

Smurf Security Defense Mechanism with Split-protocol

Harold Ramcharan

Department of Computer and Information Sciences
Shaw University

 Raleigh, NC, USA
hramcharan@shawu.edu

Bharat Rawal

Department of Computer and Information Sciences
Shaw University

 Raleigh, NC, USA
brawal@shawu.edu

Abstract—Network intrusion has been a difficult problem
to solve due to the rapid growth of the Internet in recent years.
Securing computers from harmful attacks are becoming the
unprecedented challenging issues for internet users. Every day
the recognition of new attacks is becoming a harder problem to
crack in the field of Computer Network Security. Currently,
Denial of Service (DoS) attacks is affecting the large number of
computers in the world on a daily basis. Detecting and
preventing computers from DoS attacks is a major research
topic for researchers throughout the world. The migratory
nature and role changeover abilities of servers in Split-protocol
avoid bottleneck on the server side. It also offers the unique
ability to avoid server saturation and compromise from DoS
attacks. The goal of this paper is to present the idea of Split-
protocol as a protection technique against DoS attacks.

Keywords-Split Protocol; Protocol splitting; DoS; Tribal

Flood Network; Bare Machine Computing.

I. INTRODUCTION

Overloaded serves are always at a higher risk for

security compromise. The Split-protocol [1] offers a

mechanism for server change over without involving clients.

For example, as shown in Figure 1, a client on the network

sends a request through the Connection Server (CS). This

request will then be forwarded to the Data Server (DS),

which in turn sends the requested data to the client. The

symmetrical structure of CS and DS allows changing roles

dynamically.

Should DS1 server crash, DS2 server will take the IP of

DS1 and all of its data will be relinquished to DS2.

Whenever DS1 is overloaded (CPU is around 96%), DS1

will shutdown as DS* takes over (DS* is back up to DS1,

such as DS2, DS3…). By toggling between DS1 and DS*,

one can avoid saturation of the server. A detail mechanism

is explained in Section II. This mechanism is similar to the

mobile defense mechanism [24].
Protocol splitting enables TCP to be split into its

connection and data phases, so that these phases are
executed on different machines during a single HTTP
request [1]. In the basic form of splitting, the state of the
TCP connection to the original server is transferred to a
Data Server after receiving the HTTP Get request with no
client involvement. The Data Server then transfers the data
to the client, and connection closing can be handled by
either the original server or the Data Server. Many

variations on basic TCP/HTTP splitting are possible and
have been used to improve Web server performance by use
of delegation [1], split mini-clusters [2], and split
architectures [3]. The security and addressing issues that
arise due to protocol splitting can be solved in a variety of
ways. The simplest solution is to deploy the servers in the
same subnet or in the same Local Area Network (LAN) if
host-specific routes are supported. The latter is used in this
paper for testing migration performance by splitting. More
generally, splitting can be applied to protocols other than
TCP/HTTP by identifying protocol phases that are
amenable to splitting. In this paper, we adapt TCP/HTTP
splitting to devise a novel technique for Web server
migration. It enables an alternate Connection Server to

dynamically take over active TCP connect ions and
pending HTTP requests from the original Connection
Server upon receiving a special inter-server message from
it. Migration based on splitting can be used to improve
Web server reliability with only a small penalty in
performance. Additional benefits of splitting such as Data
Server anonymity and load sharing can also be achieved
with this approach to migration. We first implement
Web server migration using split bare PC Web servers [1]
that run the server applications with no operating system or
kernel support. We, then, conduct preliminary tests to
evaluate performance with migration in a test LAN where
the split bare PC servers are located on different subnets.
Protocol splitting is especially convenient to implement on
bare machine computing systems due to their intertwining
of protocols and tasks. However, the migration technique
based on splitting is general, and can be implemented using
conventional servers that require an operating system or
kernel to run [4].

The rest of the paper is organized as follows. Section II
discusses related work. Section III describes the Web server
migration, and its design and implementation. Section IV
describes a Smurf attack. Section V discusses possible
ways to address these attacks. Section VI presents the
design and the implementation of the proposal. Section VII
contains the conclusion.

