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Abstract—Privacy concerns are a critical issue in outsourcing
data mining projects. Data owners are often unwilling to release
their private data for analysis, as this may lead to data disclosure.
One possible solution to address such concerns is to perturb
the original data values so that they become hidden, thereby
preserving privacy. This paper proposes a privacy-preserving
technique using Non-metric Multidimensional Scaling, which not
only preserves privacy but also maintains data utility for Support
Vector Machine (SVM) classification. The perturbed data are
subject to high uncertainty and have no information that can be
exploited to disclose the original data. They also exhibit better
class separation and compactness, which greatly eases the SVM
task. The results show that the accuracy of the original and
the perturbed data is similar, as the distances between the data
objects both before and after the perturbation are well-preserved.
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I. INTRODUCTION

Multidimensional scaling (MDS) is a dimensionality reduc-
tion technique used to project data into a lower dimensional
space, so that better data visualisation can be achieved [1].
The basic idea of the MDS technique is as follows: Given a
matrix of proximities (similarities or dissimilarities) between
data objects, find a configuration of data points (usually in a
lower dimensional space) whose distances fit these proximities
best. In non-metric MDS, the interpoint distances between the
data points in the new space approximate a non-linear transfor-
mation derived from those proximities. The main motivation
for using non-metric MDS as a data perturbation technique
is that it has the ability to generate data in a new space
thereby hiding the original data as the data points are located
in their positions using only the rank-order distances so their
original position cannot be inferred from the perturbed data.
Furthermore, each data object is represented by completely
different data values and each data variable has a different
pdf.

The concept of “data perturbation” refers to transforming
data, and thereby concealing any private details whilst preserv-
ing the underlying probabilistic properties, so that the inherent
patterns can still be accurately extracted. However, in real
cases, achieving these two objectives is a challenging task,
as they are naturally in conflict. In this paper, we investigate
whether our privacy model proposed in [2] preserves data
utility for SVM classification whilst maintaining privacy. We
distort the original data values using non-metric MDS trans-
formation. Then, we use the perturbed data to carry out the
classification analysis using SVM with three kernels–linear,
polynomial and radial basis function, and show that the results
are similar (if not better) to those obtained from the original
data.

The structure of this paper is as follows. Section II presents
some related literature. Section III introduces an overview of
SVM. Section IV presents the proposed privacy-preserving
data mining method, and discusses its privacy and utility
preservation. Experimental results are introduced in Section
V. Finally, Section VI presents our conclusion.

II. RELATED WORK

Most works on data perturbation are based on linear
transformations using additive or multiplicative noise. Additive
perturbation was designed for microdata protection where
a random noise is added to the value of each attribute to
produce new data values representing the perturbed data [3].
Multiplicative perturbation can provide, to some extent, a good
data utility for data mining algorithms. Here, the basic idea is
to multiply the original data matrix by either a rotation matrix
or a projection matrix. Chen and Liu [4] proposed a rotation-
based perturbation technique that generates the perturbed data
by multiplying the original data with an orthogonal rotation
matrix. They showed that the SVM classifier with the most
popular kernels (polynomial, radial basis and neural network)
is invariant to rotation transformation. Similarly, [5] suggests
a geometric perturbation technique where extra components
are added to the rotation model. These components are a
random translation matrix and addition of noise so more
data protection can be achieved while preserving the basic
geometric properties of the data for SVM classification. In
[6], [7], the original data are projected into a lower dimension
using random projection matrix. This perturbation model was
also performed using a PCA-based approach [8].

The drawback of additive perturbation is that the added
noise will distort the distances between data points and
therefore poor results will be obtained when applying data
mining algorithms on the perturbed data. Furthermore, the
additive noise can be filtered out and the privacy can then be
compromised [9], [10]. Although multiplicative perturbation
can provide a better solution to overcome the shortcomings of
additive perturbation, the privacy model is not secure enough.
The attacker can exploit some theoretical properties of the
random matrices (they usually have a predictable structure)
to disclose the original data values [11], [12].

