
Detecting & Defeating Split Personality Malware

Kalpa Vishnani, Alwyn R. Pais, Radhesh Mohandas
National Institute of Technology Karnataka, India

emails:kalpavishnani@gmail.com, alwyn.pais@gmail.com, radhesh@gmail.com

Abstract— Security analysts extensively use virtual

machines to analyse sample programs and study them to

determine if they contain any malware. In the process, if

the malware destabilizes the guest OS, they simply discard

it and load in a fresh image. This approach increases their

productivity. Since naive users do not run virtual

machines, malware authors have observed that it is a

pretty good probability that their malware is being

analysed if it is being run in a Virtual Machine (VM).

When these analysis aware malware detect the presence of

VMs, they behave in a benign manner thus escaping

detection. A determined analyst will have to end up

running the sample on a native machine that adds to his

chase time. In this paper, we briefly discuss the techniques

deployed to detect VM by the Analysis Aware Malware

also known as the Split Personality Malware. We then

introduce our tool that not only detects this category of

malware but also fools it into believing that it is running

on a native machine even when it is running on a

virtualized one, forcing it to exhibit its malicious form.

Most security analysts should find this tool really useful.

Keywords- Detecting Virtual Machines, Vmware, Analysis

Aware Malware, Split Personality Malware, guest OS, host

OS.

I. INTRODUCTION

Security researchers and analysts use a wide variety of

tools to carry out malware analysis. Virtualization has

emerged as a very useful technology in the field of

security research and has gained widespread acceptance

in the fraternity. It is very popular amongst malware

researchers since they can intrepidly execute suspicious

malware samples on the virtual machines without

having their systems affected. Since many malware tend

to destabilize the host systems, allowing them to run in

a virtual environment increases the productivity of the
analysts. This decreases the time and cost that the

analysts need to study malware behaviours enabling

them to build patches against the vulnerabilities that the

malware exploit.

However, the malware developers have once again

upped the ante by adding analysis awareness

functionality into their malware. They detect the

presence of malware analysis tools such as Virtual

Machines (VM), debuggers and sandboxes and then

either terminate execution or hide their malicious nature

by executing like a benign application. As a result, they
escape detection from a casual malware analyst. This

category of malware is known as Analysis Aware

malware or Split Personality malware.

The main subject of this paper is to tackle this class

of malware. Current efforts mainly focus on flagging

the Split Personality malware and once flagged they

resort to analyzing them on a native machine to bring

out their malicious nature. In this paper, we discuss our

novel approach using which we detect the VM detection

attempts and further trick the malware into believing

that they are running on a host OS and hence make

them exhibit their non-benign nature. We have

developed a tool, VMDetectGuard for this purpose. We

present the effective results obtained by means of this

tool.
Our tool is currently built for VMware running the

Windows platform. However, it is important to note that

the solution we provide here is generic and can be

easily tailored to cater to other OS platforms as well as

VMs.

The remainder of this paper is organized as follows.

Section 2 discusses the different VM detection

techniques. In Section 3, we discuss related work and

highlight their shortcomings. In Section 4, we present

our approach for combating the VM-detecting Split

Personality malware. In Section 5, we discuss the
implementation details of our solution,

VMDetectGuard. In Section 6, we present the analysis

results obtained by running various VM detecting

malware samples (both proof of concept and live

malware) in the presence as well as in the absence of

VMDetectGuard and noting down the behavioral

changes in the malware. In Section 7, we conclude.