II. RELATED WORK

When an increasing number of users (or processes)
accessing a website is beyond the tolerable threshold, the
performance of the web server decreases. This is due to
higher CPU utilization rates, thereby resulting in a greater

102Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

response time. Furthermore, as the response time increases,
the ratio of the users accessing the site will also decrease.
This higher CPU utilization can occur due to intruders
launching deliberate attacks. These unwanted users use
unnecessary data and techniques to occupy most of the
server’s bandwidth, degrading the server performance, thus,
rendering the site useless. Kuppusamy and Malathi [6],
implemented a particular technique to detect and prevent
both individual Denial of Service (DoS) attacks [8], as well
as Distributed Denial of Services (DDoS) attacks [6]. DDoS
occurs when a multitude of distributed attack is launched
against a single site or server, as opposed to a single user
staging direct attacks. In response to mitigating the effects
of spoofing IP source addresses, as is common in DoS
attacks where packets lack a verifiable IP source address,
the unicast reverse path forwarding (uRPF) [7] is a valuable
tool for this purpose. It requires that a packet be forwarded
only when the source addresses are valid and consistent with
the IP routing table, or ensuring that the interface that the
packet arrives on is matches the same used by the router to
reach the source IP of the packet. If the interface does not
match, then the packet will be dropped.

In Hop-Count Filtering (HCF) [8], each end-system
maintains a mapping IP address aggregates and valid hop
counts from the origin to the end system. Packets arriving at
destination with significant variation in hop counts are
considered unreliable and are either discarded or flagged. Li
et al. [9] described SAVE, a mechanism for propagating
only valid prefixes along the same paths that data packets
will follow. By using the prefix and path information,
routers can thus construct the appropriate filtering
mechanism along the paths. Bremler-Barr and Levy
proposed a Spoofing Prevention Method (SPM) [10], where
packets are exchanged using an authentication key affiliated
with the source and destination domains. Nowadays, there is
an ever growing threat of intruders to launch attacks
utilizing both-nets [11]. In this case, since the attacks are
carried out through compromised intermediaries, often
termed bots, it is difficult to discover the initiator of the
attacks. However, current trends indicate that IP spoofing
still persists [12] [13]. Man-in-the-Middle attacks (MitM), is
a variant of TCP hijacking, as well as DNS poisoning [14]
[15], and are carried out by the attacker masquerading as the
host at the other end of the communication. IP spoofing
attack is a hijacking technique in which an attacker
masquerades as a trusted host to hide his identity [21].

III. MIGRATION WITH SPLIT-PROTOCOL

A. Overview

Split protocols require a minimum of two servers, i.e.,
a Connection Server and a Data Server. The CS establishes
the connection via SYNs and ACKs. When the HTTP
Get is received by the CS, it sends an ACK to the client,
and uses an inter-server packet message referred to as a
Delegate Message (DM). The DM1 is used to transfer
the TCP state to the DS, which sends the data to the
client. In bare PC servers, the TCP state and other

attributes of a request are contained in an entry in the TCP
table (known as a TCB entry). The CS also handles the
TCP ACKs for the data and the connection closing via
FINs and ACKs. Typically, the CS has information about
the requested file (i.e., its name, size, and other attributes),
and the DS has the actual file (the CS may or may not have
a copy). When the DS gets DM1, it creates its own TCB
entry and starts processing the request. When a DS sends
data to the client, it uses the CS’s IP address. After the CS
receives the FIN-ACK, it sends another inter-server
packet DM2 to DS. The receipt of DM2 closes the state of
the request in the DS. More details of protocol splitting
are given in a Split-protocol technique for Web Server
Migration [5]. For Web server migration, inter server
packet would be sent with a special massage, indicating
that the CS is going to crash, and the TCB entry moved
from one CS to another CS (called CS* for convenience),
enabling the latter to take over the connection. Migrating
server content in this manner and requiring that CS and
CS* use the same IP address for two-way communication,
poses a new challenge: now CS* must be able to send and
receive packets with the IP of CS, which has a different
prefix. Furthermore, the client must remain unaware that
migration or protocol splitting has occurred. The main
focus of this work is to address these issues and migrate (or
transfer) a client connection to a new server, when the
current connection server detects that it is going down or is
being taken down. The means by which the server might
detect its imminent failure is beyond the scope of this
paper.

