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Abstract—PIGA (Policy Interaction Graph Analysis) is a
tool that detects malicious process behaviours by analysing
the operating system activities. This tool uses signatures
that represent illegal activities of some malicious user. These
signatures are generated from a graph that models the
performed operations at operating system (OS) level. For usual
security properties, the number of signatures is large and they
are stored in the memory during the detection process. In this
paper, we present a way to reduce the memory required to store
the signatures while preserving their quality. The methodology
is derived from the modular decomposition of graphs. We
investigate the impact of such an approach for the confidentiality
property. The efficiency of the methodology is evaluated on
interaction graphs of real operating systems. The number of
signatures is divided by 20 for the tested confidentiality property.
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I. INTRODUCTION

Security in the Information Technology domain relies on
global properties that need to be ensured. Integrity and con-
fidentiality are two of the most important ones. Many others
have been defined in the literature but they are mainly based
on the noninterference principle [1][2]. PIGA [3] is a tool
that can be used as an intrusion detection system (IDS) or an
intrusion prevention system (IPS). An intrusion is an action
that breaks a security property that is declared in the security
policy.

In order to prevent illegal activities, PIGA [3] monitors
the kernel activities (system calls) and examines the traces
of the different processes. In [4], the authors present an
overview of the different techniques of intrusion detection
based on externally specified rules. For example, Remus [5]
or BlueBoX [4] have a policy-based approach. The goals of
these examples are different. The aim of Remus is to minimise
the performance impact whereas BlueBoX tries to minimise
the impact on the kernel. However, these systems detect some
intrusion without taking into account the previous operations
performed in the OS. PIGA defines on the contrary, signatures
that describe the potential attacks on the operating system, by
considering the temporal order of the operations.

One important feature of PIGA is to detect security prop-
erty breaks by using a set of signatures. Many intrusion
detection system are signature-based. For example, the Argos
System also computes signatures; however, these signatures
are generated from the examples of attacks that have already
occurred [6]. The particularity of PIGA is that these signatures
are generated off-line directly from the expression of the
security properties. The drawback of PIGA is that the signature

base is large for real systems and requires a significant memory
space allocation for the detection process; furthermore, this
base has to be restricted to small signatures because the com-
putation requires a huge amount of memory, i.e., exponential
with the length of the signatures [3]. For a complete system
based on Fedora using graphical user interface the signatures
base takes more than 500 MB.

This paper proposes an improvement of the PIGA system.
In order to reduce the memory space needed, we propose
a way to compact the information required for the intrusion
detection. This paper focusses on the confidentiality property
since it is the property that generates the largest number of
signatures [3]. PIGA uses a graph to represent the system
and its interactions, thus, this improvement is based on the
reduction of this graph. For this, we exploit the modularity
property of the input graph, i.e., the fact that some groups of
nodes have the same behaviour considering the remaining part
of the graph.

In order to present this contribution, the paper is organised
as follows. In Section II, a brief presentation of PIGA is given
and some security definitions are recalled. Section III presents
the problem tackled in this paper. Section IV presents the
major contribution of this paper, i.e., the use of the modular
decomposition of graph to lower the size of the memory
required to store signatures. It also provides a theoretical
evaluation of the efficiency of our method. Section V shows
that our strategy can be used to decrease the size of the
information stored for detecting confidentiality threat on real
systems. Section VI draws some conclusions and the direction
of further works.

II. GENERAL CONTEXT

This section summarises the study provided for the PIGA
system in [3]. The goal of PIGA is to monitor all the system
activities and detect those that break rules defined by the
administrator. This section proposes to recall the definitions
of the main terms of security used in this paper through the
prism of the PIGA system.

We present the process for generating a set of signatures
from the security policy and the interaction graph. This
process is explained throughout the following subsections.
In Section II-A, the security properties are presented. In
Section II-B, we describe the fundamental elements of a
system, i.e., the security contexts. In Section II-C, we recall
how these contexts are connected through the interactions of
the system. In Section II-D, we glue these elements together
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in order to represent the system by a directed graph. Finally
in Section II-E, we present how the signatures are computed
for the confidentiality property.