II. VM DETECTION TECHNIQUES

There are various ways of VM detection, all of which

can be classified in one of the following categories:

A. Hardware Fingerprinting

Hardware Fingerprinting involves looking for specific

virtualized hardware [1]. It can reveal a plethora of

information about VM specific components required for

reliable detection. In Table I, we have included the

results of hardware fingerprinting which we obtained on

a host OS and on a guest OS running on VMware. We

carried out this fingerprinting using Windows

Management Instrumentation (WMI) classes and APIs

[2]

B. Registry Check

The registry entries contain hundreds of references to the

string "VMware" in the guest OS. Checking the registry

values for certain keys clearly reveals the VM presence

[1]. The following are a few examples:

HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\Scsi\Scsi

Port1\Scsi Bus 0\Target Id 0\Logical Unit Id

0\Identifier

 VMware, VMware Virtual S1.0

7Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control

\Class\{4D36E968-E325-11CE-BFC1-

08002BE10318}\0000\DriverDesc

  VMware SCSI Controller

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control

\Class\{4D36E968-E325-11CE-BFC1-

08002BE10318}\0000\ProviderName

  VMware, Inc.

C. Memory Check

This technique involves looking at the values of specific
memory locations after the execution of instructions

such as SIDT (Store Interrupt Descriptor Table), SLDT

(Store Local Descriptor Table), SGDT (Store Global

Descriptor Table), and STR (Store Task Register)

[1][3]-[7]. It is the most widespread detection technique

employed by the present day VM detecting malware.

D. VM Communication Channel Check

This check involves detecting the presence of a host-
guest communication channel. The IN instruction is a

privileged instruction which when executed from ring 3

of a protected mode OS such as Windows, raises the

exception “EXCEPTION PRIV INSTRUCTION'” [1].

However, when it is running on VMware, no such

exception is generated. Instead, VMware initiates guest

to host communication by calling the „IN‟ instruction. If

the magic number („VMXh‟) is returned to the register

EBX, then it is certain that the program is running

inside VMware.

E. Timing Analysis

 An obvious yet rare attack against a Virtual Machine is

to check a local time source, such as the "Time Stamp

Counter" (TSC). We briefly restate the concept behind

this attack discussed in a previous work [5].

Translation Lookaside Buffers (TLBs) can be

explicitly flushed out and then the time to access a new

page is determined by reading the TSC before and after

the access. This duration can be averaged out over the

number of TLBs to be filled. Next, the TLBs are filled
with known data by accessing a set of present pages and

the time to access a cashed page is determined as

before. This value can also be averaged over the

number of pages in the TLBs. Now, the CPUID

instruction is executed. CPUID is the only VM sensitive

instruction which on execution flushes out at least some

of the TLBs as a side effect. Now each of the pages that

were present in the VM is accessed again. If any of the

page's access time matches that of a new page, the

presence of a VM is revealed!

F. Process & File Check

There are many VMware specific processes such as

VMwareUser.exe, vmacthlp.exe, VMwareService.exe,

VMwareTray.exe that constantly run in the background.

There also exist some VMware specific files and folders

[1]. Hence querying for these objects could also serve
as a method for VM detection. Though this method

could easily be fooled, when combined with other

detection techniques, it could obtain more reliable

results.

III. RELATED WORK

We found that the amount work done for the

containment of Split Personality malware is not

substantial. Very few researchers have provided

solutions to counter the same. Moreover, most of them

have focussed only on the detection of this class of

malware [8][9][10]. Once this class of malware is

detected, they propose to further analyse these malware

on a host OS. The only approaches we found that aim at

tricking the malware are proposed by Carpenter et al.

[11] and Guizani et al [12].
Zhu & Chin [9] discuss two approaches to counter

VM-aware malware. One approach professes the use of

dynamic analysis to identify known virtual machine

detection techniques. The authors have built an

implementation for it called “Malaware”. This is a mere

detection approach. Once the malware is detected it is

to be further analysed on a native machine. In the

second method they propose the use of dynamic taint

tracking to detect any impact caused by the input that

changes the execution path of the malware. Although

the authors claim that this approach will help to detect
the already unknown VM detection techniques, we beg

to differ. In this second approach they have addressed

only two of the various VM detection techniques,

Memory Check and Registry Check. Out of these, for

countering Registry Check detection method they

propose that, a check should be made to determine if the

sample contains any conditional jump statement

following a registry query. If so, they conclude that the

sample is probably taking another execution path

because it detected the presence of virtual machine. We

further argue that this is not a good heuristic as a sample

will not always be a split personality malware if it has a
conditional statement after a registry access. Even a

legitimate application could do that for other genuine

reasons. For instance, the commercial software with

trial periods have to extensively make use of this logic

in order to check the registry values to see if the

software has been registered by the user or not. If not

then it must run in the trial mode. Moreover, this

method does not give any solutions for other types of

VM detection techniques such as Hardware

Fingerprinting and Timing Analysis, both of which are

gradually being adopted by the advanced Split
Personality malware.

