VI-E.
The result of this routine decides on the action to invoke.
Within this hypervisor process, it is possible to manipulate,

Interception
(Preprocessor Hook)
T
Original Function
T
Interception
(Postprocessor Hook)
T

Hypervisor

\/’

Return

Figure 5: interception strategy of Apate

somefunction() function_hook()

...Instructions... ...Instructions...

call func_xyz call trampoline

...Instructions... ...Instructions...
func_xyz() trampoline()
push ebp old instr #1

fld qword [addr] old instr #2
fistp dword [esp] old instr #3

rotn J jmp func_xyz + n
...Instructions...

Figure 6: Hooking using a so-called trampoline

block and/or log the original function parameters and the
further execution of the original function. The manipulation
possibilities are explained in detail in Section VI-A. The
postprocessing hook has the same capabilities than the pre-
processor. In addition it is able to manipulate the return code
of the original function.

To prevent detection, Apate is injected into the original
function with a trampoline technology. Figure 6 describes this
trampoline.

This technology, well known in rootkits for Windows
or Linux, is explained in detail in [2]. The hook injector
overwrites original code (located in func_xyz in Figure 6)
with a jump to the hooking code. The hook will process
the hypervisor. At the end of the hook, the trampoline gets
called. The trampoline holds the overwritten code from the
original code, and returns then back to the original code. This
technology makes it hard for rootkit detection tools and is live
patchable.

A. Manipulating functions

Apate and, therefore, the manipulation of functions can be
configured with the help of a high level language. In detail the
configuration high level language and the rule possibilities are
explained in [2]. This high level language formulates rules (or
any other functionality), which gets process by the hook. A
brief overview over this functionality is described in Figure 7.

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Hypervisor

1
f log

!
f_change_path

)

f call_orig

Hook)

Hook return —

Figure 7: Conceptual Manipulation Strategy

Apate Compiler

Apate Assembler

Figure 8: Configuration workflow of Apate

In this case the hypervisor works with three “rules”. The
first rule logs the function call and its parameter, the second
rule manipulates some parameter and the third rule proceeds
the original function with the manipulated parameters. Of
course, it is possible to write rules which delays the original
function or prevent the execution of the original function.

In demarcation to [2] the high level language results in
binary machine code like bytecode, which gets processed by
the hypervisor. Figure 8 shows the compilation and assembling
of the rules. A rule is formulated in a high level language
(code.apate). This gets compiled over bison and flex to an in-
termediate Assembler like language (code.asm). This language
is further called the Apate Intermediate Language or Apate-IL.
This Apate-IL must be architecture dependent, as it provides
addresses. In the assembling step the Assembler like code
gets assembled to a machine code like language (code.c00,
see also Section VI-E). This binary code is processable by the
hypervisor and further called the Apate Intermediate Language
Operational code or Apate-IL-OC.

B. The Apate High Level Language

The language provides a flexible language to build hooks
for functions in any x86 or 1386 architecture. It is able
to define functions, reuse patterns, store variables and basic
mathematical computation. With those abilities it is possible
to build transparent rulesets for the hooking of functionalities.
This section gives a brief overview over some core components
of this language. The language is inspired by Haskell[36] and
pf [37]. A more detailed description is given in [2].

Listing 9 shows some example source code for the Apate
language. In this case, 3 different conditions will be generated.

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

define cl1,c2,c3 as condition
define rl,r2 as rule

define al,a2 as action
define cbl as conditionblock
define rcl as rulechain
define syl as syscall

let ¢l be testforpname
let c2 be testforparam
let ¢3 be testforuid

let al be manipulateparam
let a2 be log

let syl be sys_open

let cbl be {(cl1("mysql”) && c2(0;”/var/\
lib /mysql/*”))}

let rl be {cbl—>al(0;”/var/lib/mysql/*” \
;7 /honey/mysql/”) }

let r2 be {{c3(">",0)}—>a2()}

let rcl be {r2,:r1} // :defines exit

bind rcl to syl

Figure 9: Example Sourcecode Apate language

cl tests the actual process name against a given name. c2
tests if a parameter of the hooked function is equal to another
value. c3 tests if the uid is equal to a given value. The actions
al, a2 manipulates a parameter and write some log. The
bind statement binds the rules to the syscall open. This will
build a hook in the open function. In conclusion, the rulechain
rewrites the parameter to any call for open and when the
param inherits /var/lib/mysql to the path /honey/mysql. This
redirection of the path gets logged for further analysis.

