
CAVEAT: Facilitating Interactive and Secure
Client-Side Validators for Ruby on Rails applications

Timothy Hinrichs∗, Michael Cueno∗, Daniel Ruiz∗, V.N. Venkatakrishnan∗ and Lenore Zuck∗
∗Dept. of Computer Science

University of Illinois at Chicago
Chicago, IL 60607 USA

Email: hinrichs, mcueno2, druiz22, venkat, zuck@uic.edu

Abstract—Modern web applications validate user-supplied
data in two places: the server (to protect against attacks such
as parameter tampering) and the client (to give the user a
rich, interactive data-entry experience). However, today’s web
development frameworks provide little support for ensuring that
client- and server-side validation is kept in sync. In this paper,
we introduce CAVEAT† , a tool that automatically creates client-
side input validation for Ruby on Rails applications by analyzing
server-side validation routines. The effectiveness of CAVEAT for
new applications is demonstrated by developing three custom
apps, and its applicability to existing applications is demonstrated
by examining 25 open-source applications.

Keywords—Web applications, Data validation, Frameworks

I. INTRODUCTION

Interactive processing and validation of user input are
increasingly becoming the de-facto standard for Web appli-
cations. With the advent of client-side scripting there has been
a rapid transition in recent years to validate user input in the
browser itself, before it is submitted to the server. This client-
side validation offers numerous advantages, among which are
faster response time for users and reduction of load on servers.
Yet, client-side validation exposes new vulnerabilities since
malicious users can circumvent it and supply invalid data to the
server. To defend against these so-called parameter-tampering
attacks, the server must therefore perform data validation that
is at least as strict as that of the client. The practical problem
with this situation is that the client and server are often
written in different programming languages, thereby requiring
the development team to maintain two separate code bases that
implement similar but not identical functionality, a notoriously
difficult problem.

Several recent studies [1], [2], [3], [4] have uncovered
parameter tampering vulnerabilities in both open source and
commercial websites, most notably in websites for banking and
on-line shopping, as well as those accepting payments through
third party cashiers (such as PayPal and AmazonPayments.)
These vulnerabilities enable takeovers of accounts and allow a
malicious user to perform unauthorized financial transactions.

Ruby on Rails (RoR) has recognized the importance of
server-side validation and includes special machinery to make
the development and maintenance of server-side data validation
especially simple. RoR includes several built-in routines that
perform common data validation (e.g., checking that a field

†Compiler For Automated Validation Extraction Analysis and Translation

is numeric), and a developer only needs to declare which of
those routines ought to be applied and to which data elements.
For any validations not covered by these built-in routines, the
developer extends the validators available in RoR by writing
custom code. However, RoR fails to provide machinery that
makes client-side validation as easy as server-side validation.
Developers wanting to implement both client- and server-
side validation must still write and maintain those validation
routines in two separate code bases.

One popular extension to RoR, called
client_side_validations [5], simplifies the creation of
client-side validation by analyzing the built-in validations
of a RoR application and automatically replicating those
validations on the client. Each time a user enters a piece of
data on one of these client_side_validations-enabled
web forms, the validation routines immediately check for
errors and signal them to the user, despite the fact that the
developer implemented no client-side validation at all. This
paradigm of copying server-side validation to the client is
advantageous because it incentivizes the developer to spend
time and energy perfecting the server-side validation code
(which is necessary to protect the server against parameter-
tampering attacks), achieves the desired client-side validation,
and avoids the problem of manually maintaining two separate
code bases with similar functionality. The main limitation
of client_side_validations is that it fails to move the
custom validators written by the developer over to the client.

In this paper, we present the design and implementation of
CAVEAT†, a tool for analyzing and translating custom Ruby
on Rails validators from the server to the client automatically.
Developers who plan to employ CAVEAT write their cus-
tom validators in a fragment of Ruby that admits stronger
compile-time analysis than the full Ruby language. The de-
veloper also follows several new conventions to guarantee that
CAVEAT is sound. The developer can also provide hints to
CAVEAT to control which server-side validations to move to
the client, thereby leveraging application-specific information
known only to the developer.

This paper makes the following contributions:

• Identification of a fragment of RoR custom validation
that admits strong compile-time analysis.

• Design and implementation of a tool for replicating
server-side validation on the client.

• Conventions for RoR that ensure the tool’s soundness.

126Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

• A comparison of 25 existing Rails validators against
our fragment of RoR validation.

• Demonstration of the tool on 3 RoR applications.

The rest of the paper is organized as follows. After an
overview including a running example (Section II), we de-
scribe our approach and the challenges of replicating server-
side validation on the client (Section III). Next we describe
our implementation (Section IV) and discuss our evaluation
(Section V). Finally we compare CAVEAT to related work
(Section VI) and conclude (Section VII).

II. BACKGROUND

Ruby on Rails is a web application development framework
written in the Ruby programming language. The goal of
the framework was to make web programming easier, faster,
and more productive. It comes standard with various sane
defaults, assumes various conventions that users must also
follow, embraces the REST pattern and HTTP verb semantics,
highly promotes DRY or ”Don’t Repeat Yourself”, and at its
core, is fundamentally based on the Model View Controller
(MVC) architecture.

The MVC architecture is centered around separating
the concerns between the representation of information (the
Model), the interaction with that information (the Controller),
and its presentation (the View). Models usually wrap an inter-
face around a database table. This interface usually consists of
methods that contain the application’s business logic. Views
are the user interface of the application that, in the context of
a web application, get sent to the browser. They are usually
written in HTML and some templating code such as embedded
Ruby (ERB) or HAML, and contain only functionality needed
to present the information. Controllers are what bridge the
connection between a View and a Model. They handle the
incoming requests, query the models as needed, pass the
resulting data on to the view, and return it as the response.

A. Running Example

Many web applications manage user information, e.g.,
people create new user accounts, provide information like
name, email, and address, edit profiles when they become out
of date, and delete users along with their profiles from the
system. Figure 1 is a diagram depicting the profile information
associated with each user. (We use this as a running example
that explains our ideas through the paper.)

Every time a new user is created, the application needs
to ensure that the profile information meets the following
conditions:

• the username has not already been chosen;

• the name must be no longer than 80 characters;.

• the birthdate must be a valid combination of month-
day-year;

• the user must be at least 18 years old;

• the two passwords must match;

• the email address must be properly formatted.

These requirements are typical of web applications that require
users to create their profiles.

Figure 1: New User Form

B. Example in Rails

Rails has built-in machinery for constructing a significant
portion of the web application for creating, retrieving, updat-
ing, and deleting (also known as CRUD) the basic objects of
the application, e.g., user profiles. It even has built-in machin-
ery for checking that those objects satisfy certain constraints,
such as the user being over 18 years old.

In Rails, building CRUD functionality for a User object
begins with a definition for the User model, which is given in
Listing 1. The developer writes down the fields for the User
object (in the line attr accessible) along with statements
dictating that those fields must satisfy conditions.

class User < ActiveRecord::Base
attr_accessible :name, :username, :born_on,
:email, :password, :password_confirmation

end

Listing 1: The User Model

The developer also writes Views for displaying the User
model to the user (both for creating and editing a User
object). The developer also writes Controllers that accept
HTTP requests for creating a new user or editing an existing
user, validates the User data against the required constraints,
and either saves the data to the model or rejects the data and
sends the user back error messages. Rails simplifies the process
of writing such controllers by automatically validating a User
object’s data when it is saved to the database, accumulates
any error messages that describe why a validation failed, and
displays those error messages to the user. For example, Figure
2 shows the response of the Rails app when the submitted
data fails the validation. Since the errors are stored within the
User model passed to the view, the view can then use that
information to display error messages.

C. Rails Validations

Rails includes a variety of built-in validation methods but
allows the developer to write custom validators as well. The
built-in validators since Rails version 3.0.0 are listed in Table I
and can be configured to only be triggered for certain states in

127Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

Figure 2: Example of Validation Failure

the record’s lifecycle, such as creation, update, or save. Some
built-in validators can even be configured to trigger only when
a given function returns true.