Our work, in this paper, is categorised as a perturbation-
based approach, where all data are distorted before they are
released to a third party for analysis. However, unlike other
methods, the proposed method preserves much of the statistical
properties for the classification task using SVM and provides
perfect data protection as the perturbed data are generated
under a high level of uncertainty.
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III. OVERVIEW OF SVM

The SVM is a distance-based learning approach that is
widely used in data classification [13]. The basic idea is to
find a hyperplane that separates the data into two classes
with as great a margin as possible. The optimal hyperplane
(decision boundary) is the one that separates these two classes
and that maximizes the distance between the two closest
points from either class (known as support vectors). Assume
that the classes of data are separable. Consider a binary
classification problem consisting of m pairs of training ex-
amples (x1, y1), (x2, y2), . . . , (xm, ym), where xi ∈ Rn and
yi ∈ {−1, 1}; the hyperplane is defined by

w · x + b = 0, (1)

where w is the weight vector and b is the bias. “.” denotes the
dot product in the feature space. Both parameters w and b must
be chosen in such a way that the following two conditions are
met:

w · xi + b ≥ 1 when yi = 1,
w · xi + b ≤ −1 when yi = −1.

(2)

The classification rule of an unseen test object x′ is defined
by

g(x′) = sign(w · x′ + b). (3)

Maximizing the distance from a point x to the hyperplane
in (1) determines the optimal hyperplane which creates the
maximal margin between the negative and positive training
examples. The distance from a hyperplane H(w, b) to a given
data point xi is simply

d(H(w, b),xi) =
w · xi + b

||w|| ≥ 1
||w|| . (4)

That is, SVM finds the hyperplane that maximizes the
margin by minimizing the squared norm of the hyperplane

min
w

1
2
||w||2

subject to yi(w · xi + b) ≥ 1, i = 1, 2, . . . ,m.
(5)

For non-separable data, SVM can also deal with overlap-
ping classes by maximizing the margin, allowing any misclas-
sified data points to be penalised using a method known as
the soft margin approach [14]. The misclassification bias can
be defined by so-called slack variables, ξ = ξ1, ξ2, . . . , ξs. Let
ξi ≥ 0; the constraints of the optimisation can be rewritten as

w · xi + b ≥ 1− ξi when yi = 1,
w · xi + b ≤ −1 + ξi when yi = −1,

(6)

and the learning task in SVM can be formalized as follows:

min
w

1
2
||w||2 + C

l∑
i=1

ξi

subject to
{
yi(w · xi + b) ≥ 1− ξi, i = 1, 2, . . . ,m,
ξi ≥ 0, Σ ξi ≤ C

(7)

where the constant C is a regularisation parameter used to
create a balance between a maximum margin and a small
number of misclassified data points.

The SVM described so far finds linear boundaries in the
input space. However, in many real problems, data may have
non-linear decision boundaries, which would make finding
a hyperplane that can successfully separate two overlapping
classes a difficult task. One solution to this problem is to use
the so-called kernel trick. The trick here is to transform the data
X in d-dimensional input space into a higher D-dimensional
feature space F (also known as Hilbert space), Φ : Rd → RD

where D � d. This would make the overlapping classes
separable in the new space F . The transformation is performed
via a kernel function K that satisfies Mercer’s condition [15] so
that better class separation can be achieved [16]. The function
K can be defined by

K(u,v) = Φ(u) · Φ(v), (8)

where Φ : X → F and “.” denotes the dot product in the
feature space F . By defining a proper K, we simply replace
all occurrences of xi in the SVM model with Φ(xi). That is,
the feature space F is never explicitly dealt with, but rather
we evaluate the dot product, Φ(xi) . Φ(xj), directly using
function K in the input space. Intuitively, computing only
the dot product using K, in the feature space, is substantially
cheaper than using the transformed attributes. For example, the
Radial Basis Function (RBF) kernel unfolds into an infinite-
dimension Hilbert space.

IV. DATA PERTURBATION

To disguise the original data values and provide unreal data
values (synthetic data) that preserve as much as possible data
properties for data mining task, we used the perturbation model
proposed in [2], which is defined by some transformation T ,

Y = T (X), (9)

where T : Rn → Rp is a non-metric MDS transformation [17]
such that

1) T preserves the rank ordering of the distances be-
tween objects in X and Y , i.e.

||xi − xj || < ||xk − xl|| ⇐⇒
||T (xi)− T (xj)|| < ||T (xk)− T (xl)||,

(10)

and
2) T minimizes the sum of squared differences of the

distances, i.e., it minimizes∑
i,j

(||xi − xj || − ||T (xi)− T (xj)||)2. (11)
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For presentation convenience, we use different notation to
distinguish between the dissimilarities in the original space, X ,
and the perturbed space, Y . The distances between points in
Y are ||T (xi)− T (xj)|| = dij . The above first condition (10)
is satisfied through a monotonic function, f , that maintains a
monotone relationship between the dissimilarities, δij , in the
original space, Rn, and the distances, dij , in the lower space,
Rp, i.e., dij = f(δij). The estimates of point locations in the
lower dimensional space should yield predicted distances, dij ,
between the points that “closely approximate” the observed
dissimilarities, δij . To quantify the discrepancy (the stress) and
to find the best solution, the second condition (11) should be
applied.