C. The Apate Intermediate Language

The intermediate language is based on the concept of the
Intel 1386 assembly language. A command consists of the
command and at maximum two parameters. As minimum a
command has no parameter. A parameter can be a constant,
a register, a value of an register, a pointer or the value of
a pointer. The hypervisor has an own stack, registers and
memory management. This leads to the basic concept in
Listing 2:

Listing 2: Apate-IL Concept

labelname :

command <dest> <source>
command <dest>

command

Technically, a label gets assembled to a [nop] and all references
to the label are transformed to the appropriate address. Apate-
IL consists of the basic commands like [nop],[jmp|jz|jnz],[
add|sub|mul|div],[cmp]test],[call],[ret],[push|pull] and a few other
commands for convenience.

In addition to a standard assembly language, there are
commands especially designed for honeypot purposes:

e [sleep] - delay for ticks

e [inwind] - does some sophisticated jumps for anti
disassembling

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 Bit

a1)] -

Instruction ParamType 1 ParamType g/

-

Param 1 Param 2

Figure 10: A command in Apate IL-OC

e [adebug] - does some anti debugging techniques
e [asm] - executes real Machine code

° [feall] - calls “real” functions

e [oops] - provides kernel oops

e [fpush|fpull] - makes it possible to interact with the
underlying process (the original function)

The [sleep] command consumes real CPU-Time and provides a
sleep functionality. The [inwind] command is just a wrapper for
inwind calls. This technology makes it possible to jump into a
real command. This means, that whenever a “long” command,
like the [move <dest> integer] command uses the constant integer
to formulate a new ‘“short” command like [jz 5], which is
only four bytes over all and has the size of an integer,
the inwind command calculates the jump address to this
“obfuscated” command. This is just for convenience to avoid
annoying calculations. The command [adebug] provides some,
out of scope in this paper, technology against debugging. The
command [asm] maps real machine code(provided as shellcode)
into RAM and runs it. This makes it possible to optimize some
calculations. The [fcall] command is able to call real functions
on any given address and is used as a wrapper for the real [
call] command. The [oops] command provides in combination
with a special kernel system call a real system kernel oops.
The [fpush|fpull] commands can interact with a special stack,
provided by the hypervisor, to communicate with the hooked
function. Both commands are used to read parameters and store
them back.

D. The Apate Intermediate Language Operational Code and
the Assembler

The Apate-IL-OC is assembled from the Apate Interme-
diate Language. It is a binary, optimized and preprocessed
version of the Apate-IL. A single command is shown in Figure
10. An instruction is a 8 Bit operational code, followed by 2
nibbles, representing the parameter types. This type decides
if the param is an address (64 or 32 Bit), an Integer (64 or
32Bit) constant, or a register (r0...9). The decision for 64 or
32 Bit is architecture dependent and uses the length of size_t.
The following parameters can have different sizes, depending
on their type. Some commands, like [nop], does not have any
parameters and, therefore, there is no need for type decision.
Such a command needs only 8 Bit. Whenever a command has

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

7

just one parameter, the second nibble has the value 0x0, which
means no type.

A command can have any operational code between 0x00
and FE. The FE opcode is used as a debugging trap.

During the assembling part, the assembler lexes the Apate
Intermediate language. With the help of Yacc an AST gets
built from the sourcecode. This AST gets preprocessed by the
assembler. Any label and references to labels gets transformed
to addresses in a first step. In a second step, the preprocessor
checks for wrong (or invalid) addresses, invalid commands or
irregular command chains. In a third step, any data that should
be stored in a data section gets collected.

Following this step, the assembler will transform the AST
to the Apate Intermediate Operating Language, which is in fact
some binary code.

In a last step, the assembler generates a binary represen-
tation, consisting of a header (inspired by a ELF header), the
Apate IL-OC section and a data section.

Out of scope in this research is the ability to store some in-
formation about encoding, different instructions sets and other
information, which are needed for sophisticated obfuscation
and anti disassembling technologies.

E. Hypervisor engine

The hypervisor needs to fulfill different requirements:

e Provide a turing complete language for flexible rules
e Provide a hypervisor to process this language

e Provide a hypervisor that has low resource consump-
tion

e Provide the ability to call system functions, change
process memory content

e Embed real x64 or i386 machine code

Another requirements like different instruction sets, Huffman
encoding, inbuilt obfuscation and anti-disassembling strategies
are not in scope of this paper but part of the real hypervisor
prototype. Those (not listed) requirements make it substantially
harder to detect and analyze the hypervisor system and their
rules.