B. Design and Implementation of Role Change

Before the CS shuts down, it must send all of its pending

requests to its alternate CS*. We assume that CS* is

connected to the network, but that it will not process any

normal requests (i.e., it is in stand-by mode). Also, CS and

CS* are able to communicate with each other. Prior to the

connection transfer, inter-server packets are being sent from

CS to the DS according to the usual protocol splitting [6]

when GET requests arrive. Under large load conditions, it is

possible that CS could have many unprocessed requests in

its TCP table. In addition to these pending requests, new

requests may still continue to be sent by the client during

the time between when CS shuts down and CS* takes over.

These requests will be lost and will be processed later by

CS* when the client retransmits them. Before CS shuts

down, it also sends a final inter-server packet to CS* to

confirm it is shutting down. Only minimal modifications

had to be made to the current split server and inter-server

packet format to implement the migration.

Alternatively, the DS can also assume the role of CS*

(instead of using a separate CS*) if CS sends its pending

requests to DS. If DS has some of its previous data transfer

requests still to be processed, it will complete them before it

begins to act as CS*. Protocol splitting is designed so that

the same server can provide services as a CS and/or a DS;

so, it is capable of assuming the role of CS* to implement

the migration.

103Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

CSs in Split-protocol do not reserve resources for all

requests it receives; this increases the capacity of servers in

handling many folds of higher load than conventional

servers. Also, the self-delegating mechanism in the splitting

protocol allows the server to deny accepting any additional

request to process, and changes his identity (IP) within a

single TCP connection. Even if it changes its identity, it will

still continue to serve that old request already in the queue

(receiving system), until completion or reset. While original

server (CS) is recovering, a new server (CS*) who has

replaced it, will manage new requests. When it reaches a

saturation point, it will also change its identity (IP address),

and this time, the original server will handle all new

incoming traffic. Toggling the same IP address between

multiple servers will minimize the incoming load on Split-

servers [5].

Figure 1. Split Architecture

IV. SMURF OR FRAGGLE

Smurf attacks can be considered one of the most
overwhelming of the DoS attacks. In the Smurf [Internet
Control Message Protocol (ICMP) Packet Magnification]
attack [24], the attacker sends an ICMP echo request (ping)
to a broadcast address with a spoofed source address. This
source address is that of the victim’s IP address. All the
machines, when responding to the echo request, will flood
the victim’s system with their ICMP echo replies. As the
flooding continues, this will ultimately results in the victim
system crashing or freezing.

Smurf attack targets all available network bandwidth by
consuming it with the intention to disrupt system’s
resources through bandwidth amplification. On a multi-
access broadcast network, hundreds of systems could be
responding to each packet sent, which could flood and
render the victim’s system useless even though using a
much higher bandwidth type system [22]. The cousin of the

Smurf’s attack is the Fraggle attack, which uses the UDP
echo packets in place of the ICMP echo packets in the same
manner [35].

The recent rise in DoS attacks targeting high-profile web
sites shows how overpowering these attacks are and how
unprotected the Internet is under such attacks [28]. We
present a survey of the up-to-date defense strategies against
Denial of Service (DoS) attacks that gives hope in this area.
We also present the weaknesses of the available methods
pointing to the fact that no distinct adopted method has been
in place. Also, future trends in DoS defense mechanism are
discussed. The primary targets for these attacks are Web
servers own by banks, online gaming websites, credit card
payment gateways, domain name servers (DNS), E-
commerce application tools, and Voice-over-IP (VoIP)
services by prohibiting customer’s access, or limiting access
to resources such as bandwidth or degrading usage of these
applications [21] [23].

The commonly employed attacks are:

A. Flooding

Flooding is the most basic method aimed to cripple a
network by overwhelming it with large amounts of traffic
directed to the victim. This utilizes all of the system
resources [23] where the victim, in this case, can be a single
PC or a high profile web server. The severity of such an
attack depends more on the volume of traffic rather than the
contents of the attack traffic.

B. Malware

Malware is malicious software used or programmed by
attackers designed to overwhelm the system thereby
allowing them unauthorized access. They will then have the
capability to perform malicious operations. Known types of
Malware includes: viruses, Trojan horse, adware and
spyware, root kits, etc. The intended benefits for the
perpetrator writing malware can range from financial gain to
vengeance or for fun in seeing how fast and effective it can
spread [24] [33]. These attacks exploit flaws in software
vulnerabilities, such as in windows operating system or web
server defects, cause these systems to reboot, crash or
impede the system performance [25].