A. System and security properties

A system can be seen as a state machine, where a state is
characterised by the state of all the available resources [1]. The
state of the system changes at each system call. In order to
ensure the security of the system, the administrator defines the
rules that represent the frontier between the safe and the unsafe
state of the system. These rules are called security properties
and the set of these security properties is called security policy.
They are mainly based on the noninterference principle [7].

Integrity and confidentiality are the most common security
properties [8]. The aim of the confidentiality property is to
ensure there is no illegal information transfer. For example,
a confidentiality property of the file /etc/shadow for the
users prevents any information transfer from /etc/shadow
to any user. The goal of the integrity property is to ensure
there is no unwanted modification. For example, an integrity
property of /etc/shadow for the users prevents any modi-
fication of /etc/shadow by a user.

B. Security contexts

PIGA is implemented upon SELinux, but it could be defined
upon other mandatory access control (MAC) systems. Thus,
it uses SELinux security contexts to label the resources of
the system (file, process, resource, network port, . . . ). By
extension, we say that two resources belong to the same
security context if they have the same label.

In their simplest format, the security contexts in SELinux
are defined by three elements: the user, the role and the type
of the entity. For example, the security context of /etc/
shadow is system_u:object_r:shadow_t. Several
entities playing the same role can have the same security
context. For example, user_u:object_r:user_home_t
contains all the files in the home directory of the user.

C. Interactions and sequences

Any elementary system operation involves two resources,
thus implying two security contexts [1]. This defines an
interaction between two contexts. In SELinux, only allowed
interactions are described explicitly. However, as shown in [3],
using these allowed interactions cannot ensure that the system
would remain in a safe state. Some security properties can
be broken by performing successive operations. A sequence
is then defined as a set of successive interactions, e.g., an
information flow between two security contexts.

The aim of the PIGA system is to automate the generation
of the sequences that break the security properties, defining
the signatures as explained in the following sections.

D. Interaction and flow graphs

As shown before, PIGA models the system with a directed
graph that represents the security contexts and the set of
allowed interactions. More precisely, the system is represented
by the interaction graph G = (V,A), such that:

• V represents the security contexts, and
• A the set of interactions between those contexts.

Furthermore, any arc in this graph is labelled. The label of the
arc from the security context sc1 to the security context sc2
represents the set of operations from sc1 to sc2 allowed by
the MAC policy of the system. For example,
user_u:user_r:xserver_t

system_u:object_r:mtrr_device_t
file { write read };

represents the possible interactions from the context user_u:
user_r:xserver_t to system_u:object_r:mtrr_
device_t. It means that any element having user_u:
user_r:xserver_t security context can perform read and
write operations on the files of the context system_u:
object_r:mtrr_device_t. SELinux provides a wide
range of permissions that can be allowed between different
contexts. Figure 1 shows a simplified interaction graph.

Fig. 1. A simplified interaction graph

From the interaction graph, we derive other graphs that
are used in the generation of signatures. These new graphs
are obtained by filtering the labelling function. These filtering
operations may have different consequences on the arcs: an
arc can be removed from the graph if the resulting label is
empty; an arc also can change its direction by considering any
property to be preserved with this operation. In the case of the
confidentiality property, it uses the flow graph FG = (V,A)
where V is the set of the security contexts and A represent
all the possible information transfers between the security
contexts. The flow graph can be deducted from the interaction
graph by removing the labels that do not imply flow transfer,
maybe removing some arcs at this step. The remaining arcs
deal with read and write operations. If a write operation
occurs from context sc1 to sc2, there is a flow transfer from
sc1 to sc2 and leads to an arc in the flow graph from sc1 to
sc2. If a read operation occurs from context sc1 to sc2, then
there is a flow transfer from sc2 to sc1 and leads to an arc in
the flow graph from sc2 to sc1. Figure 2 presents the resulting
flow graph derived from the interaction graph of Figure 1.

E. Signatures

A signature represents a set of actions, ordered or not, that
breaks a security property. Note that a signature is derived
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Fig. 2. The corresponding flow graph of the interaction graph of Figure 1

from a security property, but a security property generates sev-
eral signatures. In PIGA, a signature represents an interaction,
a sequence or a combination of sequences and/or interactions.