The Apate Hypervisor has a classical design, based on
register, stack and an instruction array. Figure 11 describes
the basic architecture for the Apate hypervisor.

The Code Section holds the pure Instruction Code, as pro-
vided by the assembler. This Instruction Code gets processed
by the Decoder and Execution Unit. The Data Section stores
all constants from the source file. Most of the following data
storage units are architecture dependent. The underlying Host
architecture decides if a value is 32 Bit or 64 Bit.

The Register is able to store 32|64 Bit Values and can
be compare with the General Purpose Register from other
architectures like x64. The Flag register holds Flags like Zero
Flag or Traps for the Debugger. The stack can keep 1024 32|64
Bit values. The Pointer Register is used to store pointer like
the instruction pointer, the return pointer and the stack pointer.

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Register

Flag Register

Decode &

Execution Unit Stack

Pointer Register

System Stack

Code Section

Data Section

Figure 11: Basic concept of Hypervisor

The System Stack is a special stack to interact with the host
system. The hypervisor is able to write values to and read
values from this stack, and the internal language is able to do
the same. With this communication stack, parameters and other
values can be injected into the hypervisor based software.

Table II shows some of the components in Apate Hyper-
visor.

TABLE II: Register and Stack in Apate

Type Name | Number [Size (Bit)
Instruction Section - n 8
Data Section - n 8
General Purpose Register r0...19 10 64(32
Stack - 1024 64|32
Instruction Pointer eip 1 32
Stack Pointer stp 1 32
Return Pointer tp 1 32
Flag Register - 1 8
Flag Zero-Flag 1 1
Flag Sign-Flag 1 1
Flag Error-Flag 1 1
Debugger Flag Next-Flag 1 1
Debugger Flag Trap-Flag 1 1

The CPU starts with the first address in the code section
stored in the instruction pointer. Due performance issues the
opcode gets interpreted by index to function pointer translation.
In combination with the two nibbles (1 Byte) to identify the
correct function it needs two steps and 512 x 32|64 Bit to
identify an opcode target.

The values stored in the nibbles to identify the param types
are used to read the parameter values from the instruction code.

Together with the opcode, the Execution Unit calculates
the result of this operation and then sets the next instruction
pointer.

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

VII. EVALUATION

The Apate Hypervisor needs to process the custom code
inside a hook in an efficient way. Performance tests should
assure that Apate is able work under productive usage. The
most important factor is the overhead of the hypervisor and
the processing of common used code patterns. To evaluate the
performance of Apate a common command in *Nix system is
hooked.

The experimental setup is shown in Table III.

TABLE III: Experimental setup

Host System
CPU 2 x XEON
Memory 64 GB Ram
Ethernet Bridged at 1 GBit Nic
Virtualisation ESXI
Measurement System
CPU 2 x VMWare CPU
Memory 8GB Ram
HDD 30 GB Backed by ESXI
HDD Format ext4

The test scenario is a clone of the cp-command. Aside
from command parameter processing, the command uses the
commands in Listing 3.

Listing 3: Example code for cp-command

for (53) {
readed = read(filenosrc ,buffer ,buffer_size
)
if (!readed) {

//eof
break;
}
written = write (filenodst ,buffer ,(size_t)
readed) ;

This piece of code reads buffer_size bytes from
file filenosrc and writes readed bytes back to file
filenodst. The variable buffer_size is one of the
performance variables under *Nix Systems and corresponds
to the copybuffer.

The performance test generates a file with 100MB and
random data. Then this file gets copied with the cp-command
to another file. As reference, a measurement without any
hooking has been done. This reference is further called m1.
Each measurement has been done with different values of
buffer_size.

Let [,, x 1024 be the value of buffer_size. [, starts
with 0. However, a buffer_ size of 0 is not usable. In this
case the buffer_size is set to 1.

lp_1 +4 if 1, < 100
lp_1 +100 if 100 <1,
l, = A, < 1,000)
ly_1 + 1,000 if 1,000 <1,
Al, < 10,000

Each size of [,, has been tested 10 times.

