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Abstract—This paper presents a practical solution to the prob-
lem of limited bandwidth in Quantum Key Distribution (QKD)-
secured communication through using rapidly rekeyed Internet
Protocol security (IPsec) links. QKD is a cutting-edge security
technology that provides mathematically proven security by using
quantum physical effects and information theoretical axioms to
generate a guaranteed non-disclosed stream of encryption keys.
Although it has been a field of theoretical research for some time,
it has only been producing market-ready solutions for a short
period of time. The downside of this technology is that its key
generation rate is only around 52,000 key bits per second over a
distance of 50 km. As this rate limits the data throughput to the
same rate, it is substandard for normal modern communications,
especially for securely interconnecting networks. IPsec, on the
other hand, is a well-known security protocol that uses classical
encryption and is capable of exactly creating site-to-site virtual
private networks. This paper presents a solution that combines
the performance advantages of IPsec with QKD. The combination
sacrifices only a small portion of QKD security by using the
generated keys a limited number of times instead of just once.
As a part of this, the solution answers the question of how many
data bits per key bit make sensible upper and lower boundaries
to yield high performance while maintaining high security. While
previous approaches complement the Internet Key Exchange
protocol (IKE), this approach simplifies the implementation with
a new key synchronization concept, proposing a lightweight
protocol that uses relatively few, slim control messages and
sparse acknowledgement. Furthermore, it provides a Linux-based
module for the AIT QKD software using the Netlink XFRM
Application Programmers Interface to feed the quantum key to
the IPsec cipher. This enables wire-speed, QKD-secured commu-
nication links for business applications. This paper, apart from
the description of the solution itself, describes the surrounding
software environment, including the key exchange, and illustrates
the results of thorough test simulations with a variety of different
protocol parameter settings.

Index Terms—Quantum Key Distribution; QKD; IPsec; Cryp-
tography; Security; Networks.

I. INTRODUCTION AND MOTIVATION

A recent paper presents an approach to combine quantum

key distribution (QKD) with IPsec by using QKD to provide

IPsec with the cryptographic keys necessary for its operation

[1]. This article extends the work described in the mentioned

paper such that it further examines the impact of noise (and

other effects that are likely to happen in real-world networks)

on the presented solution. Quantum cryptography, in this

particular case quantum key distribution, has the purpose to

ensure the confidentiality of a communication channel between

two parties. The major difference to classical cryptography is

that it does not rely on assumptions about the security of the

mathematical problem it is based on, nor the computing power

of a hypothetical attacker. Instead, QKD presents a secure

method of exchanging keys by connecting the two communi-

cating parties with a quantum channel and thereby supplying

them with guaranteed secret and true random key material [2,

p.743]. When the key is applied through a Vernam cipher (also

called one time pad - OTP) on a data channel on any public

network, this method provides the channel with information-

theoretically (in other words mathematically proven) security

[3, p.583]. An information-theoretically secure1 system means,

besides a mathematical proof, that this system is still secure

if an attacker has infinite resources and time at his disposal

to cryptographically analyze it [4, pp.659]. The downside of

combining QKD with OTP is the limitation to approximately

fifty-two kilobits over fifty kilometers, shown in a practical

QKD setup [5, p.1], due to physical and technical factors,

since in OTP one key bit is consumed by one data bit [6, S.9].

OTP is so far the only known information-theoretically (also

called unconditionally) secure encryption algorithm [7, pp.177

- 178]. The offered data rate, however, does not meet the

requirements of modern communications. Another practical

approach came to the same conclusion and therefore uses the

Advanced Encryption Standard (AES) instead of OTP [8, p.6].

As IPsec is a widespread security protocol suite that provides

integrity, authenticity and confidentiality for data connections,

this approach uses the combination of IPsec and QKD to

overcome this restrictions [9, p.4].

To save valuable key material, this solution uses it for

more than one data packet in IPsec, thus increasing the

effective data rate, which is thereby not limited to the key

1Shannon used the term secrecy instead of security. In cryptography, more
secrecy means more security [2, p.1]. Thus, the two terms are synonymous
in this context.
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rate anymore. Furthermore, using this approach, the presented

solution benefits from the flexibility of IPsec in terms of

cryptographic algorithms and cipher modes. In contrast to most

of the previous approaches (see Section II), that supplemented

the Internet Key Exchange (IKE) protocol or combine in some

way quantum-derived and classical keys, this paper refrains

from using IKE (for a key exchange is rather the objective of

QKD, as described later) in favor of a specialized, lightweight

key synchronization protocol, working with a master/slave

architecture. The goal of this protocol is to achieve very

high changing rates of purely quantum-derived keys on the

communicating peers while maintaining the keys synchronous

in a very resilient manner, which means to deal with subopti-

mal networking conditions including packet losses and late

or supplicate packets. In order to fulfill this objective, the

following questions need to be clarified:

• What is the minimum acceptable frequency of changing

the IPsec key that will ensure sufficient security?

• What is the maximum acceptable frequency of changing

the IPsec key to save QKD key material?

• Is the native Linux kernel implementation suitable for this

task?

• How can key synchronicity between the communication

peers be assured at key periods of 50 milliseconds and

less?

As a proof of concept, this paper further presents a software

solution, called QKDIPsec, implementing this approach in

C++. This software is intended to be used as an IPsec mod-

ule for the multi platform hardware-independent AIT QKD

software, which provides already a market-ready solution for

OTP-based QKD. The module achieves over forty key changes

per second for the IPsec subsystem within the Linux kernel.