This paper focusses on confidentiality. The experiments
of [3] show that this property generates the greatest number
of signatures. In this case, a signature is a sequence that
represents a succession of possible information transfers. For
two contexts sc1 and sc2, sign(sc1, sc2) represents the set of
signatures between sc1 and sc2 and can be computed as the
set of simple paths between sc1 and sc2 in the flow graph.

For example, from a system corresponding to Figure 1,
the administrator would like to ensure that any file in the
shadow_t security context cannot be accessible to any user
(having security context user_d). Considering the flow graph
in Figure 2, this would be possible that information from
shadow_t arrives to user_d in only three steps without
breaking the SELinux policy. The analysis of the flow graph
results in 4 ways of breaking this security property :

shadow_t-> passwd_d-> ssh_d-> user_d
shadow_t-> passwd_d-> login_d-> user_d
shadow_t-> passwd_d-> ssh_d-> admin_d-> bin_t-> user_d
shadow_t-> passwd_d-> login_d-> admin_d-> bin_t-> user_d

When the PIGA system is active, all the interactions are
audited and the system memorises the progression of all the
signatures. If an interaction completes a signature, the system
will forbid the last operation if it is in prevention mode and it
will warn the user in permissive mode. Indeed, PIGA can be
used either as an IDS or as an IPS.

III. PROBLEM DEFINITION

As seen in the previous section, PIGA computes all the
signatures off-line and stores them in the system. As shown
in [3], the number of signatures may be large even for
systems having a small number of services. These signatures
are required for the detection process. However, they take a
huge place (several hundreds of megabytes) in the memory.
Furthermore, the interaction graph may be so large that it is
unrealistic to compute all the signatures. The problem comes
first from memory excess, since the administrator of the PIGA
system is not really time restricted to compute the signatures.
The solution chosen in this case is to bound the length of the
signatures. This approximation is acceptable for some systems,

since the probability of defining an effective attack from a
signature become more and more smaller with its length.

It is thus a challenge to find a good way to compress the
signatures in order to lower the size of the storage required
by the signatures. In the PIGA system, a simple compression
is performed: the signatures are stored using a tree. After this
compression, the size of the input signatures remains large.

Another challenge is to obtain a compression not impacting
the efficiency of the detection process. For example, if the
system only stores the pairs (source, target), the detection
would be preponderant and slow down the system significantly.

This paper tackles the first problem of finding a generic
way to compress the number of signatures. An important
point is to ensure that any signature generated by the orig-
inal policy is included in the set of compressed signatures.
We will see that the reverse property is not required (any
compressed signature only represents valid signatures). This
comes from the specificity of the objects manipulated in this
context. However, this paper tries to find the compressed set of
signatures that minimises the number of unrealistic signatures
in a compressed signature. Finally, the solution presented in
this paper follows the philosophy of PIGA: the generation of
a set of signatures using a graph that represents the system.

Since the signatures are simple paths in the flow graph,
reducing the size of this graph should reduce the number of
the signatures. In order to reduce the size of this graph, the idea
is to group the nodes having the same behaviour into a single
meta-node. For example, a simple analysis on the flow graph in
Figure 2 shows that both contexts ssh_d and login_d have
the same behaviour considering the other contexts. The idea
developed in the remaining of this paper is to consider these
two contexts as a single entity called module. Assuming this
in this example, only two signatures should be considered.
shadow_t-> passwd_d-> module-> user_d
shadow_t-> passwd_d-> module-> admin_d-> bin_t-> user_d

This kind of property for a graph is known as the modular
decomposition. To obtain an interesting compression, the
input interaction graph must contain a significant number of
modules. The modules should not be too large in order to
maintain the detection process efficient. The goal of this paper
is to evaluate the compression ratio of the application of the
modular decomposition to realistic flow graphs. The following
section presents the theoretical base of our technique.