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Runtime in Second

Buffer Size in KB

Figure 12: Performance Measurement m1 against m2

To test the overhead the parent function (in this case the
function that inherits the code in Listing 3) gets hooked by
Apate. The custom code inherits 2500 compare statements.
Hence, those statements reflects 50 string compares with 50
chars each. This test is further called m2.

Figure 12 compares the reference m1 with the overhead of
the hypervisor in m2.

This measurement shows that the buffer_size value
has an impact to the overall performance. The outstanding
performance for reading and writing (with over 5S00MB/sec)
can be explained with heavy caching due the ESXI Host
system. This measurement also shows that the overhead for
the hypervisor is not significant.

The next measurement ensures that the hypervisor is able
to server even a high amount of custom code calls. For this
the read function has been hooked with the same custom
code than before. Dependent on the buffer_size more or
less hooks are called by the cp-command. This measurement
is further called m3. Figure 13 shows the difference between
ml and m3.

This measurement shows that Apate is able to serve custom
code even with a high amount 100.000 custom code calls.

Table IV concludes all 3 measurements.

TABLE IV: Performance Description m1,m2,m3

[

Measurement mo ms
Measurements 4,390 4,390 4,390
min(runtime sec) 0.16 0.17 0.19
max(runtime sec) 0.48 0.48 15.73
mean(runtime sec) 0.186 0.188 0.810
sd(runtime sec) 0.042 0.042 2.017
Throughput(MB/s) mean 536.320 530.566 303.411

In conclusion, the measurement shows that the amount of
hooks does not interfere with the performance of one single
hook. The Standard deviation is also in an expected range. The

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

=
[V SN erNo oanl VRN
T T
7
]

\
t
|
|

\
Y

Runtime in Seconds
SO OOODODOO
b D 0o GO i s O
O’\OO"OO’VOO‘!?
\
-
L'|

102 10° 10*
Buffer Size in KB

—
[an)}
[=}
—
(e}
—

Figure 13: Performance Measurement m1 against m3

180 T T T T T T

160 |- — m4 |5
140 | 1
120 | 1
100 | 1
80 1
60 [1
40 | 1
20 | 1

Density of Runtimes

| I I [|

0.190 0.200 0.210
Runtime in Seconds

0
0.180 0.220

Figure 14: Density of Runtime at m4

throughput row shows that even under high load, and when
every system call to —open— is hooked even under worst
scenario (buffer_size==0), the throughput rate is better
than the throughput rate from a standard HDD.

The performance test should also show the influence of the
amount of operations that are running in the hypervisor.

For this the cp-command has been tested 1000 times with
a buffer_size=8 and a file size of 100MB.

Figure 14 shows the reference measurement. The mea-
surement m4 shows the reference measurement without any
hypervisor influence. The x-axis shows the runtime in seconds.
The y-axis shows the density of each runtime in all measure-
ments. The measurement shows, that the measurement is only
in a small range of runtimes, which means a stable runtime
for a given buffer and file size to copy. Figure 15 shows
the throughput of the reference measurement in MB/s. The
throughput is generated with a weighted exponential moving

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

510 T T T T

505 1
500
495 :

490 1

485

Throughput in KB/s

480

m4

475

Il Il Il
400 600 800

Measurement ID

Il
0 200 1000

Figure 15: Throughput behavior m4

average over 20 measurements for more clearance. It also
shows that the performance is stable through all measurements.

Table V describes the m4 measurement data.

TABLE V: Performance Description m4

Measurement [time throughputM B /s
Measurements 1000 1000

min 0.19 sec 465.029762

max 0.21 sec 513.980263

mean 0.196170 498.168027

standard deviation 0.005221 13.303990

The standard deviation shows that with a given buffer and
file size, the command has a stable performance behavior.

The measurement m5 uses the same setting than in mea-
surement m4, but a hook which calls the hypervisor with
a custom code is called once. The hypervisor custom code
inherits 2500 compare statements, like in measurement m2.
Figure 16 shows the density of the measurement m5.

Compared to the reference measurement, the data from
md shows that the hypervisor has only a small influence on
performance. However, it also shows that the performance of
the hypervisor is stable along 1000 measurements. Figure 17
shows the throughput of measurement m5 in MB/s.

The throughput is generated with a weighted exponential
moving average over 20 measurements. This illustration of data
shows that the performance is stable over all measurements. It
also shows that it is possible to keep the throughput rate, even
with the hypervisor enabled.

Table VI describes measurement mb.

The standard deviation shows, that the hypervisor has a
stable performance behavior.