The monotone relationship is obtained by a non-linear
approach (monotonic regression) which fits a non-linear func-
tion, f : δij 7→ dij , and minimizes the stress, S. Let
M = m(m − 1)/2 be the number of possible dissimilarities,
δij , that can be calculated from the data matrix X . The stress
is given by

S =

√√√√ M∑
i,j

(d̂ij − dij)2/
M∑
i,j

d2
ij , (12)

where d̂ij (also known as disparities) are numbers representing
a monotone least-square regression of dij on δij . That is,
the disparities are merely an admissible transformation of
dij , chosen in optimal way, to minimize S over the data
configuration matrix, Y .

Non-metric MDS is quite similar to non-parametric pro-
cedures that are based on ranked data. The dissimilarities,
δij , are ranked by ordering them from lowest to highest and
the disparities, d̂ij , should also follow the same monotonic
ordering. This constraint implies the so-called monotonicity
requirement

if δij < δkl then d̂ij ≤ d̂kl. (13)

A. Data Utility Preservation

Non-metric MDS attempts to produce a new compact
feature space with higher discriminative power [18]. In some
senses, it may be considered similar to the kernel trick which
generates a higher dimensional feature space to achieve better
separation of the classes. It is expected that non-metric MDS
can achieve good separation of negative examples from posi-
tive ones and as well as better class compactness (minimizing
the intra-class distances while maximizing the inter-class sep-
aration) [19]. That is, we want to test whether the perturbed
data, Y , can be as useful for SVM classification as the original
data by measuring classification accuracy (or analogously the
generalisation error) on both the original and the perturbed
data.

The wider the margin between two groups of data, the
better the SVM model will be at predicting the group for new
instances. Figure 1 gives an insight into how non-metric MDS
is able to discriminate two overlapping classes in a toy dataset,
providing high data utility to the classification algorithm. In
this example, the original dataset consists of 1,000 points in
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Figure 1. Toy dataset, class separation in the original data X and the
perturbed data Y using SVM classifier. For data X , the obtained hyperplane
(dashed line) fails to separate the two classes whereas, for data Y , a better
class separation has been achieved with a small relative error.

4-dimensional space. We transform the data and generate a
new dataset in 2-dimensional space. Then we train the SVM
classifier on both datasets using a 50% training set, and test
it on the remaining examples. As we expected, the perturbed
data exhibit better class compactness and separation. It turns
out that an optimal hyperplane that can successfully separate
the two classes can be easily found in the lower dimensional
space.

B. Privacy Preservation

For rigorous privacy analysis, we proposed a distance-
based attack in order to disclose the location of a given point
in the perturbed data using the technique of Multilateration
[20], which uses knowledge about the location of n + 1 data
points. However, unlike [21], we do not require any prior
knowledge beyond the known n+1 data points in the perturbed
data. Then we show how this attack would fail to disclose the
original data values because the perturbed data are subject to
high uncertainty particularly in placing data points in the lower
dimensional space.

1) Distance-Based Attack: Let X ∈ Rn be an m× n data
matrix and x be unknown point for which we want to find
the location. Given a set of n + 1 known reference points,
R = {r1, r2, · · · , rn+1}. Let dxri be the Euclidean distance
between the point x and each reference point ri. The location
of the point x is determined by minimizing

G(x) =
n+1∑
i=1

gi(x)2, (14)

where

gi(x) = [(x1−xi1)2+(x2−xi2)2+. . .+(xn−xin)2]1/2−dxri

is a non-linear function of n variables representing the
coordinates of the point x. That is, we choose estimates
x̂1, x̂2, . . . , x̂n that minimize G(x). To solve this problem
and find the minimum of the sum of squares, we use Gauss-
Newton method which starts with a guess for x and iteratively
move toward a better solution along the gradient of G(x) until
convergence.
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Input: A set of n+ 1 known points, r1, r2, . . . , rn+1,
an initial guess, x0, a tolerance, t > 0, and a
maximum number of iterations, maxItr.

Output: An estimation, x̂, of the unknown point, x.

repeat
Calculate n+ 1 distances, dxr1 , dxr2 , . . . , dxrn+1 ,
from the current xk to each reference point, r;
Evaluate gi(xk) and ∇gi(xk) for i = 1, 2, . . . , n+ 1;
Move xk a bit toward better location along the
gradient, xk+1 = ((Ak)TAk)−1(Ak)T b;
Calculate the error, err;

until the error becomes less than the tolerance,
err < t, or maximum number of iterations is exceeded,
k > maxItr ;

Figure 2. Distance-Based Attack Algorithm.