In our running example, we can use the presence
validator to ensure that :name, :username, and :email
are always provided by the user. A developer would add the
following code to the User model.

validates :name, :username, :email, presence
: true

Listing 2: Presence Validation on User attributes

While convenient, Rails’ built-in validators are not suffi-
cient for every situation and hence Rails allows the developer
to write custom validators that are treated similarly to its built-
in validators. Just like built-in validators, custom validators are
executed each time an object is saved to the database. For
example, to ensure that all users are at least 18 years old,
a developer could include the code in Listing 3 in the User
model.

validate :ensure_not_minor

def ensure_not_minor
unless born_on <= 18.years.ago

errors.add :born_on, ’Must be at least
18 years old to use this site.’

end
end

Listing 3: User Model :born on validation

Rails allows a developer to write validators for individual fields
of an object or for the entire object and provides specialized
machinery for both cases (ActiveModel::EachValidator
and ActiveModel::Validator, respectively).

III. APPROACH

CAVEAT transforms a Rails application with server-side
validation into a Rails application with both client- and server-
side validation. To use CAVEAT, a Rails developer writes her
application while obeying a few additional conventions, and
CAVEAT automatically analyzes that application, generates
JavaScript to implement client-side validation, and installs
that JavaScript into the appropriate views. The CAVEAT-
instrumented web forms provide the user with real-time feed-
back and ensure that every form submission passes all the
client validations. That is, each time the user edits a form
field, the JavaScript runs all the validations pertinent to that
field, and alerts the user to any errors; each time the user
submits the form, it allows the submission only if there are
no outstanding errors. Below we outline the main challenges
in transforming web applications in this way as well as the
CAVEAT architecture that addresses those challenges.

A. Challenges

Identifying validation code. Web applications can choose
how and where to validate input data. In PHP for example,
validation code can be interspersed with code for generating
HTML, manipulating the database, and changing the session.
Ruby on Rails makes the task of identifying which code is
related to validation much simpler because developers are
expected to write validation code in one of a handful of ways.
Thus one of the reasons CAVEAT targets Ruby on Rails is that
identifying the code responsible for validating input data only
requires understanding the Rails infrastructure, as opposed to
performing sophisticated source-code analysis.

Translating server-side validation code into client-side
validation. This challenge is by far the most complex.
Most obviously, the language the server-side validations are
written in, Ruby, is different from the language the client-
side validations are written in, JavaScript, and hence there
must be translation at the basic level of the programming
language. But there is a more fundamental problem in the
translation that a Ruby-to-JavaScript compiler would not itself
be able to solve: Rails validators are written assuming that
the user has completely filled out the web form—that all
the data the user will provide has already been provided. In
contrast, the client-side validations are often run before the
user has completed filling out the form and thus must account
for the fact that some data may be unknown at the time the
validation is run. Clients that ignore the possibility that some
data is unknown can produce surprising and/or unsatisfactory
behavior. For example, suppose the server requires values for
all of the fields on the form. If the client simply replicated this
validation check, then as soon as a user entered a single value
in a single field, all the remaining fields would be highlighted
as errors.

To provide satisfactory, real-time feedback to the user,
the client must be careful to validate only those fields with
values. Given a collection of Ruby validations and a Ruby-to-
JavaScript translator, the naı̈ve approach to generating client-
side validation is to generate one JavaScript validation routine
for each Ruby routine and add a guard to each JavaScript
validation routine so that it runs only if the form fields
mentioned in the validator have values. For forms where the

128Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

Table I: Rails built-in validators

Validator Description Example
acceptance Validates that checkbox on UI was

checked when form submitted.
validates :age_requirement,
acceptance: true

validates associated Validates model’s other associated
models.

has_many :posts
validates_associated :posts

confirmation Validates that two attributes have
the exact same values

validates :password,
confirmation: true
validates :password_confirmation,
presence: true

exclusion Validates that attribute’s value is
not part of given set.

validates :username,
exclusion: { in: %w(admin manager
user) }

format Validates that the attribute’s value
conforms to given regex.

validates :email,
format: { with: /\A([ˆ@\s]+)@
((?:[-a-z0-9]+\.)+[a-z]{2,}\z/i
}

inclusion Validates that the attribute’s value
is part of a given set.

validates :tag
inclusion: { in: %w(security
development rails) }

length Validates that the attribute’s value
conforms to some length constraint

validates :username,
length: { maximum: 80, minimum:3
}
validates :password, length: {in:
10...100}

numericality Validates that the attribute’s value
is numerical.

validates :favorite_number,
numericality: true

presence Validates that the attribute’s value
is not blank or nil.

validates :username, presence:
true

uniqueness Validates that the attribute’s value
is unique immediately before being
saved.

validates :email, uniqueness:
true

validation for each field is independent of all the other fields,
this approach works; however, if the fields interact this basic
approach fails to detect all of the validation failures in real-
time. For example, consider a validation for three boolean
fields: a, b, c, which the server requires to all have values.
In addition, suppose the following validations are written in
Ruby.

if a and !b then error
if b and !c then error

It is straightforward to translate these two validators to the
client and add guards that ensure each validator is only run
when the fields occurring within it have values. Now suppose
the user sets a to True and c to False but sets no value for b.
Since b appears in both validators, neither one is executed and
the web form signals no error to the user. Yet there is actually
already an error between a and c because as soon as either
value for b is chosen, one of the validations will fail.