At present time, the software uses a static key ring buffer

for testing purposes instead of actual QKD keys, for the

integration of QKDIPsec into the AIT QKD software is yet

to be implemented (although most of the necessary interfaces

are already present). The ultimate goal is to deliver a fully

operational IPsec module for the AIT QKD software.

The following Section II of this paper describes previous ap-

proaches on combining IPsec and QKD. Section III describes

considerations regarding necessary and sensible key change

rates, exhibiting the reflections that lead to the assumed re-

quirements of a quantum key synchronization solution. Section

IV contains the architecture of the presented solution and the

subsequent Section V its implementation, while Section VI

describes its incorporation into the AIT QKD software. De-

scriptions of the setups and results of laboratory Experiments,

showing the practical capabilities of this proof of concept,

form the Sections VII through VIII. Section IX, eventually,

contains the conclusions drawn.

II. RELATED WORK

This work is aware of some previously developed methods

to combine QKD with IPsec. All of them work in conjunction

with the IKE [10, pp.234-235][11, p.177-182][12][13, pp.5-

9][14, p.21] or the underlying ISAKMP [15, pp.6-8] protocol.

They introduce a supplement for QKD parameters or combine

IKE-derived and QKD-derived keys. Opposed to this, the

presented work tries to use an approach omitting IKE and

following the pivotal idea that there is no need for that protocol

to exchange keys, for that is the task of QKD. The key

feed from QKD therefore provides the material for manual

keying in this solution, all that is left is to keep those keys

synchronous. For this task, this paper proposes a more slender

approach (see Section IV). Furthermore, some of the previous

approaches operate at a substantially lower speed than the

key change presented in this thesis or use OTP limiting the

data rate to the QKD key rate (currently around 52 kilobits

per second) or simply suggest applying QKD keys to IPsec

without a mechanism for changing keys rapidly, effectively

not lowering the number of data bits per key bit.

III. KEY CHANGE RATE CONSIDERATIONS

The strength of every cryptographic system relies on the

key strength, the secrecy of the key and the effectiveness of

the used algorithms [16, p.5]. As this solution relies on QKD,

which generates a secret and true random key [17], this means

that more effective algorithms and more key material are

able to provide more cryptographic security. In this particular

case, the used algorithms are already prescribed by the IPsec

standard [18]. Therefore, the security is mainly determined by

the used key lengths, more precisely by the relation between

the amount of key material and the amount of data, which

should be as much in favor of the key material as possible -

given the low key rate compared to the data rate, naturally the

opposite is the case in practice. This section aims on giving

feasible upper and lower boundaries of key change rates (or

key periods Pk, respectively) and, thus, how much QKD key

material should be used in order to save precious quantum key

material while maintaining a very high level of security. The

two main factors determining the key period in practice are the

used algorithms (via their respective key lengths - the longer

the key, the more key bits are used in one key period) and the

capabilities of QKD in generating keys. The QKD solution of

the Austrain Institute of Technology has proven to provide a

quantum key rate Q of up to 12,500 key bits per second at

close distances, 3,300 key bits at around 25 kilometers and

550 key bits at around 50 kilometers distance [6, p.9]. As this

paper presents a practical implementation (see Section V) in

the form of a module for the AIT QKD software, the highest

of these values should be the reference key bandwidth for the

key length and period considerations made in this section.

In order to fully utilize the possible QKD key rate and given

the currently shortest recommended key length, which is 128

bits (see below), an IPsec solution using quantum-derived keys

should be able to perform around 100 key changes per second

( 12,500128 ≈ 97, 65), 50 for every communication direction (for

IPsec connection channels are in principle unidirectional and

therefore independent from each other even if they belong to
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the same bidirectional conversation). This corresponds to a

key period Pk of around 20 ms, as it is a function of the

Quantum key rate Q and the algorithm’s key length k. The

period for a bidirectional IPsec link is PK = ( Q
2k )

−1. At longer

key lengths, this period becomes longer, for a single change

cycle uses more key material and, thus, less key changes are

necessary to utilize the full incoming key stream, therefore

this period Pkmin = 20ms presents a feasible lower boundary

for the key period. As stated above, the security of this system

depends also on the data rate. Given a widespread data rate

of 100 megabits per second, a key period of 20 ms and 128

key bits means a ratio of 8000 data bits per key bit (or short

dpk, for the reader’s convenience).

A landmark in this security ratio is 1 dpk, as this rate

would provide unconditional security when applied with OTP.

For the cipher and hash suites included in the IPsec protocol

stack, there is no security proof and therefore they are not

unconditionally secure. However, applying an IPsec cipher

(for instance AES) with an appropriately fast key change and

restricted data rate to achieve 1 dpk is the closest match inside

standard IPsec, especially when the block size equals the key

size.

To define an upper boundary (and therefore a minimum

standard for the high security application of the presented

solution), a very unfavorable relation between data and key

bits through a high-speed connection of 10 gigabits of data is

assumed. A recent attack on AES-192/256 uses 269.2 computa-

tions with 232 chosen plaintext [19, p.1]. Because of the AES

block size of 128 bits, this corresponds to 232 ∗ 27 = 239

data bits. Although this attack is currently not feasible in

practice, as it works only for seven out of 12/14 rounds and

also has unfeasible requirements to data storage on processing

power for a cryptanalytic machine, it serves as a theoretical

fundament for this upper boundary. A bandwidth of 10 gigabits

per second equals approximately 9.3 gibibits per second. This

is by the factor of 64 (26) smaller than the amount of data for

the attack mentioned above, which means that it requires 64

seconds to gather the necessary amount of data to (though only

theoretically) conduct the attack. In conclusion (with AES-

192/256), the key should be changed at least every minute

(Pkmax
= 60s), while the maximum allowed key period

according to the IPsec standard lies at eight hours or 28,800

seconds [20].