Carpenter et al. propose [11] two mitigation

techniques. They aim at tricking the malware by, 1)

changing the configuration settings of the .vmx file

present on the host system and, 2) altering the magic

value to break the guest-host communication channel.

Out of these two techniques the first one has the

following setbacks:

 The configuration options break the

communication channel between guest and host not

8Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

just for the program trying to detect the VM, but

for all the programs.

 Moreover the authors claim that these are

undocumented features and that they are not aware

of any side effects.

Their second technique is targeted only against VM

Communication Channel Check method.

The work by Guizani et al. [12] provides an

effective solution for Server-Side Dynamic Code

Analysis. A small part of their solution deals with

tricking the Split Personality malware employing

Memory Check and VM Communication Channel

detection techniques. However they do not address

other detection techniques. It was their work that
inspired us to build a complete solution for the

containment of the all the VM detection methods and

provide a more complete and robust solution.

The approach mentioned in the work by Balzarotti et

al. [10] involves first running the sample on the

reference system (physical system), logging its input

and output values exchanged with the system and then

running the same sample on the analysis system which

runs a virtual environment where the output values, that

were obtained on the reference system are simply

replayed. Then, the differences in the sample's
behaviour are observed. Thus, in this work too, the

entire analysis of the detected Split Personality Malware

is not carried out in the virtualized environment.

Hence we conclude that there does not exist any

complete solution that effectively counters Split

Personality malware.

IV. OUR APPROACH

The main objective of this paper is to carry out the
analysis, detection and containment of the Split

Personality malware entirely on the virtualized system.

We perform dynamic binary instrumentation of the

sample under test in order to obtain its low level

information as well as to intercept all the API calls

made by it. We then check to see if the sample is trying

to access any information which would help it in

determining the VM presence. If a match is found with

any of our monitored set of API calls or low level

instructions, our tool logs the activity and provides fake

values to the sample so as to make it feel that it is
running on the native system. Fig. 1 illustrates the

approach step by step.

Step 1: Maintain a list of all the hardware as well as

registry querying API calls. Also maintain a list of all

the VM specific instructions such as SIDT, SLDT,

SGDT, STR, IN.

Following is a partial list of API calls to be monitored.

a) Hardware Querying APIs

i) SetupDiEnumDeviceInfo()

ii) SetupDiGetDeviceInstanceId()

iii) SetupDiGetDeviceRegistryProperty()

iv) WMI APIs

b) Registry Querying APIs

i) RegEnumKey()

ii) RegEnumValue()

iii) RegOpenKey()
iv) RegQueryInfoKeyValue()

v) RegQueryMultipleValues()

vi) RegQueryValue()

Step 2: Perform dynamic binary instrumentation of the

sample under test in order to obtain its low level

information as well as to intercept all the API calls

made by it.

We perform dynamic binary instrumentation of the

sample using the Pin framework [13]. It allows for

monitoring all the API calls and low level instructions

being executed by the sample.

Step 3-12: Check to see if the sample under test makes
a call or executes any of the monitored API calls or

instructions respectively. If a match is found, set the

OUTPUT to “Split Personality Malware Detected”.

Also, log the activity and provide fake values to the

sample so as to make it feel that it is running on a host

system.