While this naı̈ve approach is sound, it is incomplete,
and incomplete validation leads to unsatisfactory clients. For
example, if there were 10 a’s and 10 c’s, but a single b
upon which all the a’s and c’s depended, an unlucky user
who happens to set b last might end up with every one of
those fields highlighted with an error with no idea how to fix
the errors or even how many errors there actually were (at
most 10 independent errors). While it is tempting to describe
such examples as “corner cases”, the heavily-studied problem
of configuration management is replete with such examples

[6]; moreover, such examples become more frequent as the
complexity of validation increases. And the more complex
the validation the more a tool like CAVEAT is useful: when
writing and maintaining the validation code is hard enough to
do just on the server, replicating that code for the client while
taking unknowns into account is something a developer may
not even attempt.

Plato [7] is a tool designed to build validation routines
for the client that are both sound and complete; thus, in the
example above, as soon as a is set to True and c to False,
Plato’s client would signal an error and highlight a and c for
the user. The challenge to applying Plato is that its input is a
fragment of first-order logic. Thus instead of translating Ruby
validations to JavaScript validations, the use of Plato reduces
the problem to translating Ruby validations to first-order logic.
To address this challenge, we identify a fragment of Ruby that
is commonly used and can be translated into first-order logic.

Installing client-side validation. Once we have JavaScript
implementations of the server-side validation routines, those
functions must be installed on the appropriate web page. In
Rails, a developer writes Views that describe how to construct
web pages; thus, the JavaScript implementations must be
installed into the appropriate Rails Views. To do so, we must
be able to track how each View’s form fields are handled by
Rails controllers when data for those fields is submitted by a
user. We must also be able to trace how each controller uses
form field data to instantiate Ruby objects and whether the
controller runs server-side validations on that data.

129Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

Instead of attempting to apply program analysis algorithms
to extract the necessary information from the Rails application
automatically, we introduce a number of simple Rails conven-
tions that if followed by the developer make installing client-
side validation relatively straightforward. We believe that the
conventions we propose are ones already followed in many
applications.

Server-crucial validations. The discussion so far has
focused on transforming server-side validation routines into
client-side validation routines. But some server-side validation
is conceptually more difficult to move to the client than others.
Validation that relies on information the server has but the
client does not can be difficult or even ill-advised to move to
the client. For example, a user registration page that asks for a
login ID, a password, first name, last name, address, etc. may
require that the login ID is unique in the backend database.
Moving such a validation to the client could be accomplished
either by moving the entire list of current user IDs to the
client or creating client-validation code that asynchronously
communicates with the server (e.g., through AJAX).

To address this challenge we simply recognize which
server-side validations can be implemented entirely on the
client and which cannot, and then we transform only those
validations that can be implemented entirely on the client. In
addition to technical convenience, our choice to move just
these validations to the client is motivated by a desire to
preserve the overall security of the web application. Since
many Rails applications are open-source, translating server-
side code to the client tells users no more about the application
than they could have learned from simply looking at the
server code. But if we were to create client-side validations
that moved some of the server’s information to the client
or communicated with the server asynchronously, we could
potentially lessen the overall security of the application.

B. Architecture

Conceptually CAVEAT can be broken down into the three
components shown in Figure 3, which together address the
challenges discussed above: Validation identifier, Validation
translator, and Validation installer.

• Validation identifier: Takes as input a Rails applica-
tion and identifies all the server-side validations that
the developer has written.

• Validation translator: Takes all of the validators
from the Validation identifier, eliminates those that
cannot be implemented entirely on the client, and
generates one JavaScript validation function for each
form field f that embodies all the validation that must
be performed on the client when f ’s value changes.
When field f ’s function is executed, it returns a list
of form fields that fail to validate because of f ’s new
value. If the list is empty, f ’s new value caused no
validation failures.