If g(x) is differentiable, then the refinement of the point
x at iteration k can be achieved by the following linear
approximation:

g(x) ≈ g(xk) +∇g(xk)T (x− xk), (15)

where ∇G(xk) is the gradient (Jacobian) matrix that composes
all first derivatives of x. To find xk+1 from xk, we should
minimize the sum of the squares of the linearized residuals,
i.e.

n+1∑
i=1

(
gi(xk) +∇gi(xk)T (x− xk)

)2

, (16)

which is equivalent to solve the system Akx−bk = 0 which is
defined by (Ak)TAkx = (Ak)T bk and always consistent even
when Akx = bk is not consistent [22]. If Ak is non-singular,
then there is a unique solution for x which represents the new
position for the point x,

xk+1 = ((Ak)TAk)−1(Ak)T b. (17)

To attack any given point, we develop a simple but effective
search algorithm that can estimate the location of the unknown
point while minimizing the sum of least-squares. The main
steps are as follows: Start with an initial guess and move
around in the direction where the relative error is minimized.
The process is then repeated until convergence as described in
Figure 2. The algorithm requires O((n+ 1)2m) assuming that
m > n+ 1.

To quantify the privacy for any given point x, we compute
the ratio of the differences between x and its estimate x̂
to the average distance from x to the n + 1 known points
r1, r2, · · · , rn+1, i.e.

ρ∗ =
||x− x̂||

1
n+1

∑n+1
j=1 ||x− rj ||

. (18)

The overall privacy is then given by

ρ =
1
N

N∑
i=1

||xi − x̂i||
1

n+1

∑n+1
j=1 ||xi − rj ||

, (19)

where N is the number of the remaining unknown points.

2) Uncertainty Measure: The process of placing points
in our model is not straightforward, but rather it depends
on preserving the order of dissimilarities. This implies that
there is uncertainty about the exact location of any given
point in the lower dimensional space, Y , and hence, a better
protection against distance-based disclosure is achieved. To
illustrate the basic idea, consider the following example. Let x
be an unknown point and on distances dxr1 , dxr2 and dxr3 from
three other known points, r1, r2 and r3, respectively. Assume
that dxr1 , dxr2 and dxr3 confirm the following order

dxr1 < dxr2 < dxr3 .

To preserve the ordering (monotonicity), the point x should
be placed somewhere within an area where the above order
is satisfied. Assume that each point, here in this example,
represents a single value, say salary. Assume also that r1 =
2K, r2 = 5K and r3 = 7K. If this information together with
the distances from each point, r, to the point x are available
to the attacker, she can guess that x is more likely to fall in an
interval, say [1K, 3K] with an assumption that the minimum
salary is 1K, as this would ensure the above ordering. Indeed,
the probability that any attacked point locates within any given
area is a measure of how well the original data are hidden. The
probability P that the point x locates in area E, where E ∈ R
is the domain of all possible outcomes, is

P (E) =
∫

E

f(x)dx. (20)

This suggests that the probability of finding a given point
x is inversely proportional to the area where the rank order
is satisfied. The information available from the rank ordering
would make the solution of non-metric MDS highly uncertain,
as the points are not located to specific locations but rather to
areas where the ordering is preserved. Therefore, the distance-
based adversary attacks would fail to determine the exact
location of the point.

V. EXPERIMENTS

For an empirical evaluation of training the SVM classi-
fier on our privacy-preserving model, we use four numerical
datasets collected from the UCI machine learning repository
[23]. The datasets are Breast Cancer (699/9), Credit Approval
(690/14), Pima Diabetes (768/8) and Hepatitis (155/19). All
datasets have a binary class, i.e., positive and negative groups.

As we are not interested in the visual representation of
data in the lower space, rather in achieving high data utility
as far as possible, for some of the experiments the number of
dimensions p was fixed to n − 1, and the data projected into
that lower dimensional space. Then, we used the generated
data, Y , in p-dimensions, to carry out the SVM classification
and to compare it with the results obtained from the original
data, X .
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TABLE I. THE ACCURACIES OF LINEAR SVM ON THE ORIGINAL
DATA, X , AND THE PERTURBED DATA, Y , AT REDUCED DIMENSIONS.