In measurement m6, the behavior of a productive honeypot
scenario is shown. In this case a honeypot, exploitable by
timing attacks and with the ability to appear with an HDD with

Density of Runtimes

Throughput in KB/s

250

200

150

100

a0

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

m5

J\

\/\L L

0
0.16 0.18 0.20 0.22 0.24 0.26
Runtime in Seconds

Figure 16: Density of Runtime at m5

0.28

510

500 [

490

480

470

460

m5

450

|
0 200

|
400

| |
600 800 1000

Measurement ID

Figure 17: Throughput behavior m5

TABLE VI: Performance Description m5

Measurement [time throughputM B/s
Measurements 1000 1000

min 0.19 sec 406.901042

max 0.24 sec 513.980263

mean 0.198180 513.980263

standard deviation 0.005265 12.897778

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

10

18 T T T T

14 .
12 .
10 -

Density of Runtimes

.0 1.2 1.4 1.6 1.8 2.0
Runtime in Seconds

L N R O
I
|

Figure 18: Density of Runtime at m6

another throughput rate is built with Apate. The hypervisor
should provide a throughput rate of 65 MB/s, instead of the real
throughput rate from m4. The scenario is the same like in m4
and m5. A random generated file of 100MB gets copied and
the time gets measured. This measurement has been repeated
1000 times.

Let t,.q; be the time to copy one KB on the real system.
The real system is the honeypot system. Let ¢j,oney be the time
to copy one KB on a fictional honeypot system. In the case
of this measurement, it is a system with a HDD that provides
a throughput rate of 65MB/sec. Let b be the buffer size, used
by the cp-command. The hook with the hypervisor is bound
to the read-function. To decoy the attacker, the hook needs
to sleep for a time ¢gjeep, Such that:

tsleep =bx (thoney - trea,l) (3)

The calculation tj,pey — treqr 15 @ constant t,,,;; to describe
the honeypot system.

The custom code, processed by the hypervisor, reads the
variable buf fer_size. Then, it multiplies this variable with
the sleeping rate constant ¢,,,;:. The result is used to trigger the
sleeping function. The full functionality in Apate-IL is shown
in Listing 4.

Listing 4: Sleeping function in Apate-IL

fpull rl
fpull r2
mul rl r2
sleep rl
exit

The first and second line reads the buffer size and the
constant t,,4;+ and stores them in register r1 and r2. In the
third line, both values stored in the registers gets multiplied.
The result gets stored in the most left register r1. The sleeping
command uses this value to sleep. The exit command quits the
hypervisor processing.

Figure 18 describes the density of m6.

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

11

Throughput in KB/s

62

1 1 1 1
0 200 400 600 800
Measurement 1D

1000

Figure 19: Throughput behavior m6

Compared to m4 the measurements show that the sleeping
function is able to generate a completely different runtime
scenario. It also shows that the performance is stable along
all measurements.

Figure 19 shows the throughput of measurement m6 in
MB/s.

The throughput is generated with a weighted exponential
moving average over 20 measurements. This illustration also
shows that the throughput is stable over all measurements. It
also describes that the target rate of 65 MB/s is stable over all
measurements with a small deviation.

Table VII describes the data for measurement m6.

TABLE VII: Performance Description m6

Measurement [time throughputM B /s
Measurements 1000 1000

min 1.23 sec 58.128720

max 1.68 sec 79.395325

mean 1.521950 64.290778

standard deviation 0.063464 3.020391

This description shows that the mean throughput is very
near the expected throughput rate. It also shows that the
standard deviation is low, so that the honeypot is able to
provide a stable throughput rate.

VIII. CONCLUSION

This paper presents Apate, a hypervisor for custom code
to hook any function in a *Nix Kernel or userland-program.
With the possibilities of the proposed solution to detect timing
attacks, it is possible to identify the best place to hook a
function and to inject the honeypot component. Apate works
on a function level, and is able to log, block or manipulate
functions. The evaluation shows that Apate has only a low
performance overhead and can be used in productive scenarios.
The evaluation also shows that Apate is able, with only four

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

commands, to build a honeypot for timing attacks, and to lure
an attacker with timings from a completely different hardware
system, without any installation, compilation or any other time
consuming configuration. As future work, we will implement
more commands for usage in honeypot systems. We also plan
to include multiprocessing and a more advanced code section.
At moment Apate is in a beta status, whenever it is more stable
(the assembler does need some tweaking in error detection),
Apate will be open source under github.