• Validation installer: Augments each web form View
in the Rails application so the resulting web page
invokes the JavaScript functions created by the Vali-
dation translator. More precisely, the installer attaches
JavaScript functions to the form fields’ event handlers

Validation
Identifier

Validation
Translator

Validation
Installer

Rails app
with server
validation

Rails app
with client
& server
validation

CAVEAT

Figure 3: CAVEAT architecture

so that each time a user edits a form field, the
validation routines run, and when a validation fails,
those form fields that are the cause of the failure are
highlighted for the user (e.g., by coloring the offending
fields red).

IV. IMPLEMENTATION

A. Validation Identifier

The first challenge in moving server side validation code to
the client is identifying which server-side code is performing
input validation. Ruby on Rails was chosen as a deploy-
ment target for CAVEAT because it has built-in constructs
that make identifying server-side input validation straightfor-
ward. Each of Rail’s MVC models includes a method called
_validate_callbacks that returns all of the validation
code for that model. The resulting list of validations includes
built-in validators, custom validators, and Rails associations.
CAVEAT is only interested in the custom validators, which
can be identified based on the type hierarchy of Ruby. Thus
identifying the validation code in a given Rails model amounts
to a few lines of Ruby code.

B. Validation Translator

The Validation Translator takes as input a collection of
Ruby validators and outputs JavaScript code that implements
client-side validation for the given Ruby validators. The first
step is converting each Ruby validator into an abstract syntax
tree (AST), a task that CAVEAT carries out using the Ruby
gem live ast. Next CAVEAT converts each Ruby AST into a
logical formula that Plato accepts as input or recognizes that
the AST is not one that CAVEAT ought to move to the client.
Finally, CAVEAT runs Plato once on the set of all logical
formulae generated from the ASTs; the resulting JavaScript
code implements the client-side data validation code.

The novel part of the Validation Translator is the second
step: converting a validator (represented as an AST) into a
logical formula or recognizing that the validator ought not be
moved to the client. CAVEAT uses a whitebox approach to
identifying which validators ought to be moved to the client.
CAVEAT was designed to convert a specific fragment of Rails
validators to the client; any validator that does not belong to
this fragment is ignored. Figure II details the fragment of Ruby
that CAVEAT moves to the client, which we call Rubyv .
Rubyv eliminates from full Ruby those language fragments
that are perennially problematic for deep, semantic analysis
of programming languages, e.g., loops, recursion, reflection,
evaluation of dynamically-constructed code fragments, side
effects, database operations, network connections.

While simple, we show in our evaluation that a reasonable
percentage of custom validators in existing applications can

130Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

Table II: Ruby fragment Rubyv

Construct Example
Control logic if-then-else, switch
Boolean Logic operators and, not, or
Comparison operators <, >, >=
Basic Arithmetic +, −, ∗, /
Miscellaneous functions string manipulation
Method Calls calls to other custom validators

be expressed in Rubyv . Furthermore, CAVEAT’s ability to
address validators written in a more expressive language than
Rubyv is limited by Plato’s input language, which is a heavily
restricted fragment of first-order logic.

Converting a validator that is expressed in Rubyv is per-
formed by recursively walking the validator’s AST (and the
ASTs of any Ruby function called from that validator). If
the recursive walk determines that the validator has not been
expressed in Rubyv , it halts the translation. At the top level, the
translator is a recursive method with a large switch statement
that is conditioned on the root of the AST it is given. It
translates each Ruby language construct (e.g., if) into a logical
version of it (e.g., ⇒). The translator also recurses into any
other function that is called by a validator.

In addition, the translator recognizes those fragments of
Rails code that signal an error. Sometimes an if statement is
used to check for the presence of errors, while other times
an if statement is used to check for the lack of errors.
Recognizing error-signaling Rails code requires understanding
how a model record is validated by Rails. Every model record
has an array named errors that specifies what validations
have failed during validation. By definition, a model record
is valid if and only if its errors array is empty. Therefore,
validation methods that want to block a record from being
saved, must insert something into the errors array. For our
purposes, we only care whether the validation has returned
true or false . Thus, CAVEAT treats any statement that adds
something to the errors array as a statement that signals
an error. For the purpose of translation to logic, it suffices to
replace any Ruby statement that adds to the errors array with
false . Figure 4 gives pseudo-code for the main portion of the
translator.