Dimension(n) BreastCancer CreditApproval PimaDiabetes Hepatitis
X(n) 0.9685 0.8623 0.7800 0.8099

Y (n− 1) 0.9692 0.8638 0.7698 0.8314
Y (n− 2) 0.9557 0.8584 0.7693 0.7930
Y (n− 3) 0.9749 0.8725 0.7396 0.7721
Y (n− 4) 0.9718 0.8649 0.7464 0.7721
Y (n− 5) 0.9690 0.8557 0.7326 0.7876
Y (n− 6) 0.9618 0.8630 0.7235 0.7876

To perturb data X and perform the classification, we used
an implementation in Matlab. The dissimilarities, δij , between
the objects in X were first calculated. Then, we transformed
the dissimilarities and generated Y . The initial configuration
was chosen randomly. The stress S (12) was used as a data
utility measure, as it determines the size of change in the
interpoint distances in data Y as a result of the transformation.

We evaluated the classification accuracy on both the orig-
inal and the perturbed data. 10-fold cross-validation was per-
formed and the error rates of the testing set were evaluated
for both data. The regularisation parameter, C, was set to 1 in
all experiments because, in this set of experiments, our main
concern is not to get an optimal SVM model but rather to
compare the SVM models applied on the original and the
perturbed data. Table I summarises the average accuracies of
all the datasets at different dimensions using a linear SVM. For
Pima Diabetes dataset, the accuracy on both the original and
the perturbed data is lows because the data have imbalanced
classes which inherently biased toward the majority concept.
However, the difference in accuracy at the n− 1 dimensional
space was still plausible (0.01) exhibiting low distortion.
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Figure 3. An estimation of the classes’ posterior probability in the original
data (solid lines) and the perturbed data (dashed lines).

To show the usefulness of the perturbed data in terms
of data utility, we assume independence of the variables and

plot the distribution of the estimated posterior probability of
assigning an object x to a class Ci. From naı̈ve Bayes theorem
with strong (naive) independence assumptions, the posterior
probability is P (Ci|x) = P (x|Ci)P (Ci)/P (x). This would
help in estimating the quality of the classification on the
perturbed data in comparison with the original data because it
may give an insight of the classes overlapping in the original
and in the perturbed space. As the outputs of the classifier
are expected to approximate the corresponding posteriori class
probabilities if it is reasonably well trained, P (Ci|x) may also
help to discover any potential decision boundaries that are
typically expected to be close to Bayesian decision boundaries
[24]. The results are shown in Figure 3. The distributions of
classes before and after the perturbation almost coincide for
all datasets. For the Hepatitis dataset, the separation of classes
in both perturbed and original data appears to be better so an
optimal hyperplane should be easily found. For instance, the
accuracy on the perturbed data at the n − 1 dimensional was
2% better than on the original data.
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Figure 4. Classification error of SVM (with different kernels linear,
polynomial and radial basis function) using training set with different sizes
on the original data (solid lines) and the perturbed data (doted lines).

To evaluate the generalisation error when the SVM clas-
sifier is trained using a different training set size, we split
each dataset into a training set containing 10%, 20%, . . . , 90%
of the samples and a testing set containing the remaining
corresponding samples. The results are depicted in Figure 4.
The SVM error rates on the perturbed data were markedly
lower, suggesting improved performance of the classifier on
the perturbed data compared with the original data.

Finally, to assess the privacy of our model, we transformed
the data into 6 different dimensions and attempted to estimate
the original data values using distance-based attack. The num-
ber of known points was also incrementally varied to see its
effect on the accuracy of locating unknown points. The average
privacy of each dataset is shown in Figure 5. The results
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Figure 5. Average privacy (ρ) at different dimensions using different numbers
of the known points.

indicate more resistance to the attack, especially at higher
dimensions, and also confirm that the error of determining the
location of an unknown point increases when the number of
dimensions increases. That is, transforming the data into the
few lower dimensions gives reasonable utility and privacy.

VI. CONCLUSION

The experiment results confirm that the perturbation
method using non-metric MDS can provide high uncertainty
for privacy preservation without affecting the accuracy of the
SVM model and hence the utility. The perturbed data are still
good enough to provide for reasonable discrimination between
classes for SVM, and in some cases the data in the lower
dimensionality provides improved classification performance.
The main advantages of our method are that the perturbed data
are independent from the original data and subject to a high
degree of uncertainty; only the rank-order of dissimilarities
are non-linearly mapped into distances in the perturbed data.
In other words, the attacker knows nothing about the mapping
function. Finally, most privacy-preserving data mining methods
attempt to modify the learning algorithms in order to protect
the original values from disclosure. This could decrease the
efficiency of the algorithms, compromising the quality of the
results. In contrast, the proposed method allows one to apply
the algorithms directly to the perturbed data without any
modification.
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