ACKNOWLEDGMENT

This work is part of the project “Sichere Entwicklung und

Sicherer Betrieb von Webanwendungen® of the Munich IT
Security Research Group funded by the Bayerisches Staatsmin-
isterium fiir Wissenschaft, Forschung und Kunst.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

REFERENCES

C. Pohl and H.-J. Hof, “The all-seeing eye: A massive-multi-sensor
zero-configuration intrusion detection system for web applications,” in
SECURWARE 2013, The Seventh International Conference on Emerging
Security Information, Systems and Technologies, 2013, pp. 66-72.

C. Pohl, M. Meier, and H.-J. Hof, “Apate-a linux kernel module for
high interaction honeypots,” in The Ninth International Conference on
Emerging Security Information, Systems and Technologies — SECUR-
WARE 2015, 2015, pp. 133-138.

C. Pohl, A. Zugenmaier, M. Meier, and H.-J. Hof, “B. hive: A zero
configuration forms honeypot for productive web applications,” in ICT
Systems Security and Privacy Protection. Springer, 2015, pp. 267-280.

A. Patcha and J. Park, “An overview of anomaly detection techniques:
Existing solutions and latest technological trends,” Computer Networks,
vol. 51, no. 12, pp. 3448-3470, 2007, retrieved 2013-04-11. [Online].
Available: www.scopus.com

C. Kruegel and G. Vigna, “Anomaly detection of web-based attacks,”
in Proceedings of the 10th ACM conference on Computer and
communications security, ser. CCS ’03. New York, NY, USA:
ACM, 2003, p. 251261, retrieved 2013-04-11. [Online]. Available:
http://doi.acm.org/10.1145/948109.948144

G. Liepens and H. Vaccaro, “Intrusion detection: Its role
and validation,” Computers & Security, vol. 11, no. 4, pp.
347-355, Jul. 1992, retrieved 2013-04-11. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/016740489290175Q

D. Denning, “An intrusion-detection model,” IEEE Transactions on
Software Engineering, vol. SE-13, no. 2, pp. 222-232, 1987, retrieved
2013-04-11.

A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk, and
N. Taft, “Structural analysis of network traffic flows,” in Proceedings
of the joint international conference on Measurement and modeling
of computer systems, ser. SIGMETRICS ’04/Performance ’04. New
York, NY, USA: ACM, 2004, p. 6172, retrieved 2013-04-11. [Online].
Available: http://doi.acm.org/10.1145/1005686.1005697

P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of
network traffic anomalies,” in Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment, ser. IMW °02. New York, NY,
USA: ACM, 2002, p. 7182, retrieved 2013-04-11. [Online]. Available:
http://doi.acm.org/10.1145/637201.637210

F. Silveira and C. Diot, “URCA: pulling out anomalies by their root
causes,” in 2010 Proceedings IEEE INFOCOM, 2010, pp. 1-9, retrieved
2013-04-11.

H. Javitz and A. Valdes, “The SRI IDES statistical anomaly detector,” in
1991 IEEE Computer Society Symposium on Research in Security and
Privacy, 1991. Proceedings, 1991, pp. 316-326, retrieved 2013-04-11.

W. Lee and S. J. Stolfo, “Data mining approaches for intrusion
detection,” in Proceedings of the 7th conference on USENIX Security
Symposium - Volume 7, ser. SSYM’98. Berkeley, CA, USA: USENIX
Association, 1998, p. 66, retrieved 2013-04-11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267549.1267555

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

[28]

[29]

[30]

[31]

12

S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of computer security, vol. 6, no. 3,
pp. 151-180, 1998, retrieved 2013-04-11.

S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff, “A sense of self
for unix processes,” in 1996 IEEE Symposium on Security and Privacy,
1996. Proceedings, 1996, pp. 120128, retrieved 2013-04-11.

A. Frossi, F. Maggi, G. L. Rizzo, and S. Zanero, “Selecting and
improving system call models for anomaly detection,” in Detection
of Intrusions and Malware, and Vulnerability Assessment, ser. Lecture
Notes in Computer Science, U. Flegel and D. Bruschi, Eds. Springer
Berlin Heidelberg, Jan. 2009, no. 5587, pp. 206-223, retrieved 2013-
04-11.