For cryptographic algorithms operating with lower cipher

block sizes (ω), the birthday bound (2
ω
2 ) is relevant. The

birthday bound describes the number of brute force attempts

to enforce a collision with a probability of 50 percent, such

that different clear text messages render to the same cipher

text [21]. With a block size of 64 (birthday bound = 232),

the example speed of 10 gigabit per second above would

lower the secure key period to under half a second. Because

of this factor, using 64-bit ciphers is generally discouraged

for the use with modern data rates[22, pp.1-3] (although the

present rapid rekeying approach is able to cope with this

problem). Regarding key lengths, 128 bits are recommended

beyond 2031 [16, p.56] while key sizes of 256 bits provide

good protection even against the use of Grover’s algorithm in

hypothetical quantum computers for this period [23, p.32].

IV. RAPID REKEYING PROTOCOL

This section describes the rapid rekeying protocol, the

purpose of which is to provide to IPsec peers with QKD-

derived key material and keep these keys synchronous under

the low-key-period conditions (down to Pkmin
= 20ms) stated

in Section III.

This protocol pursues the approach that with QKD, there

is no need for a classical key exchange (for instance with

IKE). Relevant connection parameters (like peer addresses)

are available a priori (before the establishment of the connec-

tion) in point-to-point connections, whereas keying material

is provided by QKD, mostly obsoleting IKE. Furthermore,

IPsec only dictates an automatic key exchange, not specifically

IKE [9, p.48] and a protocol that only synchronizes QKD-

derived keys (instead of exchanging keys) is therefore deemed

sufficient, yet compliant to the IPsec standard. Consequently,

it is an outspoken objective to create a slender and simple key

synchronization protocol to increase performance and reduce

possible sources of error. Another objective for key synchro-

nization is robustness in terms of resilience against suboptimal

network environment conditions. The protocol described in

this paper uses two channels for encrypted communication:

an Authenticaton Header (AH)-authenticated control channel

(amongst other tasks, signaling for key changes) and an

Encapsulating Security Payload (ESP)-encrypted data channel

to transmit the protected data (see Figure 1). The reason for

the use of AH on the control channel is that it only contains

non-secret information, while its authenticity is crucial for the

security and stability of the protocol. The necessary security
policies (SPs) for the IPsec channels remain constant during

the connection. There are four necessary SPs, one data and one

control SP for each direction. The complete software solution

will, delivered by the AIT QKD software, contain additionally

the quantum channel for key exchange and a Q3P channel

(see Section VI), whereby the latter is another protocol that

provides OTP-encrypted QKD point-to-point links.
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Fig. 1. Rapid Rekeying Channel Architecture
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The protocol itself follows, taking account of the unidirec-

tional architecture of IPsec, a master/slave paradigm. Every

peer assumes the master role for the connection in which

the peer represents the sending part. When a key change

is due (for instance because of the expiration of the key

period), the master sends an according message (key change

request) to the slave and the latter changes the key (as does

the master). To compensate lost key change signals, every

key change message contains the security parameters index
(SPI) for the next-to-use key. The SPI is simply calculable

for the peers through a salted hash whereby the salt and a

initial seed value are QKD-derived and each SPI is a hash of

its predecessor plus salt, which makes it non-obvious to third

parties. This level of security is sufficient, for the SPI is a

public value, included non-encrypted in every corresponding

IPsec packet, making it a subject rather to non-predictability

than to secrecy. Also, using only a seed and salt from QKD,

the hashing method safes quantum keying material. As all

necessary IPsec parameters are available beforehand, as well

as the keys (through QKD), IPsec security associations (SAs)
may be pre-calculated and established in advance (which are

identified by unique SPIs). Permanently changing attributes

during a conversation are only the SPI and the key, while

all other parameters of an SA (for instance peer addresses,

services, protocols) remain constant. The master calculates

these two in advance and queues them for future use. Only one

SA is actually installed (aplied to the kernel IPsec subsystem),

for only one (per default, at least in Linux, the most recent)

may be used to encrypt data. The slave, on the other hand,

operates differently. For it identifies the right key to use based

on the SPI, it may very well have multiple matching SAs

installed. This makes key queuing expendable on the receiver

side, while the SPI queuing is used as an indexer for lost key

change message detection. For reasons of data packets arriving

out of synchronization, SAs are not only installed beforehand,

but also left in the system for some time on the receiver side,

allowing it to process packets encrypted with both an older or

newer key than the current one.

On every key change event, the master applies a new SA to

the system (using the next following SPI/key from the queues),

prepares a new SPI/key pair (SPI generation as mentioned

above and acquirement of a new key from the QKD system)

and deletes the deprecated data from both its queues and the

IPsec subsystem. The slave also acquires a new SPI/key pair

(the same the sender acquires) but installs it directly as an SA

and only stores the SPI for indexing. It subsequently deletes

the oldest SA from the system and SPI from the queue if the

number of installed SAs exceeds a configured limit. To sum

it up, on every key change event, the two peers conduct the

following steps:

• the master acquires a new key and SPI and ads it to its

queues

• it sends a key change request to the slave

• it fetches the oldest pair from the queue an installs it as

a new SA, replacing the current one

• it deletes the deprecated pair from its queue

• the slave receives the key change request and also ac-

quires a new SPI/key pair (the same as the master)

• it installs the pair as a new SA and the SPI into the

indexing queue

• it deletes the oldest SA from the system and oldest SPI

from the queue

• it sends a key change acknowledgement

This procedure keeps both of the installed SA types up to

date. For instance, 50 installed SAs for the slave resulting in

25 queued SPI/key pairs on the master, for the latter does not

need to store backward SAs. At the beginning, on every key

change, SPI/key pair is acquired, while the already applied

remain. When the (configurable) working threshold is met,

additionally the oldest SA or SPI/key pair is deleted, keeping

the queue sizes and number of installed SAs constant.