IV. SIMPLIFICATION OF THE INPUT GRAPH

The reader may refer to [9] for advanced concepts in graph
theory. In this section, we first recall the definition of the
modular decomposition on general undirected graphs in Sec-
tion IV-A. Since the input graphs are directed, we show how to
deal with this problem in Section IV-B. Section IV-C presents
the general methodology for compressing signatures. In the
original algorithm for computing the signatures, the signatures
are defined as the set of the paths between the source and
target security contexts. However, the decomposition process
compacts some nodes into some meta-nodes, called modules.
Thus, some source or target security contexts may disappear
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in this process. Section IV-D describes the process to make
these contexts reappear. Finally, in Section IV-E, we provide
an evaluation of the reduction of the number of signatures
using this technique.

A. Modular decomposition

The modular decomposition of a graph is a useful tool to
represent graphs in a compact way by grouping nodes that
have the same behaviour. Theoretical and algorithmic aspects
of this decomposition are explored in [10]. This decomposition
has several applications. For example, it has been used in
graph drawing, where a module can be seen as a single node
and indeed simplify the drawing [11]. This decomposition has
been used in biology to simplify the protein-protein interaction
network and obtain comprehensive view of this network [12].
All these examples show that the modular decomposition is
used to simplify the input graph and then lower the complexity
of solving initial the problem. In this paper, we use this type
of graph decomposition to lower the size of the flow graph on
which the signatures are computed.

Definition 1: Let G = (V,E) be an undirected graph. A
module M of G is a subset of V such that:

∀x ∈ V \M
{
∀y ∈M, (x, y) ∈ E or
∀y ∈M, (x, y) 6∈ E

Let GM be the subgraph of G such that GM = (M,E′)
such that: E′ = {(x, y) ∈ E | x, y ∈M}. As shown in [10],
module M can have one of the three following types, depend-
ing on the connectivity of GM :
• M is series if GM is not connected;
• M is parallel if GM is not connected;
• M is prime otherwise.
A module M is strong if for any other module M ′, either

one is included in the other (M ⊆M ′ or M ′ ⊆M ) or they are
totally disjoint (M ∩M ′ = ∅). The set of strong modules can
be organised in a tree, called the modular decomposition tree,
giving some hierarchical relationship between the modules.
The root of this tree is the trivial module V and the leaves
are the other trivial modules: the single nodes. The modular
decomposition tree of G is designated by MDTree(G).

Figure 3 represents H the symmetrised version of the flow
graph in Figure 2, where every arc between two nodes has
been replaced by an edge between these nodes. The applica-
tion of modular decomposition on H generates the modular
decomposition tree MDTree(H) represented on Figure 4.

Fig. 3. The flow graph after symmetrization H = (V,E)

Fig. 4. The modular decomposition tree associated to H , MDTree(H)

A quotient graph can be obtained by grouping the nodes
contained in the same module into a single node in the graph.
The quotient graph of G is called Quot(G), e.g., the graph
Quot(H) represented on Figure 5 is the quotient graph of H .
This operation makes the input graph smaller and thus easier
to understand. In the following definition, we extend the notion
of quotient graph to any partition of the vertices. This latter
definition is also valid for directed graphs.

Fig. 5. The quotient graph associated to H , Quot(H)

Definition 2: Let G = (V,E) be a graph and V a partition
of V . The graph Quot(G,V) is defined as follows:
• The vertex set is V;
• The edge set E is given by:

E =

{
(V1, V2) | V1, V2 ∈ V and V1 6= V2
and ∃ v1 ∈ V1, v2 ∈ V2 (v1, v2) ∈ E

}
Using this definition, the quotient graph in the modular

decomposition context is simply Quot(G,V) where V is
the partition obtained from the modular decomposition tree
considering the nodes at level 1.

The partition V obtained by selecting the nodes at the first
level of the MDTree(H) represented by Figure 4 is:
V = (passwd_d, shadow_t, (ssh_d, login_d),
(admin_d, user_d), bin_t).

B. Dealing with directed graphs

The graphs considered in this paper, i.e., the policy and flow
graphs, are directed. The modular decomposition can also be
applied to directed graphs. F. De Montgolfier [13] uses 2-
structure to define the module in this context. However, we
only use the undirected concepts for several reasons.