For example, the following Ruby validator would be rep-
resented by the AST shown in Figure 4. The translator would
produce the logical formula age < 16⇒ false .

if age < 16 then
errors[:age] << ‘You are too young’

end

C. Validation Installer

After CAVEAT has generated JavaScript code implement-
ing client-side validation, that JavaScript code must be installed
on the client. Recall that each time the user changes a data el-
ement on a page, we want the CAVEAT-generated JavaScript
to compute errors and for those errors to be communicated
to the user via the client’s graphical interface. Typical Rails

Algorithm 1 TRANSLATE(ast, parents)
Input: ast is an abstract syntax tree
Input: parents is a static version of the function call stack
Returns: First-order logic representation of AST. If the formula

includes ⊥, translation is not possible.
1: if ast[0] == :if then
2: return TRANSLATE(ast[1]) ⇒ TRANSLATE(ast[2])
3: else if ast[0] == :and then
4: return TRANSLATE(ast[1]) ∧ TRANSLATE(ast[2])
5: else if ast[0] == :or then
6: return TRANSLATE(ast[1]) ∨ TRANSLATE(ast[2])
7: else if ast[0] == :not then
8: return ¬ TRANSLATE(ast[1])
9: else if ast[0] == :call then

10: if call represents a model variable then
11: return ast[2]
12: else if call adds to errors array then
13: return false
14: else if call represents arithmetic (e.g., in binary) then
15: return TRANSLATE(ast[2]) ast[1] TRANSLATE(ast[3])
16: else if call represents a method call then
17: if ast[2].instance ∈ parents then
18: // callee is recursive
19: return ⊥
20: else
21: // callee is not recursive, so recurse and translate
22: return TRANSLATE(get ast(ast[2]))
23: else
24: return ⊥
25: else if ast[0] == :true then
26: return true
27: else if ast[0] == :false then
28: return false
29: else
30: return ⊥

Figure 4: CAVEAT algorithms

clients already have the ability to display errors by highlighting
offending fields in red, thus CAVEAT’s main problem in terms
of installing the JavaScript code is to ensure that it is invoked
appropriately.

The JavaScript code generated by CAVEAT includes one
function for each field of the MVC model that CAVEAT
was invoked on. Thus each time the user modifies data entry
element e, the client must run the CAVEAT code correspond-
ing to the MVC model element e. We do this by leveraging
jquery’s bind() function to create a callback chain that runs
the necessary CAVEAT functions for each field when it has
changed value. In order to correctly bind these functions to the
form fields we intend them for, we assume developers follow
the best practice of labeling form fields using the exact name

131Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

of the attribute that the form corresponds to in the Ruby model.

V. EVALUATION

We evaluated CAVEAT by (i) writing new Rails appli-
cations using CAVEAT and (ii) analyzing the the ease with
which CAVEAT can be applied to existing, open-source Rails
applications.

A. New Rails Applications

We created three pages with complex validations from
different domains: a new user-registration form (the running
example), a vacation planning web form, and a checkout form
for a shopping cart application.

New user form. Our running example is a typical form
that solicits basic information about a new user: name, user-
name, email, password, and birthday. The user must provide
information for all fields. The username must be one that has
not already been chosen. The name must be no longer than
80 characters. The birthdate must be a valid combination of
month-day-year. The user must be at least 18 years old. The
password and password confirmation must be the same. The
email address must be properly formatted.

When writing the Rails server-side implementation of this
form, we used built-in validators for ensuring that all fields
have values and that the username is no longer than 80 charac-
ters. We used a database query within a validator to check that
the provided username is unique. We wrote custom validators
to ensure that (i) the birthdate is a proper combination of
month-day-year, (ii) the new user is at least 18 years old, and
(iii) the two passwords match.

The custom validators that we wrote for birthdate, age, and
password were all expressed naturally in Rubyv , and CAVEAT
moved those over to the client properly. For example, each time
the user enters an invalid month-day-year combination for the
birthdate (e.g., February 30) the form highlights the offending
fields in red (e.g., month and day). As expected, the remaining
validators were ignored by CAVEAT.