Figure 2 illustrates this process for a sender (Alice) and a

receiver (Bob), where the arrows show the changes in case of

an induced key change. Naturally, as with SPs, there are four

SA types on a peer: one for data and control channels, each for

sending (master) and receiving (slave). Each SA corresponds

to an SPI and key queue on the master’s side and one SPI

queue on the slave’s side, respectively.

SPI=7

SPI=6

SPI=5

SPI=4

KEY=g

KEY=f

KEY=e

KEY=d SA=4/d SA=4/d

SA=3/c

SA=2/b

SA=5/e

SA=6/f

SA=7/g

SPI=4

SPI=3

SPI=2

SPI=5

SPI=6

SPI=7

Inbound SAs Inbound QueueOutbound SAsOutbound QueueKey Queue

Alice Bob
next SA=8

next key=h

next SA=5 next SA=8

delete SA=2

delete SA=4

delete key=d

new current=5

SA in queue installed SA current element key in queue

Fig. 2. Key Change Process

As the data stream is independent from control signaling,

this calculation in advance prevents the destabilization of the

key synchronization in case of lost and too early or too late

arriving key change messages. The buffer of previously created

SAs compensates desynchronization. For every receiver is

able to calculate the according SPIs beforehand, it may, by

comparing a received SPI with an expected, detect and correct

the discrepancy by calculating the following SAs. Through this

compensation process, there is neither need to interfere with

the data communication nor to even inform the sender of lost

key change messages; the sender may unperturbedly continue

with data and control communications. This mechanisms make

constant acknowledgements expendable and contribute thereby

to a better protocol performance through omission of the

round trip times for the majority of the necessary control

messages. Because of this, acknowledgement messages (key

change acknowledge) are still sent, but serve merely as a
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keepalive mechanism instead of true acknowledgements (see

Figure 3).

Alice Bob

DATA SPI=X

DATA SPI=X

DATA SPI=X

Key Change Request=Y
Change Key

SPI=Y
Change Key

SPI=Y

DATA SPI=Y
Key Change Acknowledge=Y

DATA SPI=Y

DATA SPI=Y

Fig. 3. Key Change Message Flow

In rare occasions, a key change message might be actually

received, but the slave might not be able to apply the key for

some reason (for instance issues regarding the QKD system

or the Kernel). In this case, it reports the failure to the master

with an appropriate message (key change fail). In case too

many control packets go missing (what the receiver is able

to detect by SPI comparisons and the sender by the absence

of keepalive packets) or the key application fails, every peer

is able to initiate a reset procedure (master or slave reset).

The actual threshold of allowed and compensated missing

messages is a matter of configuration and corresponds to the

queue sizes for the SAs and therefore the ability of the system

to compensate these losses. The master does not need to report

key change fails, for it is in control of the synchronization

process and might just initiate a reset if it is unable to apply

its key. An additional occasion for a reset is the beginning

of a conversation. At that point, the master starts the key

synchronization process with an initial reset. A reset consists

of clearing and refilling all of the queues and installed SAs.

For the same reason as for the data channel, the authentication

key for the control channel changes periodically. Due to the

relatively low transmission rates on the control channel the

key period is much longer (the software’s default is 3 seconds)

than on the data channel. As, therefore, control channel key

changes are comparatively rare and reset procedures should

only occur in extreme situations, both types implement a three

way handshake. This is, on the one hand, because of the low

impact on the overall performance due to the rare occurrences,

on the other hand due to higher impact of faulty packets. The

control channel, however, implements the same SA buffering

method as the data channel (only with AH SAs, for the reasons

stated at the beginning of this section).

V. IMPLEMENTATION

The presented solution, called QKDIPsec, consists of three

parts (see also Figure 4):

• key acquisition;

• key application;

• key synchronization;

QKD IPsec

Kernel IPsec Stack

AIT QKDUser

Network Interface

Control, Keys

SPs, SAs, Keys

Params, Key Sync

Data

Encrypt Data

Fig. 4. QKDIPsec Systems Context

Each of this tasks has a corresponding submodule inside

QKDIPsec, while the overall control lies within the responsi-

bility of the ConnectionManager class, which provides the

main outside interface and instantiates the classes of said

submodules using corresponding configuration. Also, all of

these classes have corresponding configuration classes using a

factory method pattern [24, p.134] and according configuration

classes, decoupling program data and logic. The first task (key

acquisition) is the objective of an interface to the AIT QKD

software, the KeyManager, which provides the quantum key

material. In this proof of concept, this class generates dummy

key from a ring buffer, while it already has the according

interfaces for the QKD software to serve as a class to acquire

quantum key material and provide it in an appropriate way

to QKDIPsec. By now, only one function implementation is

missing on the QKD software side to fully integrate QKDIPsec

into the QKD software.