First, as shown in Section II-E, the interaction and flow
graphs are used for generating the signatures. They have the
same vertices, however, some edges have different directions.
Applying directed modular decomposition on both graphs may
generate two different modular decompositions. Consequently,
the quotient graphs would be different and it would be more
difficult to generate the set of signatures.

Second, the sizes of the modules in directed modular
decomposition are smaller than in the undirected case, since
any directed module remains a module after transformation of
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the arcs into edges. Considering the initial example given in
Figure 2 and its associated flow graph, the series module in
the undirected decomposition is not a module in the directed
case: the neighbourhood of admin_d and user_d are not
the same in both graphs.

Finally, as shown at the end of this section, this action can
be minimised by recovering a directed quotient graph, our
process generates new dummy signatures that are useful to
efficiently compress the signatures.

C. Overall strategy

In this section, we present our global methodology. The
input of our algorithm is the interaction graph G = (V,A).

In order to use the modular decomposition, we consider
the associated undirected graph G′ = (V,E) obtained by
modifying any arc (i, j) in G into the edge {i, j} in G′ and
Quot(G′) its quotient graph. Since the generation of the signa-
tures uses a directed graph, we compute the directed quotient
graph Quot(G,V) using the partition V . V is generated by
the computation of Quot(G′), i.e., a module of Quot(G′) is
considered as a module of Quot(G,V). The main difficulty is
to compute the useful quotient graph depending on the source
and target security contexts. Figure 6 represents the quotient
graph obtained from the directed graph G in Figure 2.

Fig. 6. The directed quotient graph associated to the flow graph Figure 2

In Section V, we show that real graphs in security domain
contain several modules. They are mainly parallel modules.
We show in the following section how to exploit this property
for the computation of compressed signatures.

D. Computing the quotient graph for one pair source/target

In this section, we detail the extraction of the compacted
signatures from the original graph. As described in Sec-
tion II-E, the signatures are computed as the set of the simple
paths from the source context to the target context. Using the
modular decomposition, we compute the new signatures using
the quotient graph. However, the source (respectively, target)
context may be contained in modules. Thus, the endpoints
of the paths should be considered as a module by themselves,
breaking the modules in which they are contained into smaller
modules. For this, we can see that the entire module can
be removed and all the elements inside considered as trivial
modules. However, as shown in the Algorithm 1 some sub-
modules can be preserved.

Note that a node appears in the quotient graph if it is a
direct child of the root of the modular decomposition tree,
i.e., if it appears as a singleton in the corresponding partition.
The aim of the algorithm is indeed to find a partition where
both endpoints are singletons while keeping the largest number
of modules. We called this partition Ps,t where s is the source
and t the target. Thus, to extract a node from a module we
need to transform the modular decomposition tree such that the

Algorithm 1 Extraction of a node
Input: n the node to extract
Output: decomposition tree with the extracted node

for each: node m in path(n) do
removeEdge(Parent(m),m)
if m is not Root and (ChildCount(m)<=2 or m is Prime)
then

for each: node o in child(m) do
removeEdge(m,o)
addEdge(Root,o)

end for
removeNode(m)

else
addEdge(Root,m)

end if
end for

endpoints are direct children of the root and the tree remains a
modular decomposition tree. Algorithm 1 solves this problem
in the following way. Every node in the path from the root to
the extracted node is a module. We can separate these modules
into two categories. The first contains modules with more than
two children in the tree. The second contains modules with
exactly two children. Modules of the first category are put as
a direct child of the root and they keep all their children but
the child included in the path. Modules of the second category
are removed from the tree and every child is put as a direct
child of the root. Finally, the node that we want to extract is
put as a direct child of the root. Special care has to be taken
for prime modules. Indeed, a parallel (respectively, series)
module having more than two elements can be decomposed
in a parallel (respectively, series) module having exactly two
elements, one node and a parallel (respectively, series) module
that contained the remaining nodes. This property is not
preserved for prime modules and a prime should be totally
broken and its children must be put at the root level. The
partition Ps,t is obtained by applying Algorithm 1 twice, with
s and t.