C. DoS attacks

Generally, DoS attacks can be categorized into two
forms: (1) those that flood services affecting bandwidth, and
(2) those that crash services by consuming resources [26].
Figure 2 describes different methods of DoS attacks. These
DoS attacks become amplified when sent from unknown &
unlimited sources termed Distributed Denial of service
attack (DDoS) and usually occur in two phases, the
recruitment phase and the actual attack [27] [28].

104Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

Method Types

Protocol Based Attack ICMP Flood, SYN Flood

Application Based Attack HTTP Flood , SIP Flood

Distributed Reflector Attack DNS Amplification Attack

Infrastructure Attack

Figure 2. Methods of attack [28]

V. DEFENSE MECHANISM

From the standpoint of DoS, it is very difficult to
completely remove the risk associated with such attacks.
However, risk mitigation can be implemented through
Avoid-Detect-Prevent cycle, as described here.

A. Avoid

Avoidance is an essential part of any defensive strategy
even though many web sites choose to ignore it. Attacks can
best be studied through collecting technical data such as
network topology, Internet Service Provider (ISP) vendor
agreements, insurance policy coverage, etc. However, from
a risk management standpoint regarding DoS defense
system, the need to identify and label critical services versus
non-critical ones is important. The same apply for the
corresponding vendors providing those services on the
network. It is also important to have discussion with
management, knowledgeable technical staff, service
vendors, and law enforcement

B. Design network or system for survivability

This refers to the separation of critical services from non
critical ones.

C. Monitoring

Prior to implementing monitoring procedures, special
attention should be focused on target resources should an
attack occur. Monitoring however, can be performed at two
distinct levels; (a) at the network level, and (b) at the host
level. Risks from DoS attacks can be reduced through the
creation of effective incident response plans, establishing a
sound partnership with service providers (vendor), and
firewalls as intrusion prevention systems [26].

D. Detect

Modern networks can be very complex and diverse,
therefore, an effective detection system is valuable to detect,
prevent, and alert personnel of any DoS attacks in real time.
Detecting an attack before becoming full scale can be vital
to an organization’s security posture. Modern Intrusion
Detection Prevention Systems (IDPS) come equipped to
combat these attacks and maintain state [24]. Detection
systems should provide multiple detection mechanism,
alerts, response mechanisms [25], and short detection time
with low false positive rate [24]. These intrusion detection
systems can take several forms such as anomaly detection,
signature-based detection, and DoS attack detection, as
discussed below [20].

E. Signature-based detection

This is simply searching network traffic and looking for
a packet or series of bytes (signatures), which is considered
malicious codes and comparing it to a set of attack
signatures in order to detect the presence of an attack. A
database of known signatures is usually developed by
antivirus vendors for detecting known signatures [20]. This
technique is also used by Snort (an IDPS), as it can perform
real–time packet content searching and matching [19]. Snort
and other IDPSs have one major weakness; they may take
some time for a new exploit to become known. Later, after
this new attack is known, a new signature can be developed
and implemented. But, until then, well-defined signatures
may go undetected [27].

F. Anomaly-based detection

This detection mechanism focuses on examining
network traffic and comparing it with an established
baseline [19], and is characterized by a set of pre-
programmed thresholds [26]. This includes statistical
approaches together with varying techniques such as those
adapted from machine learning Models and Algorithms
[17]. Neural Networks [31] and Bayesian Learning [32] can
also be applied.

G. DoS-attack-specific detection

DoS attack traffic is instituted by the attacker as his
objective is to direct maximum traffic to launch a powerful
attack and may generate random patterns to make an attack
signature undetected.

H. Prevent

Attack prevention measures aim to detect and prevent
attacks before becoming full scale. Distributed packet
filtering is possible through local routing information in
order to prevent severe flooding attacks [24]; thus, a
reaction and alert mechanism must be instituted to minimize
the loss potential. This response mechanism should be
effective in providing early detection automatically, dodging
network overloading, and localizing the attack source with
trace back techniques [18] [19], or mitigating the propensity
of the attack [16] by denying unwanted packets.