The second part (KernelIPsecManager) enters the acquired

key directly into the Linux kernel, which encrypts the data

sent to and decrypts the data received from a peer. Responsible

for this part are a number of C++ classes, which control the

SP and SA databases (SPD and SAD) within the Kernel’s

IPsec subsystem via the Linux Netlink protocol. Therefore,

this solution uses the derived class NetlinkIPsecManager, but

leaves the option to use other methods for kernel access as

well. The reason for using Netlink to communicate with the

kernel is that it was found the most intuitive of the available

methods and that it is also able to handle not only the

IPsec subsystem but a broad span of network functions in

Linux. Furthermore, using a direct kernel API, as opposed



95

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to other IPsec implementations, omits middleware, both en-

hancing performance as well as eliminating potential source

of error. Also using Netlink functions, this part governs the

tunnel interfaces and routing table entries necessary for the

communication via the classes KernelNetworkManager and

NetlinkNetworkManager as well.

Netlink is a socket-oriented protocol and allows therefore

the use of well-known functions from network program-

ming. The difference to the latter is that instead of network

peers, communication runs within the system as inter-process
communication (IPC), through which also the kernel (via

process ID zero) is addressable. Due to its network-oriented

nature, a packet structure is used instead of function calls

via parameters. This means that commands to the kernel (for

instance to add a new SA) needs to be memory-aligned in

the according packet structure and subsequently send to the

kernel via a Netlink socket. A downside of Netlink during

implementation was the complicated nature and weak docu-

mentation of its IPsec manipulation part (NETLINK XFRM).

While the Netlink protocol itself is present in every message in

the form of its uniform header, the NETLINK XFRM parts use

a different structure plus individual extra payload attributes for

every type of message (add and delete messages for both SAs

and SPs), making the according class hierarchy rather inflated.

Also, the solution uses the NETLINK ROUTE protocol to add

and delete both IP interface addresses and network routes.

To take this into account, the QKDIPsec implementation

uses a set of Netlink message classes, deriving from the

common base class NetlinkMessage. This class contains the

common Netlink header. Each message type for IPsec and

network function configuration is further a child class, con-

taining the exact data fields necessary for Netlink. Due to

the separation of code and data segments in C++, the class

functions do not interfere with the netlink data fields and

therefore its alignment [25, pp.142-143]. This means that the

class hierarchy takes care of the memory alignment necessary

for the Netlink protocol. As stated above, the structure for

NETLINK XFRM messages is rather heterogenous, basically

requiring every message type to be assembled directly in

the class, except for the Netlink header. The messages of

the NETLINK ROUTE protocol, on the other hand, are more

structured, allowing it to introduce intermediate classes for

routing table and interface addresses messages.

The key synchronization, eventually, is the main task of

the Rapid Rekeying Protocol. As this is the very core of

the solution, its implementation resides directly inside the

connection manager. While it uses the classes mentioned

above to acquire and apply the QKD keys in the manner

discussed in Section IV, it handles the key synchronization

using sender and receiver threads (representing the master

and slave parts, respectively), as well as a class for key

synchronization messages. Within this class, also the described

lost message compensation and reset, as well as initialization

and clean-up procedures are implemented. The reset procedure

may also include some re-initialization process for the QKD

system, triggered via the KeyManager. This class also sets the

clocking for the key changes, which is dynamically adjustable

during runtime.

VI. INTEGRATION

QKDIPsec has been integrated into the current AIT QKD

R10 Software Suite V9.9999.7[26]. This Open Source soft-

ware contains a full featured QKD post processing envi-

ronment containing BB84 sifting, error correction, privacy

amplification and other steps necessary. The final stage of

an AIT QKD post processing pipeline is a QKD key store,

realized as Q3P link.

The central task of Q3P is to keep the key material derived

from quantum key distribution in synchronization on both

ends of a point-to-point link. It does this by managing several

buffers as depicted in Figure 5.

Fig. 5. Q3P Key Store Model

• A Pickup Store: Before a key can be used, Q3P has to

verify, that a particular key is present on the other side of

the connection. Reasons a key may not be present at the

same point of time in a peer’s key store are found in the

highly asynchrony and distributed manner key material is

inserted on both machines. Therefore, those key blocks

are treated as a collection of potentially usable keys and

are stored in a Pickup Store directly related to a certain

QKD post processing pipeline. Hence, a single Q3P link

can maintain multiple concurrent QKD post processing

lines to boost throughput. Also Q3P does not know if a

concrete QKD hardware device is pushing keys into the

Pickup Store or an application, which might have derived

shared secret keys by other means of deployment.

• A Common Store: Once the presence of the key material

has been verified on both sides the key is transfered to the

Common Store on disk. This is the only persistent data

storage of key material within Q3P. However, keys placed

in the Common Store are not bound to any dedicated

usage.

• An Outgoing Buffer: Once key material is present in the

Common Store, Q3P moves chunks of key material to
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an Outgoing Buffer. Keys residing in this buffer are used

to establish an information- theoretically secure channel

for encryption and authentication for outgoing messages.

Note that, due to the nature of information-theoretically

secure ciphers (such as the Vernam cipher), encryption

combined with authentication key consumption for single

messages is at a minimum as large as the length of the

message sent [27, p.15]. Also, keys that are used for

messaging are removed from the buffer and destroyed.

• An Incoming Buffer: For incoming messages each Q3P

endpoint mirrors the Outgoing Buffer of its peer as its

local Incoming Buffer. The keys for authenticity checks

of received messages as well as for decryption are picked

from this buffer.