Note that Algorithm 1 is very efficient since the modifica-
tions of the tree are located along the path between the root and
the leaf corresponding to the node to extract. Thus, the worst
case complexity is linear in the size of the tree. Consequently,
the main time consuming task remains the computation of the
signatures from the quotient graph. Nevertheless, the global
computation time is reduced significantly.

As an example, we apply the modular decomposition on the
graph depicted in Figure 7. This undirected graph contains 11
vertices and 29 edges. The algorithm generates the modular
decomposition tree of Figure 8. This tree is composed of
four levels and contains one prime, two series and three
parallel modules. From this tree, we generate the quotient
graph, in Figure 9, that contains the nodes of the first level
of the tree. Computing the compressed signatures between
nodes 1 and 5, we can use this quotient graph, since these
nodes are not contained in non-trivial modules. There are two
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Fig. 7. Initial graph GE

Fig. 8. Decomposition tree MDTree(GE)

signatures from Node 1 to Node 5 in the initial graph, there
exists 2027 signatures for the same source/target pair. If the
security property involves Nodes 2 and 8, this quotient graph
cannot be used. Algorithm 1 computes the modified modular
tree (Figure 10) and the resulting quotient graph is given in
Figure 11. This graph contains 8 nodes and 15 edges. It results
50 compressed signatures instead of 2610 in the initial graph.

E. Reduction of the number of signatures

In this section, we evaluate the compression rate: the
number of signatures represented by a modular signature,
i.e., a signature that contains modular contexts.

We assume in this section that the compression process
using the modular decomposition does not add unwanted arcs.

Definition 3: Let G = (V,A) a directed graph and Q =
(M,A′) a quotient graph of G. An arc (m1,m2) is clean iff

∀x ∈ m1, y ∈ m2, (x, y) ∈ A.

The quotient graph Q is clean if all its arcs are clean.
A signature s is clean if it only contains clean arcs.
Lemma 1: A compressed clean signature s that contains

one modular context M of size k represents at least f(k)
non-modular signatures, where f(k) is the sum of:
• k, i.e., the size of the module, and
• the number of simple paths between two distinct elements

in the module within GM , i.e., considering only the paths
inside the module.
Proof: Let s be a compressed signature that contains one

modular context, i.e., s = c1, . . . , ci,M, ci+1, . . . , cl, where
M is a module in G, M = {c′1, . . . , c′k}. Using these notations,
all the ci and c′i are distinct. Otherwise, there would be a loop
in the signature or one of the ci would belong to the module
and should have been replaced by M in s.

From this signature we can derive those in the original
graph in two different ways. First, we can replace M by one

Fig. 9. Quotient graph Quot(GE)

Fig. 10. Decomposition tree with source and target extract

of the elements of the module. This lead to k signatures of
the same length as s. Second, we can replace M by a single
path between two distinct elements in M , leading to longer
signatures and to the second part of the sum.

In order to compute the computation ratio of a single sig-
nature for a general module, we need to make some complex
computations. However, for parallel and series pure modules,
this can be solved easily. We say that a module is pure if all
its children in the modular decomposition tree are leaves.

Consequence 1: A compressed clean signature s that con-
tains one modular pure parallel context M of size k represents
at least k signatures in the original policy.

Proof: In this case, no path between two distinct elements
exist within the module.

Consequence 2: A compressed clean signature s that con-
tains one modular pure series context M of size k represents
at least N signatures in the original policy, where

N =

k−1∑
i=0

i∏
j=0

(k − j)

Proof: In this case, the nodes contained in M form a
clique. Then the number of simple paths between two elements
of M is at least the number of paths inside the clique, including
the paths of length 0. Defining a simple path of length i
consists in choosing the first element within k, then the second
within (k − 1), and so on. Thus, the number of simple paths
of length i is

∏i
j=0(k − j). By summing all these terms, we

obtain the desired result.
If a signature contains several modules, the number of

uncompressed signatures corresponds to at least the product
of the number of compressed signatures for each module.