I. Reaction

Reaction methods include effective incidence response
plan, efficient backup systems, and filtering excessive
traffic.

There are several mitigation techniques implemented for

DoS and DDoS attacks. Avi Chesla [30] introduces an
anomalous pattern for an HTTP flood protection. In this
procedure, mitigation is controlled through a feedback
mechanism that tunes a level of rate limiting factors. This is
required for mitigating the attack effectively while allowing
legitimate traffic to pass. A reliable trigger for an automated
response system may be difficult to implement. Specht and
Lee’s [30] mitigation technique is based on similarities and
patterns in different DDoS attacks. DDoS attack tools are
normally designed to be friendly with different Operating

105Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

Systems (OS). Any OS system (such as UNIX, Linux,
Solaris, or Windows) may have DDoS agents or handler
code designed to work on it. Normally, a handler code is
intended to support an OS that would be positioned on a
server or terminal at either a corporate or ISP site. Most of
the proposed mitigation mechanisms are also OS dependent.
Split-protocol implementation on Bare Machine Computing
(BMC) paradigm [4] does not use any kind of operating
system. So, practically it is impossible to attack any BMC
based system. On BMC, any DDoS agent or handler code
designed for an OS cannot run. BMC codes are self-
content. In addition, extra codes on existing applications or
processes would not be allowed to run on the BMC system.

VI. DESIGN AND IMPLEMENTION

Split-protocol client server architecture design and
implementation differ from traditional client server designs.
As the traditional client server architecture is modified in
this approach, we have designed and implemented a client
server based on a bare PC, where there is no traditional OS
or kernel running on the machine. This made our design
simpler and easier to make modifications to conventional
protocol implementations. Figure 3 shows a high level
design structure of a client server architecture in a bare PC
design. Each client and a server consist of a TCP state table
(TCB), which consists of the state of each request. Each
TCB entry is made unique by using a hash table with key
values of IP address and a port number. The CS and DS
TCB table entries are referred by IP3 and Port#. The Port#
in each case is the port number of the request initiated by a
client. Similarly, the TCB entry in the client is referenced by
IP1 and Port#.

The TCB tables form the key system component in the

client server designs. A given entry in this table maintains
complete state and data information for a given request.
This entry requires about 160 bytes of relevant information
and another 160 bytes of trace information that can be used
for traces, error, log, and miscellaneous control. This entry
information is independent of its computer and can be easily
migrated to another PC to run at a remote location. This
approach is not the same as process migration [5], as there is
no process information contained in the entry. The inter-
server packet is based on this entry to be shipped to a DS
when a GET message arrives from the client. Notice that
the client uses IP1 and Port# to address the TCB entry. That
means, when DS sends data or other packets, then it must
use IP1 as its source address and its own MAC address in
the packet. However, a client must be aware of IP1 and IP2
addresses to communicate to two servers for different
purposes. The client knows IP1 through its own request and
by resolving the server’s domain name.

The client does not know IP2 address to communicate

during the data transmission. We solved this problem by
including the IP2 address in the HTTP header using a
special field in the header format. In this design, a client
could get data from any unknown DS and it can learn the
Data Server’s IP address from its first received data (i.e.,

header). This mechanism simplifies the design and
implementation of Split-protocol client server architecture.
This technique also allows the CS to distribute its load to
DSs based on their CPU utilization without implementing a
complex load balancing technique [1]. With implementing
limited ACKs, the linear performance improvement
continues up to 4 DSs [3]. This is also expected as CS poses
no bottleneck for 4 DSs. For limited ACKs, the number of
DSs connected to a single CS can be estimated to be 13 by
extrapolating the CS CPU time and the number of DSs.

Figure 3. Design Structure

VII. CONCLUSION

Connection server in Split-protocol technique does not
reserve any resource for all requests it receives, therefore it
can handle many connection requests. In our empirical data,
it suggests that CS only reserve 1% of CPU cycles
compared to 95% for DS. Since there are many DSs in the
system, they can handle very large loads without
compromising services.