Let us consider the example of a sample that makes the
following API calls with the given arguments:

RegOpenKeyEx(

HKEY_LOCAL_MACHINE,

TEXT("HARDWARE\\DEVICEMAP\\Scsi\\Sc

si Port 0\\Scsi Bus 0\\Target Id

0\\Logical Unit Id 0"),

0,

KEY_QUERY_VALUE,

 &hKey);

RegQueryValueEx(

hKey,

 TEXT("Identifier"),

 NULL,

 NULL,

 (LPBYTE) PerfData,

 &cbData);

 In the above case, the key value returned in a

VMware machine will contain the string “VMware”.

Thus, we monitor the values returned by the OS in

response to the API calls made by the sample. If it

contains the string “VMware”, the control passes to our

replacement routine where we change the value to a

more appropriate value such as “Miscrosoft” or to a

value that would have been returned on a host Windows

OS.

 Similarly when VM specific instructions such as

SIDT are at the verge of being executed by the sample,
the control passes to our replacement routine where we

set the value of the destination operand to a value that

would be obtained on the host Windows OS.

9Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

 Figure 1. Our Approach for Countering Split Personality

Malware

V. IMPLEMENTATION

We have designed and implemented a solution to

counter Split Personality malware that employ the

various VM detecting techniques. In this section we
present a detailed discussion of our implementation,

VMDetectGuard.

We implemented our solution in the framework

provided by the Pin tool [13] released by Intel

Corporation. Pin is a tool for the instrumentation of

programs. Pin allows a tool (such as ours) to insert

arbitrary code in arbitrary places in the executable. The

code is added dynamically while the executable is

running.

A. Methodology

As we stated earlier, all the VM detection methods fall

under one or more categories of VM detection

discussed in Section 2, we present our implementation

methodology with respect to each VM detection

category.

i) Countering Hardware Fingerprinting

We propose hardware emulation. The idea is to

maintain a list of all the API calls that provide hardware

information such as BIOS, Motherboard, Processor,

Network Adapter etc. such that even if false values are

supplied about them to a ring 3 application querying

such information, the application would not crash. We

created a proof of concept program to carry out
hardware fingerprinting of a native as well as a virtual

machine. Table I summarizes the results.

VMDetectGuard hooks into the sample under

analysis and monitors the API calls it makes. Whenever

a match is found with our set of monitored API calls, it

logs this activity and provides fake values to the

sample. In Table I we see how VM returns a value

“none” for motherboard serial number. VMDetectGuard

returns a more appropriate string such as

“.16LV3BS.CN70166983G1XF” instead. Each time a

match with the monitored set of APIs is found, our tool

empowers the analyst who can choose either to modify
or not to modify the values being returned to the

sample, thus enabling him to notice any changes in the

sample's behaviour.

Caveat: There are certain hardware components that

cannot be emulated. For instance, the MAC address

cannot be faked because the program requesting this

value would be unable to carry out the desired

networking tasks. In this case, we urge the malware

analysts to change their MAC address in their VMware

machine so that it does not match the VMware MAC

address pattern. The guidelines for this are provided on

the VMware forums [14].

ii) Countering Registry Check

VMDetectGuard also monitors registry querying APIs

such as RegQueryInfoKeyValue, RegOpenKey, etc. It

intercepts these API calls whenever they are executed

by the sample. It then looks at the output values
returned by the system. If the output contains the string

"VMware", our tool replaces this string with a value

that would have been returned on a non virtual system

running the same OS.

iii) Countering Memory Check

For countering memory check we detect the presence

SIDT, SLDT, and SGDT and STR instructions.

VMDetectGuard logs the activity whenever any of

the above instructions is at the verge of being executed

by the malware sample. It also appropriately modifies

the values of the registers that are affected by these

instructions after their execution making the sample feel

that it is running on a native system.

Table II shows the different values obtained on a

VMware and a host machine respectively on executing

the above mentioned instructions.

TABLE II. VALUES OBTAINED ON EXECUTING MEMORY CHECK

INSTRUCTIONS ON VMWARE AND HOST MACHINE (WINDOWS)

Instruction VMware Host machine

SIDT IDT is located

typically at

0xffXXXXXX

IDT is located at a

location lower

than that. Around

0x80ffffff.