Note that a compressed non-clean signature represents some
signatures that are not possible in the original graph. These
unrealistic signatures are not significant for the detection pro-
cess. Indeed, such uncompressed signature cannot be activated
since some transitions are not allowed by the MAC policy
(e.g., SELinux) of the system.
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Fig. 11. Quotient graph Quot(GE,P2,8)

Nb sig ρ Min ρ Max ρ
Uncompressed 103411 / / /
Compressed without loop 1436 98.6% 91.3% 99.9%
Compressed with loops 5780 94.4% 81.7% 99.7%
on modules

TABLE I
COMPRESSION RATIOS FOR THE EXAMPLE GRAPH

V. EXPERIMENTS

The experiments have been performed on one example
graph and two graphs generated from a realistic security
policy. The following sections present the structure of the
studied graph and the results of our experiments for each
studied case. In order to evaluate the efficiency of our method,
we used the following compression ratio:

ρ = 1− #compressed signatures
#uncompressed signatures

(1)

A. Results on the example graph

The example graph (Figure 7) contains 11 nodes. This
example has no application in the security domain and comes
from papers dealing with modular decomposition theory [10].
However, it contains all the types of modules (Figure 8) and
appears to be important in order to validate the global strategy
for computing the signatures and compressed signatures.

We compute the number of signatures generated by the
application of the modular decomposition for each source/-
target pair. The results, presented in Table I, show that the
compression is very high. Note that a compressed signature
represents on average more than 70 uncompressed signatures.

We also consider more complex signatures: we allow the
signature to contain loops for modular nodes. These signatures
take into account the fact that a module contains several
nodes. However, we use the following rule: a signature cannot
contains more than k occurrences of a same module if the
size of this module is k. Even in this case, the compression
ratio remains high. This investigation shows that the modular
decomposition strategy has a great impact even if the sizes
of the modules are not large and for any pair of source/target
nodes.

Since for each pair, our strategy computes a new graph on
which the signatures are generated. It appears that the graphs
contain between 5 and 9 nodes.

B. Results on a global SELinux policy

In order to evaluate the efficiency of our method on a
real case, we study the following flow graph. It represents

p1: user_u:user_r:user_t --> system_u:object_r:shadow_t
p2: user_u:user_r:user_t --> system_u:object_r:etc_t
p3: user_u:user_r:user_t --> user_u:object_r:user_tmp_t
p4: system_u:object_r:shadow_t --> user_u:user_r:user_t
p5: system_u:object_r:etc_t --> user_u:user_r:user_t
p6: user_u:object_r:user_tmp_t --> user_u:user_r:user_t

TABLE II
AUDITED PAIRS

p1 p2 p3 p4 p5 p6 Total
Uncompressed 1 2 14006 85510 42756 10238 152513

Compressed 1 2 477 4026 2014 350 6870
ρ 0% 0% 96.6% 95.3% 95.3% 96.6% 95.5%

TABLE III
COMPRESSION RATIOS FOR THE FLOW GRAPH

the possible information flows in a gateway using a Gentoo
Linux distribution studied in [3]. It contains 43 nodes and 163
arcs. The decomposition tree has a special structure: it only
contains three levels. The root is a prime node; at level 1, there
exists 10 parallel modules and 16 leaves and the last level
contains 27 leaves. Each parallel contains from 2 to 5 nodes.
From a security point of view, each parallel has some semantic
consistency. For example, one parallel contains system_u:
object_r:shadow_t, user_u:object_r:shadow_t
and root:object_r:shadow_t.

We compute the number of signatures generated on 6
source/target pairs given in Table II. The graph and the
pairs were used by an instance of PIGA-IDS deployed on
the gateway of a honey-pot [3]. The aim of this honey-pot
was to understand the behaviour of any user considered de
facto as an attacker. The first pair (p1) in Table II would
detect all the attempts of changing the password of the user,
whereas p4 detect all the attempts of the user to obtain
information from the shadow file. All the pairs are using the
context user_u:user_r:user_t, thus there are only four
contexts used as endpoints. From these four contexts, only the
context system_u:object_r:shadow_t is contained in
a parallel module. Thus, all the pairs p2, p3, p5 and p6 will use
the basic quotient graph for the computation of the compressed
signatures, the two remaining ones use a quotient graph having
27 nodes and 91 edges. The quotient graphs are clean (see
Definition 3). This implies that there are only clean signatures
generated by the compression process.