Also, the self-delegating mechanism in the split-protocol
allows the server to deny accepting any additional request to
process, and changes his identity within a single TCP
connection. As shown in Figure 4, toggling the same IP
address between multiple servers minimizes the incoming
load on Split-servers. In multiple ways, both the Smurf
attack and the Fraggle attack involves the attacker, the
intermediary, and the victim.

106Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

Figure 4. Role Change Over

Normally, both the intermediary and victim of this attack
may suffer degraded network performance either on their
internal network or on their connection to the Internet.
Performance may be degraded to the point that the network
cannot be used. Most of the time, the attacker identifies the
underlying operating system from data structure of
communication packets, which can further maximize the
attack. Protocol-splitting, in our study, hides the underlying
operating system thereby making it more difficult for Smurf
attacker to circumvent. Furthermore, implementing
protocol-splitting on BMC makes it harder to run a DDoS
agent or handler code designed to work on operating
systems. The anonymous nature of Data Server and
migratory capability within single connections of Split-
protocol architecture offers strong defensive mechanism
against Smurf attacks.

REFERENCES

[1] B. Rawal, R. Karne, and A. L. Wijesinha. “ Splitting HTTP
Requests on Two Servers,” The Third International
Conference on Communication Systems and Networks:
COMPSNETS 2011, January 2011, Bangalore, India.

[2] B. Rawal, R. Karne, and A. L. Wijesinha. “ Mini Web Server
Clusters for HTTP Request Split,” 13th International
Conference on High performance Computing and
Communication, HPCC-2011, Banff, Canada, Sept 2-4,
2011.

[3] B. Rawal, R. Karne, and A. L. Wijesinha. “Split Protocol
Client/Server Architecture,” The 17th IEEE Symposium on
Computers and Communications - ISCC 2012, July 1-4,
2012, Cappadocia, Turkey.

[4] L. He, R. K. Karne, and A. L. Wijesinha, “The Design and
Performance of a Bare PC Web Server,” International Journal
of Computers and Their Applications, IJCA, vol. 15, no. 2,
June 2008, pp. 100-112.

[5] B. Rawal, R. Karne, and A. L. Wijesinha, H. Ramcharan and
Songjie Liang. "A Split-protocol Technique for Web Server
Migration,” The 2012 International workshop on Core

Network Architecture and protocols for Internet (ICNA-2012)
October 8-11, 2012, Las Vegas, Nevada, USA .

[6] K. Kuppusamy and S. Malathi, “An Effective Prevention of
Attacks using GI Time Frequency Algorithm under DDoS”,
IJNSA journal, vol. 3, no. 6, November 2011, pp. 249-257.

[7] Team Cymru Inc “Bogon route server project”, http:
 //www.cymru.com/BGP/bogon-rs.htm.[Retrieved:July, 2013].
[8] K. Park and H Lee, “On the Effectiveness of Probabilistic

Packet Marking for IP Trackback under Denial of Service
Attack,” Network Systems Lab, Department of Computer
Sciences, Purdue University, West Lafayette.

[9] C. Labovitz, D. McPherson and F. Jahanian, “Infrastructure
attack detection and mitigation,” ACMSIGCOMM 2005
conference, August 2005.

[10] J. Li, J. Mirkovic, M. Wang, P. Reiher and L. Zhang, “SAVE:
Source Address Validity Enforcement protocol,” In IEEE
INFOCOM, vol.6, no.2, June 2002, pp. 81-95.

[11] S. Kandula, D. Katabi, M. Jacob and A. Berger, “Surviving
Organized DDoS Attacks that Mimic Flash Crowds,”
NSDI'05 Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation, 2005, vol.2,
pp 287 – 300.

[12] D. Moore, G. Voelker and S. Savage “Inferring Internet
Denial-of-Service activity,” In proceedings of 10th Usenix
Security Symposium, August 2001, pp.9-22.

[13] R. Pang, V. Yegneswaran, P. Barford, V. Paxson and L.
Peterson, “Characteristics of internet background radiation,”
In Proceedings of ACM Internet Measurement Conference,
October 2004.

[14] M. Dalal, “Improving TCP's robustness to blind in-window
attacks,” Internet- Draft, May 2005, work in progress.

[15] R. Beverly and S. Bauer. “The Spoofer Project: Inferring the
extent of Internet source address filtering on the internet,” In
Proceedings of Usenix Steps to Reducing Unwanted Traffic
on the Internet Workshop SRUTI'05, 2005, pp.53-59.