SLDT Not located at

0xdead0000

Located at

0xdead0000

SGDT GDT is located
typically at

0xffXXXXXX

GDT is located at
a location lower

than that around

0x80ffffff.

STR

Selector segment

value of TR register

is value other than

0x40000000

Selector segment

value of TR

register is

0x40000000

iv) Countering VM Communication Channel

Check

We address this check in a way similar to countering

Memory Check. We monitor execution of the IN

instruction, and change the value of the magic number

10Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

(„VMXh‟) that was supplied as an input parameter by

the sample under test to some other value.

v) Countering Timing Analysis

Our tool monitors the sample for instructions such as

CPUID and RDTSC (Read Time Stamp Counter).

Moreover it maintains the count of each type of

instruction executed. So if a particular instruction is

executed a large number of times which is above the
threshold value for that type of instruction, it logs this

activity too. This is because timing attacks are known to

execute a single or a couple of instructions for a very

large number of times as certain instructions when run

for a large number of times on a virtualized system take

considerably longer than on a native machine to

execute. Such attacks also make use of the CPUID

instruction. We counter this detection method by

deleting the CPUID instruction just before its execution

and then modifying the values of the general purpose

registers that are affected by the CPUID instruction

(ebx, ecx, edx).

vi) Countering File & Process Check

These checks are countered in the similar way as the

Registry Check. APIs for File/Folder/Process queries

are monitored. If the sample makes querying request for

VMware files, folders or processes, the tool sends out
the „file/process not found' error.

Thus our tool takes complete control of the sample

and governs the output values to be fed to it.

B. VMDetectGuard Output

VMDetectGuard produces various log files along with

the Boolean Result: Split Personality malware detected/

not detected.

It generates instruction trace, system call trace,

instruction count log, opcode mix log as well as a VM

specific log. This VM specific log contains all the API

calls as well as the low level instructions that were

executed by the sample under test. In case the sample is

not a Split Personality malware, the VM specific log

remains empty. All these logs can be used for further

analysis of the sample.

VI. RESULTS & ANALYSIS

In order to test the effectiveness of our tool

VMdetectGuard, we ran various VM detecting malware

samples (both, proof of concept samples and live

malware captured from the internet) on VMware in the

presence as well as absence of VMDetectGuard; to

observe if there were any notable changes in their

behaviour. Table III summarizes the results of our

analysis.

Fig. 2 and Fig. 3 illustrate the changes in the

behaviours of redpill.exe [6] and scoopyNG.exe [7]

respectively when ran on VMware in the presence and

absence of VMDetectGuard respectively. It can be seen

how VMDetectGuard fools both the binaries into

believing that they are not running on a Virtual

Machine.

We also analysed some samples of live malware
captured from the internet. Amongst these,

Backdoor.Win32.SdBot.fmn was found to employ both,

Timing Analysis as well as Memory Check. When run

in the absence of VMDetectGuard, the application

displays a message, “Sorry, this application cannot run

in a Virtual Machine”. However on running it in the

presence of VMDetectGuard, it runs and ultimately

shuts the instance of OS running on VMware! While

analyzing the logs generated by this malware sample we

noted that it executed RDTSC 487 times, CPUID once.

It also executed SIDT and SLDT instructions. But since

our tool provided it with fake values it continued to act
malicious and ultimately shut the OS. By means of

VMDetectGuard, we also obtained its low level trace as

well as system call trace for further analysis. Fig. 4

shows how Backdoor.Win32.SdBot.fmn refuses to run

in a virtual machine when run in the absence of

VMDetectGuard. Fig. 5 is a snapshot of the low level

information of Backdoor.Win32.SdBot.fmn obtained

while tricking it using VMDetectGuard. It shows the

use of the Memory Check method (SLDT instruction)

made by the malware sample.