• An Application Buffer: On behalf the Incoming and the

Outgoing Buffers Q3P established yet a third Buffer:

the Application Buffer. Key material moved from the

Common Store to this buffer in memory is dedicated for

use by any application utilizing Q3P.

The rationale for having separate buffers for outgoing mes-

sages and one for incoming is based on potential race con-

ditions when doing heavy communication in both directions.

Suppose both Q3P nodes do heavy interaction in streaming

messages in both directions, then without such separation the

situation, in which both key stores utilize the very same key

for different messages is most likely. Q3P also introduces a

master/slave role model on key dedication: one partner in

the communication acts as master, which is responsible for

assigning key material from the Common Store to one of

the three buffers. The slave on the other side requests such

assignments on demand.

The filling of the Outgoing and Incoming Buffers take

precedence before the Application Buffer. Only if both buffers

used for direct information theoretic communication do share

a minimum threshold of key material the Application buffer

is filled with keys from the Common Store.

The proposed protocol uses the established information

theoretic secured channel provided by Q3P by means of the

Outgoing and Incoming Buffer inside Rapid Rekeying. Key

material from the Application Buffer is used to create the

protocols SPI and SAs. As key material is directed to the

Outgoing and Incoming Buffers first, this results in “slow

start” of an IPSec enabled connection.

Although the protocol runs inside the process space of a

single Q3P instance, from a software engineering point of view

the protocol’s key withdrawal of the Application Buffer bears

no difference to any other application using the same buffer.

VII. THROUGHPUT EXPERIMENTS

The protocol design of the described solution aims on

the one hand on speed and flexibility and on the other

hand on fault tolerance, hence the architecture is as simple

and lightweight as possible (including abandoning the IKE

protocol). Due to this, very high IPsec key change rates can

be achieved, even under harsh conditions. The solution was

implemented in software using C++ and tested on two to

five year-old Linux computers (Alice and Bob), both in a

gigabit Local Area Network (LAN) and a UMTS-Wide Area

Network (WAN) environment (the latter further aggravated

by combining it with WLAN and an additional TLS-based

VPN tunnel - see Figure 6) by means of data transfer time

measurement and ping tests, as well as validation of the actual

key changes by a Wireshark network sniffer (Eve).

TLS/SSL VPN Tunnel

Switch

1Gb

1 Gb

Alice

Bob

Eve

1Gb

WAN

WAN

WLAN

UMTS

Firewall

Internet

LAN
1 Gb

Fig. 6. WAN Test Setup

Table I shows the results in seconds (four trials each,

separated by slashes) of data transmission and in percent on

ping tests within the mentioned LAN and WAN environments

with various configurations: unencrypted, standard IPsec and

QKDIPsec with different encryption algorithms, the latter also

with different key periods. In these tests, both data transfer

and ping were initiated by one peer (Alice). While the ping

test was continuous, the data transfer consisted each of one

data transfer from Alice to Bob and vice versa. The test file

used on the LAN was a video file of 69.533.696 bytes size,

while the WAN file was also a video, but only 1.813.904 bytes

big. In both cases, key periods of 25 ms and less could be

achieved, maintaining a stable data connection. This, using

the recommended key length of 256 bit, surpasses the goal of

12,500 key bits per second (the currently maximal quantum

key distribution rate under ideal circumstances), even though

(deliberately) legacy equipment and a less-than-ideal network
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environment was used. Comparison of the performance shows

a (expectable) higher data transfer period of QKDIPsec and

unencrypted traffic, but no significant difference to traditional

IPsec. Only the packet losses on a simultaneously running ping

test were a few percentage points higher (mainly in the WAN

environment).

TABLE I. PERFORMANCE TEST RESULTS

LAN
Setting A→B B→A Ping
unencrypted 6/6/7/6 7/9/7/8 100%
AES-256 CCM
standard IPsec 14/14/16/15 17/18/26/18 100%
50 ms 8/10/8/9 14/16/16/16 100%
25 ms 10/9/8/8 14/15/17/16 100%
20 ms 9/9/9/9 11/16/17/12 100%
AES-256 CBC
20 ms 9/7/7 11/13/17 100%
Blowfish-448
20 ms 14/9/7 15/13/14 99%

WAN
Setting A→B B→A Ping
unencrypted 10/10/10/10 9/7/6/7 99%
AES-256 CCM
standard IPsec 11/11/11/11 11/5/6/5 99%
50 ms 14/10/11/13 6/5/5/5 95%
25 ms 10/11/10/10 6/7/6/7 94%
20 ms 12/11/13/10 9/5/6/6 98%
AES-256 CBC
20 ms 10/11/11 9/7/8 100%

To verify the key changes, a network sniffer, Eve, was

keeping track of the actual SPI changes of the packets trans-

mitted between Alice and Bob. Table II shows a random

sample of key change periods in milliseconds during the

above mentioned LAN 20ms AES-256-CCM test. Within this

table, the first column shows the key change times for data

(ESP) packets from Alice to Bob while the second shows

the opposite direction. As the recorded data contains one file

copy from Alice to Bob (in the first half of the record) and

one vice versa (in the second half), one randomly chosen

sample of five consecutive key changes for each direction

and from each half is chosen. This form of sample choosing

from different phases and directions of the communication

session and averaging them compensates inaccuracies, induced

by the pause between key change and respective next following

packet, which become greater the less traffic is sent. As

the receiver only acknowledges received data and, therefore,

sends significantly less packets, the vagueness of the non-

averaged results is greater when receiving. The total average

of all four of these averaged values is 0.020495 ms, which is

approximately 2.5% above 20 ms per key change. This may

be explained by the send and receive overhead for processing

the key change messages, for the period determines only the

sleeping duration of a sender thread.