Table III shows the number of signatures generated with
and without using the modular decomposition process. This
table also gives the compression ratio of the application of
our method. A further analysis of the distribution of the
compression ratios shows that a modular signature compresses
between 2 and 717 non-modular signatures. Moreover, the
number of modules in a signature varies between 1 and 3,
some modules cannot been reached by the source element.

C. Results on the transition policy

As described in Section II-D, from the interaction graph,
we can derive several others by filtering the labels of the arcs.
The transition graph is obtained by removing the arcs that are
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not labelled by a transition and removing the isolated nodes.
This section provides a study of the transition graph obtained
from an interaction graph having 577 nodes.

This transition graph has 381 nodes and 21074 arcs (density
15%). The application of the modular decomposition generates
a tree with a series module as root. This tree is deeper and
more complex than the modular decomposition tree of the
flow graph. At level 1, the leaves represent contexts that have
some connection with all the other nodes. They are of the
form *:sysadm_r:sysadm_t and they are related to the
administrator of the system that has all the rights. Then the
quotient graph is very simple and contains 5 nodes and 20 arcs
corresponding to a complete graph. Note that a prime module
at level 4 contains 108 of the 112 nodes at the level 5. The
decomposition tree present another characteristic: the series
modules contain from 3 to 7 nodes. The nodes contained in
the same module have some similarities in their label. For
example, all the contexts *:*:passwd_t form one series
module of size 7. It shows that the modular decomposition
reveals some logical coherency of the transition graph.

We compute the number of signatures from system_
u:system_r:sshd_t to user_u:user_r:user_t on
the transition graph using the modular decomposition. This
computation defines all the possibilities of connections from
ssh to a user account. We obtain 3546 signatures by limiting
their length to 4. The corresponding quotient graph contains
115 nodes and 1515 arcs, 92 of them being not clean. In the
original graph, it was not possible to compute all the paths
of length 4 using our generation program due to memory
overflow. This is a consequence of the search of the paths in
the series modules that generate many signatures, as shown in
Consequence 2. In this example, it was not possible to compute
all the compressed signatures of length 5. To complete our
experiment, we restrict the length of the paths to 3, we obtain
190 compressed signatures and 1571 uncompressed signatures,
leading to a compression ratio of ρ = 87.9%.

We also made the same experiment restricted to the nodes
included in the prime module. In this case, the initial graph has
350 nodes and 5930 arcs, while the quotient graph used for
the computation of the signatures has 108 nodes and 506 arcs,
all of them being clean. The computation of the compressed
signatures have been performed up to paths of length 10 where
111,704 signatures have been found, while the uncompressed
signatures have been computed up to length 4. For paths of
length 4, there exists only 96 compressed signatures and the
compression ratio is 99%.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a way for compressing the
signatures base used in PIGA IDS. We experiment this proce-
dure on different input graphs. These experiments show that
our method is efficient for compressing signatures expressing
the confidentiality property: the compression ratio is usually
large, over 90%. This reveals a characteristic of the interaction
graph and its derivatives. Indeed, many of the modules have a
logical coherency and labels inside a same module have some

similarity. In some extent, we can say that modules represent
some meta-contexts and that the signatures are defined at this
level.

This method can be also applied to other security proper-
ties.The study on the transition graph shows that any property
implying this particular graph would lead to a very high
compression ratio since all the types of modules are found
and the decomposition tree is deep.

The compression technique provides another result: the
expressiveness of compressed signatures is very high. Indeed,
compressed signatures of small size can represent very long
signatures. Furthermore, since the quotient graph is smaller
than the original graph, our method can compute longer
signatures than the initial computing method.

The main perspective to this work is to define the detection
counterpart. Indeed, the process has to be adapted in order
to deal with modules in order to eliminate the false positive
induced by the compaction. The additional cost due to the
compression has to be clearly evaluated before being installed
in a real operating system.
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