W. Masri and A. Podgurski,
intrusion detection with dynamic

“Application-based
information flow

anomaly
analysis,”

Computers & Security, vol. 27, mno. 56, pp. 176-
187, Oct. 2008, retrieved 2013-04-11. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404808000369
L. Feng, X. Guan, S. Guo, Y. Gao, and P. Liu,
“Predicting the intrusion intentions by observing system call
sequences,” Computers & Security, vol. 23, no. 3, pp. 241-
252, May 2004, retrieved 2013-04-11. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167404804000732

S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow anomaly detection,”
in 2006 IEEE Symposium on Security and Privacy, 2006, pp. 15-62,
retrieved 2013-04-11.

F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu, “LIFT: a
low-overhead practical information flow tracking system for detecting
security attacks,” in 39th Annual IEEE/ACM International Symposium
on Microarchitecture, 2006. MICRO-39, 2006, pp. 135-148, retrieved
2013-04-11.

C. Kruegel, G. Vigna, and W. Robertson, “A multi-model approach to
the detection of web-based attacks,” Computer Networks, vol. 48, no. 5,
pp. 717-738, Aug. 2005, retrieved 2013-04-11. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128605000083

Honeynet Project, “Know Your Enemy: Sebek,” 2003, retrieved: 07,
2015. [Online]. Available: https://www.honeynet.org/papers/sebek

E. Balas, “Sebek: Covert Glass-Box Host Analysis,” login: THE
USENIX MAGAZINE, no. December 2003, Volume 28, Number 6, pp.
21-24, 2003.

T. Holz and F. Raynal, “Detecting honeypots and other suspicious
environments,” in Proceedings from the Sixth Annual IEEE Systems,
Man and Cybernetics (SMC) Information Assurance Workshop, 2005.
IEEE, 2005, pp. 29-36.

M. Dornseif, T. Holz, and C. Klein, “NoSEBrEaK - Attacking Hon-
eynets,” in Proceedings of the 2004 IEEE Workshop on Information
Assurance and Security, Jun. 2004, pp. 123-129.

C. Song, B. Ha, and J. Zhuge, “Know Your Tools: Qebek — Conceal the
Monitoring — The Honeynet Project,” retrieved: 07, 2015. [Online].
Available: http://www.honeynet.org/papers/KYT_gebek

T. K. Lengyel, J. Neumann, S. Maresca, B. D. Payne, and A. Kiayias,
“Virtual machine introspection in a hybrid honeypot architecture,”
in Proceedings of the 5th USENIX Conference on Cyber Security
Experimentation and Test, ser. CSET’12. Berkeley, CA, USA: USENIX
Association, 2012, pp. 5-13.

X. Jiang and X. Wang, ““Out-of-the-Box” Monitoring of VM-Based
High-Interaction Honeypots,” in Recent Advances in Intrusion Detec-
tion. Springer Berlin Heidelberg, 2007, pp. 198-218.

NSA (Initial developer), “Selinux,” 2009, retrieved: 07, 2015. [Online].
Available: https://www.nsa.gov/research/selinux/index.shtml

Open Source Security, “grsecurity,” 2015, retrieved: 07, 2015. [Online].
Available: https://grsecurity.net

PAX Team, “Pax,” 2015, retrieved: 07, 2015. [Online]. Available:
https://pax.grsecurity.net

M. Fox, J. Giordano, L. Stotler, and A. Thomas, “Selinux and grse-
curity: A case study comparing linux security kernel enhancements,”
2009.

“OpenCms, opencms homepage,” http://www.opencms.org, retrieved
2013-04-11. [Online]. Available: http://www.opencms.org

“OpenVZ openvz linux containers,” http://openvz.org, retrieved 2013-
04-11. [Online]. Available: http://openvz.org

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

[34] “Apache Tomcat apache tomcat,” http://tomcat.apache.org, retrieved
2013-04-11. [Online]. Available: http://tomcat.apache.org

[35] “Owasp Top Ten,” https://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project, retrieved 2013-04-11. [Online]. Available:
https://www.owasp.org/index.php/Category: OWASP_Top_Ten_Project

[36] S. Marlow, “Haskell 2010 language report,” 2010, retrieved: 07, 2015.
[Online]. Available: https://www.haskell.org/onlinereport/haskell2010/

[37] OpenBSD, “Pf: The openbsd packet filter,” 2015, retrieved: 07, 2015.
[Online]. Available: http://www.openbsd.org/faq/pf/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