Because of the lower amount of traffic (due to the lower

speed) and higher latency such exact time readings are not

possible in the WAN environment. Therefore, the measurement

method was changed to averaging a sample set of 20 key

change periods, using the same random choosing as above.

With approximately 0.2475, the total averaged result lies

significantly higher (approximately 19%) than the one of the

LAN setting. One possible explanation for this behavior is the

latency in this environment.

TABLE II. Network Sniffing Results

A→B B→A
1st 2nd 1st 2nd

LAN 0.0220 0.0216 0.0208 0.0203
0.0187 0.0204 0.0197 0.0235
0.0145 0.0216 0.0203 0.0176
0.0195 0.0243 0.0204 0.0197
0.0225 0.0180 0.0207 0.0238

Ø 0.0194 0.0212 0.0204 0.0210

WAN
∑

20 0.5201 0.4899 0.4302 0.5397
Ø 0.0260 0.0245 0.0215 0.0270

Additionally, the recovery behavior was tested by letting the

master deliberately omit key change notifications through ma-

nipulating the sending routine, while again running ping tests

and file copies. Omitting single key change messages (and,

thus, testing the recovery mechanism) yield in no measurable

impact on the connection (along with 100% of successful

pings). Also, by the same method of omitting key change

requests, but this time surpassing the recovery queue size,

the reset procedure was tested. The queue size was set to 50

and Alice was programmed to omit 50 sending key change

messages after 200 sent ones. Expectedly, Bob initiated a reset

procedure during the hiatus, resulting in a cycle of 200 key

changes and a subsequent reset. Despite these permanent reset-

induced interruptions, bidirectional ping tests only yielded

insignificant losses (99.74% from Alice to Bob and 99.36%

vice versa). Furthermore, a file copy in both directions was

still possible.

Further, to test the endurance of the solution, one experiment

was conducted to show the capability of maintaining the

connection over a longer period of time. It was performed

with an earlier development version of QKDIPsec and ran

in LAN environment over around 16 hours. It consisted of a

running ping test on a 50 ms Blowfish configuration without

control channel key changes. Of 56179 pings returned 56164

resulting in a return rate of approximately 99.97%. This test

was also conducted in WAN environment, but (due to both

tests ran overnight) an automated network connection reset

after around eight hours prevented meaningful results.

The last test was actively severing the network connection.

Pulling the plug on one side resulted in a connection loss that

was only recoverable by executing the connection setup rou-

tine. This normally does not occur automatically in QKDIPsec

but can be induced by the calling function (ordinarily the

AIT QKD software). The cause for this behavior is that a

shut down (or connectionless) interface loses its additional IP

addresses and therefore the tunnel address for the data channel.

This problem might be circumvented by implementing an own

virtual interface in the future. When servering the connection

along the path (thus leaving the peer interfaces intact) the

solution automatically recovered (loosing only traffic during

the servered phase) when reconnected timely or entered the
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reset procedures (reset trial and function suspension on time)

on disruption spanning over more than the timeout period,

according to protocol.

VIII. QKDIPSEC IN A SIMULATION

In order to investigate the impact of the time interval

between key change notifications on the overall performance

and on the underlying data transmission, we implemented

the Rapid Rekeying Protocol in OMNeT++ [28] using the

INET framework. Besides IPSec and the Rapid Rekeying
Protocol we implemented an UDP application that sends a

certain amount of data to its counterpart using IPSec. We

built an evaluation setup with two communicating hosts, and

introduced delay and packet drops to the setup. The Rapid
Rekeying Protocol allows to vary the following variables: num-

ber of (simultaneous) installed SAs, and the interval between

sending a key change request. For now, we assume that the

keys can be provided with an infinite rate, thus idealizing

the generation of the key material. Table III provides the

different parameter settings used for the simulation. For each

combination of the parameters (64 in total) we conducted 30

runs. For the simulation we assumed a sufficiently large QKD

key rate (such that none of the applications has to wait for

new key material). In the following we report the averages of

these runs and their 95% confidence interval (CI) for some

selecting parameter settings.

TABLE III. Parameter Settings for the Simulation.

Parameter Values

Installed SAs 5, 15, 40, 70
Key Change Interval (ms) 25, 50, 100, 200

hline UDP Data Traffic (Mbps) 1, 1.5, 1.7, 1.9
Simulation Time (s) 600
Channel Delay (ms) X ∼ U(5, 25)

Channel Data Rate (Mbps) 2
Packet Drop Probability min(X ∼ U(0, 1) , 0.05)

Figure 7 depicts the average of deciphered packets with

95% CIs for a maximum of 5 installed SAs at the receiving

client. With an increase in the re-keying interval the receiver

is able to decipher approximately 80% of all data packets.

This is valid for the tested data rates. Although, reaching

the theoretical channel data rate of 2 Mbps decreases the

number of deciphered packets due to the fact that packets

are dropped by full queues. Figure 8 depicts the average of

out of synchronization packet with 95% CIs relative to the

total amount of received packets using the same parameter

settings as for Figure 7. It is evident that with a lower re-

keying intervals the amount of non-decipherable and out of

synchronization packets increases. However, selecting larger

re-keying intervals increases the probability that a man in

the middle attacks will be successful. Therefore, a tradeoff

between data rate and the desired security level has to be

found. Although, we have to consider that some packets are

dropped because of the chosen packet drop probability (cf.