[16] P. Reiher, J. Mirkovic and G. Prier,“ Attacking DDoS at the
source,” In Proceedings of the IEEE International Conference
on Network Protocols10, Paris, France, November 2002.

[17] T. Shon, Y. Kim, C. Lee, and J. Moon, “A machine learning
frame work for network anomaly detection using SVM and
GA,” IEEE Workshop and Information Assurance and
Security US Military Academy West Point NY, 2005.

[18] H. Burch and B. Cheswick, “Tracing anonymous packets to
their approximate source,” In Proceedings of the USENIX
Large Installation Systems Administration Conference, New
Orleans, USA, December 2000, pp. 319–327.

[19] M. Roesch, “Snort - lightweight intrusion detection for
networks” http://www.snort.org [retrieved: July, 2013].

[20] Y. Xu and R. Guerin, “On the robustness of router-based
denial-of-service (dos) defense systems,” SIGCOMM
Comput. Commun. Rev., vol. 35, no. 3, pp. 47–60, 2005.

[21] K. Kuppusamy and S. Malathi, “Prevention of Attacks under
DDoS Using Target Customer Behavior “IJCSI
International Journal of Computer Science Issues, vol. 9,
Issue 5, no. 2, September 2012.

[22] S. Ratnaparkhi and A. Bhangee, “Protecting Against
Distributed Denial of Service Attacks and its Classification: A
Network Security Issue,” IJCSI International Journal of
Computer Science Issues, vol. 3, issue 1, Jan 2013.

[23] J. Mirkovic and P. Reiher, “A Taxonomy of DDoS Attack
and DDoS Defense Mechanisms,” ACM SIGCOMM
Computer Communications Review, volume 34, no. 2, April
2004, pp. 39-53

[24] P Tao, C Leckie and K Ramamohanarao. “Survey of
Network-based Defense Mechanisms Countering the DoS and
DDoS Problems,” ACM Computing Surveys (CSUR), vol.
39, issue 1, article no. 3, August 2007.

[25] D. Slee, “Common Denial of Service Attacks,” Jul 10, 2007.
http://www.infosecwriters.com/texts.php?op=display&id=589

[Retrieved: July, 2013]

107Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

http://triton.towson.edu/~karne/dosc/paper17/bharat2.pdf
http://triton.towson.edu/~karne/dosc/paper17/bharat2.pdf
http://triton.towson.edu/~karne/dosc/paper17/bharat2.pdf

[26] F. Gong, “Detection Techniques: Part III Denial of Service
Detection,” McAfee Network Security Technologies Group
Jan 03.

[27] H. Alefiya, J. Heidemann, and C. Papadopoulos, "A
framework for classifying denial of service attacks," 2003
conference on Applications, technologies, architectures, and
protocols for Computer Communications. ACM, 2003.

[29] P. Jain, J Jain and Z Gupta “Mitigation of Denial of Service
(DoS) Attack,” International Journal of Computational
Engineering & Management IJCEM 11 (2011).

[30] A Chesla, "Generated anomaly pattern for HTTP flood
protection." U.S. Patent no. 7,617,170. 10 Nov. 2009.

[31] S. M. Specht and R. B. Lee. "Distributed Denial of Service:

Taxonomies of Attacks, Tools, and Countermeasures." In
ISCA PDCS, pp. 543-550. 2004.

[32] A. Chonka, S. Jaipal and Z. Wanlei, "Chaos theory based

detection against network mimicking DDoS attacks."

Communications Letters, IEEE 13.9 (2009): pp 717-719.
[33] N Abouzakhar, A Gani, G Manson, M Abuitbel and D King,

"Bayesian learning networks approach to cybercrime

detection." proceedings of the 2003 Postgraduate Networking

Conference (PGNET 2003), Liverpool, United Kingdom.
2003.

[34] S. Kumar, “Smurf-based distributed denial of service (ddos)

attack amplification in internet,” In Internet Monitoring and

Protection, ICIMP 2007. IEEE Second International
Conference July 2007, San Jose, California.

[35] http://www.javvin.com/networksecurity/SmurfAttack.html.

[Retrieved: July, 2013].

108Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