VII. CONCLUSION

Split Personality malware is on a gradual rise and

proactive measures are necessary to curb them before

they become uncontrollable.

We found lack of research in this field. Moreover

there does not exist any full-fledged tool to counter

Split Personality malware.

We have designed and implemented

VMDetectGuard, a tool that detects as well as tricks

Split Personality malware. Our experimental results

demonstrate that the tool effectively detects as well as

tricks the split personality binaries leading to their

effective analysis in the virtualized environment.

Although we have tested VMDetectGuard for several

VM Detecting malware, we are still in the testing phase

to ensure the completeness of our solution. Moreover,

we are yet to carry out its performance evaluation to

make it more efficient. We are working on it.

Our solution is currently built for VMware and

Windows OS. We now seek to extend the support to

other Operating Systems as well as Virtual Machines

such as VirtualBox, Virtual PC, Xen, Hydra, Qemu etc.

Similar techniques can also be used to counter anti-

debugging tricks.

11Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

TABLE I COMPARISON RESULTS OF HARDWARE FINGERPRINTING OBTAINED ON A WINDOWS VIRTUAL AND A NATIVE MACHINE

RESPECTIVELY

Hardware

component

Attribute

queried

VMware Native Machine

Motherboard Serial No. None .2GTP3BS.CN7016697MG1DN.

Processor SocketDesign

ation

CPU Socket #0 Microprocessor

SCSI Controller Caption VMware SCSI Controller Microsoft iSCSI Initiator

BIOS Serial Number VMware-56 4d 68 4c f9 e5 62

f4-fb 4d f0 5b 88 28 29 d9

2GTP3BS

USB Controller Caption 1. Intel(R) 82371AB/EB

PCI to USB Universal

Host Controller

2. Standard Enhanced PCI

to USB Host Controller

1. Intel(R) ICH9 Family USB Universal Host

Controller – 2936

2. Intel(R) ICH9 Family USB Universal Host

Controller – 2938

3. Intel(R) ICH9 Family USB Universal Host

Controller – 2937

Network

Adapter

Caption 1. VMware Accelerated

AMD PCNet Adapter

1. WAN Miniport (SSTP)

2. WAN Miniport (IKEv2)

3. WAN Miniport (L2TP)

Network

Adapter

Mac Address 00:0C:29:28:29:D9

(This MAC address falls in

VMWare Mac Address

Range)

50:50:54:50:30:30

TABLE III SPLIT PERSONALITY MALWARE ANALYSIS RESULTS OBTAINED USING VMDETECTGUARD

No. VM detecting program

sample

VM detection

method

employed

VMware run with

VMDetectGuard turned

off

VMware run with

VMDetectGuard

turned on

1 RedPill [6]

Memory Detected VMware Could not Detect

VMware

2 ScoopyNG [7]

Memory Detected VMware Could not Detect

VMware

3 VmDetect [15] Memory Detected VMware Could not detect

VMware

4

Worm.win32.autorun.pg

a

Timing

Analysis

Displayed message saying

“not a valid win32

application”

Ran maliciously

5

Trojan-Spy.Banker.pcu Memory Immediately terminated

execution

Ran maliciously

6

Trojan-

Spy.Win32.Bancos.zm

Memory Ran benignly Ran maliciously

7 Backdoor.Win32.SdBot.

fmf

Memory Ran benignly Ran maliciously

8

Backdoor.Win32.SdBot.

fmn

Memory,

Timing

Analysis

Displays a message, “This

application cannot run

under a Virtual Machine”

Ran maliciously

12Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

Figure 2. Redpill.exe executed in the presence and absence of Figure 3. ScoopyNG.exe executed in the presence and absence
 VMDetectGuard resp. of VMDetectGuard resp.