Table III).

Fig. 7. Packets deciphered relative to the total amount of sent packets for
the given data rates with a maximum number of 5 installed SAs for

different re-keying intervals, respectively.

Fig. 8. Packets out of synchronization relative to the total amount of
received packets for the given data rates with a maximum number of 5

installed SAs for different re-keying intervals, respectively.

Figures 9 and 10 depict the relative amount of deciphered

and out of synchronization packets for a data rate of with 95%

CIs for a data rate of 1.5 Mbps. Increasing the the number of

simultaneous installed SAs, the probability of encountering

out of synchronization packets decreases. Nonetheless, one

observes the same behavior as for Figures 7 and 8. Assuming

a re-keying interval of 100 ms, a data rate of 1.5 Mbps and a

maximum of 15 installed SAs, using QKDIPsec we are able to

achieve an effective data rate of approx. 1.1 Mbps on average.

If a re-keying interval of 200 ms is acceptable, we are able

to achieve an effective data rate of approximately 1.35 Mbps

on average. However, it remains the ultimate goal to derive

a model by means of ε-security, which provides a trade-off

between security and the effective data rate. We devote this to

future work.
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Fig. 9. Packets deciphered relative to the total amount of sent packets for a
data rate of 1.5 Mbps.

Fig. 10. Packets out of synchronization relative to the total amount of
received packets for a data rate of 1.5 Mbps.

IX. CONCLUSION

These proof of concept tests show that using IPsec with

appropriate key management is able to overcome the band-

width restrictions of QKD, even when operating the data

channels in less-than-ideal conditions. This, however, comes

with the cost of having to reuse the key more than once.

Therefore, this paper discussed sensible boundaries of key

usage to maintain an acceptable level of security (see Section

III). Furthermore, this paper presents an approach to provide

QKD-secured links with high speeds meeting the bounds

discussed in Section III, including a suitable performant and

fault-tolerant key synchronization protocol (the rapid rekeying
protocol) and a corresponding software solution running under

Linux (QKDIPsec), integrated into the AIT QKD software.

Furthermore, this proof of concept was thouroughly tested

both on x86 system architectures and in a simulated machine

environments. These tests showed the operability of the prin-

cipal architecture design as well as possible snares regarding

its implementation. During these tests, it became obvious that

more installed SAs increase the rate of sucessfully deciphered

packets, especially in lower key period settings.

Despite promising test results, there is room for improve-

ment to transform the presented proof of concept module

into a fully productive and integrated part of the AIT QKD

software. Firstly, there are still obstructions to tackle regarding

the integration; the methods for key capturing from the Q3P

Application Buffer have to be elaborated and optimized. Sec-

ondly, further tests are needed to determine the optimal choice

of networking mechanisms. For instance, the implications of

switching from TCP to UDP as a transport layer protocol for

QKDIPsec have to be examined. Thirdly, some procedures

have to be introduced, which automate the reset process in

case of hardware connection losses and resets, eliminating the

need to restart the system manually. Fourthly, to ease its setup,

the solution needs the ability to use virtual interfaces as tunnel

endpoints (currently it only supports virtual addresses). Fiftly,

while the current version of QKDIPsec already supports on-

the-fly adjustments of the key period, the solution should be

able to provide interfaces to automatically align this key period

to a desired rate of data bits per key bit (dpk). This makes it

necessary to provide means to measure the actual data rate

running over the data channel and comparing them to the

key effective key change rate (consisting of key period and

key length). Furthermore, it is desirable to derive a model by

means of ε-security, to achieve a trade-off between the data

rate and the security of this solution.
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E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated
entaglement-based quantum cryptography system for telecom fiber net-
works,” New Journal of Physics, no. 11, p. 045013, April 2009.

[7] P. Schartner and C. Kollmitzer, “Quantum-Cryptographic Networks from
a Prototype to the Citizen,” in Applied Quantum Cryptography, ser.
Lecture Notes in Physics, C. Kollmitzer and M. Pivk, Eds. Berlin,
Heidelberg: Springer, 2010, vol. 797, pp. 173–184.

[8] F. Xu, W. Chen, S. Wang, Z. Yin, Y. Zhang, Y. Liu, Z. Zhou, Y. Zhao,
H. Li, D. Liu, Z. Han, and G. Guo, “Field experiment on a robust hier-
archical metropolitan quantum cryptography network,” Chinese Science
Bulletin, vol. 54, no. 17, pp. 2991–2997, 2009.

[9] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,”
Internet Requests for Comments, Internet Engineering Task Force, RFC
4301, 2005.



100

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] C. Elliott, D. Pearson, and G. Troxel, “Quantum cryptography in
practice,” in Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications.
ACM, 2003, pp. 227–238.

[11] A. Neppach, C. Pfaffel-Janser, I. Wimberger, T. Lorünser, M. Meyen-
burg, A. Szekely, and J. Wolkerstorfer, “Key management of quantum
generated keys in ipsec.” in Proceedings of SECCRYPT 2008. INSTICC
Press, 2008, pp. 177–183.

[12] MagiQ Technologies, “MAGIQ QPN 8505 Security Gateway,”
2007, retrieved at November 11, 2016. [Online]. Available: http:
//www.magiqtech.com/Products\ files/8505\ Data\ Sheet.pdf

[13] S. Nagayama and R. Van Meter, “Internet-Draft: IKE for IPsec with
QKD,” 2009, draft-nagayama-ipsecme-ipsec-with-qkd-00, expired work.
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