 Figure 4. Backdoor.Win32.SdBot.fmn run in the absence of Figure 5. Low level information of ackdoor.Win32.SdBot.fmn
 VMDetectGuard obtained while tricking it using VMDetectGuard

REFERENCES

[1] Liston T. and Skoudis E. (2006). “On the Cutting Edge:
Thwarting Virtual Machine Detec-tion” [Online].
Available:
http://handlers.sans.org/tliston/ThwartingVMDetection_
Liston_Skoudis.pdf (Nov 1, 2010)

[2] WMI Classes (2008). “WMI Classes Windows”
[Online]. Available: http://msdn.microsoft.com/en-
us/library/aa394554%28v=vs.85%29.aspx (Dec 30,
2010)

[3] Quist D. and Smith V. (2005). “Detecting the Presence
of Virtual Machines Using the Local Data Table”
[Online] Available:
http://www.offensivecomputing.net/files/active/0/vm.pdf

 (Nov 14, 2010)

[4] Omella A. (2006). “Methods for Virtual Machine
Detection” [Online]. Available: http://www.s21sec.com
(Nov 24, 2010)

[5] Ferrie P. “Attacks on Virtual Machines”. In the
Proceedings of the Association of Anti-Virus Asia
Researcher Conference, 2007.

[6] Rutkowska J. (2004). “Red Pill” [Online]. Available:
http://invisiblethings.org/papers/redpill.html (Nov 4,
2010)

[7] Klein T. (2005). “Scooby Doo - VMware Fingerprint
suite” [Online]. Available:
http://www.trapkit.de/research/vmm/scoopydoo/index.ht
ml (Nov 20, 2010)

[8] Lau B. and Svajcer V. “Measuring virtual machine
detection in malware using DSD tracer”. In the
Proceedings of Virus Bulletin, 2008, pp. 181-195.

[9] Zhu D. and Chin E. (2007). “Detection of VM-Aware
Malware” [Online]. Available:
http://radlab.cs.berkeley.edu/w/uploads/3/3d/Detecting_
VM_Aware_Malware.pdf (Dec 10, 2010)

[10] Balzarotti D., Cova M., Karlberger C., Kruegel C., Kirda
E., and Vigna G. “Efficient Detection of Split
Personalities in Malware”. In the Proceedings of 17th
Annual Network and Distributed System Security
Symposium (NDSS 2010), Feb 2010

[11] Carpenter M., Liston T., and Skoudis E. "Hiding
Virtualization from Attackers and Malware". IEEE
Security and Privacy, June 2007, pp. 62-65.

[12] Guizani, W., Marion J.-Y., and Reynaud-Plantey D.
“Server-Side Dynamic Code Analysis”. Analysis, 2009

[13] Pin (2004). “Pin - A Dynamic Binary Instrumentation
Tool” [Online]. Available: http://www.pintool.org/ (Jan
10, 2010)

[14] VMware (2010), “VMware KB: Changing a MAC
address in a Windows virtual machine” [Online].
Available:

http://kb.vmware.com/selfservice/microsites/search.do?la
nguage=en_US&cmd=displayKC&externalId=1008473

(Jan 15, 2010)

[15] VmDetect (2005), “Detect if your program is running
inside a Virtual Machine - CodeProject” [Online].
Available:
http://www.codeproject.com/KB/system/VmDetect.aspx

(Jan 4, 2010)

13Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
http://msdn.microsoft.com/en-us/library/aa394554%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa394554%28v=vs.85%29.aspx
http://www.offensivecomputing.net/files/active/0/vm.pdf
http://www.s21sec.com/
http://invisiblethings.org/papers/redpill.html
http://www.trapkit.de/research/vmm/scoopydoo/index.ht%20ml
http://www.trapkit.de/research/vmm/scoopydoo/index.ht%20ml
http://radlab.cs.berkeley.edu/w/uploads/3/3d/Detecting_VM_Aware_Malware.pdf
http://radlab.cs.berkeley.edu/w/uploads/3/3d/Detecting_VM_Aware_Malware.pdf
http://www.pintool.org/
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1008473
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1008473
http://www.codeproject.com/KB/system/VmDetect.aspx