Vacation planner form. This example models what a
user might see on a travel agency’s website when trying to
plan a vacation. It has form fields for the budget, number
of travelers, number of children, number of adults, vacation
package options and departure and return dates. The number
of travelers must be the sum of the number of children and
the number of adults. The departure date must be before the
return date. There are three vacation package options that vary
how many nights the vacation lasts; the longer the vacation
the higher the budget must be.

When implementing the form processing code in Rails, all
of the validators were custom validators, and all of them were
naturally written in Rubyv . For example, the budget check
was implemented as a switch statement on the number of
nights to stay, and each case included an if checking if the
provided budget was sufficient for the chosen number of nights.
CAVEAT properly moved all of these validations to the client.

E-Commerce checkout form. This example models a
shopping cart checkout form. Here we assume that a subtotal
has already been set for an order and that the user has some

Table III: Breakdown of custom validators without system
errors

Custom Validation Method Status Count Percent
Written in Rubyv 11 18 %
Could be written in Rubyv 17 28 %
Failed due to loops 7 11 %
Failed due to database interaction 25 41 %
Failed due to networking calls 1 1 %

store credit with the company. The example contains fields
for a shipping option, donation, and a payment option (either
None or credit card number and expiration date). The donation,
payment, and subtotal fields must all have numeric values, and
if the payment option is None then subtotal + shipping costs
+ donation - store credit is less than or equal to zero.

We used the Rails built-in validators to ensure all fields
have values and that the donation, payment, and subtotal
fields are numeric. To enforce the condition on the payment
option, we wrote a custom validator. That custom validator was
naturally expressed in Rubyv , and CAVEAT moved it over to
the client properly. As soon as all the fields are given values,
the client highlights an error if the payment option None is
selected but the outstanding cost is greater than zero.

B. Existing Rails Applications

The second phase of our evaluation examined existing Rails
applications. Our goal was to understand the prevalence of
Rubyv validators in the wild. We gathered 25 open source
applications from GitHub. We chose these applications based
on the number of models that they contained, seeing this as a
good indication on how many validations they would use. We
also favored applications that were updated regularly and used
a current version of Ruby and Ruby on Rails. Three notable ap-
plications in our sample were Redmine (a project management
tool used regularly in industry), Diaspora (a social networking
app) and Spree (a common e-commerce application). For each
application, we ran a slightly modified version of CAVEAT
that included additional logging capabilities on each of the 68
total custom validators across those 25 applications.

Of the 68 validators, 7 caused systems-level errors during
our analysis. Most of the time these errors were due to conflicts
with gem versions, specifically with the ast live gem we use
for generating the AST for the methods. Of the remaining
validators, 11 validators were already expressed in Rubyv , and
17 could easily have been written in Rubyv . Thus overall,
CAVEAT could be readily applied to 28 of 61 validators
(46%). Those blocks not expressible in Rubyv included non-
trivial and difficult to analyze loops, database interactions,
and networking calls. See Table III for additional details.
Although we are only able to support 46% of the analyzed
legacy application validation code, new applications that can
be written in Rubyv can be supported at 100%, as illustrated
by the examples of the prior subsection.

VI. RELATED WORK

Two of the most germane works, Ripley [8] and [9], could
seemingly be used to meet the same objective as CAVEAT:

132Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

write validation code once (on the client) and allow the
system to automatically replicate it elsewhere (on the server).
However, there is a crucial benefit to writing validation code on
the server instead of the client: all constraints, whether static
(not dependent on the server’s database, file system, etc.) or
dynamic (dependent on the server’s state) can uniformly be
written on the server, but only static constraints can easily
be written on the client (implementing dynamic constraints
requires AJAX and server-side support). Thus, even if all of a
client’s validation is moved to the server, the developer must
write server-side validation.

The other relevant research work is WAVES [10], which
automatically extracts server-side validation code from PHP
and moves that validation code to the client. The benefit
of CAVEAT compared to WAVES is that CAVEAT suffers
from fewer analysis mistakes than WAVES. The first mis-
take WAVES can make is identifying which fragments of
server-side code constitutes server-side validation—a mistake
CAVEAT does not make because the MVC architecture of
Rails facilities identification of validation routines. The second
mistake WAVES can make is improperly moving a snippet of
PHP validation code to the client—a mistake CAVEAT does
not make because we have carefully identified the fragment of
Ruby that CAVEAT moves to the client to ensure the resulting
client-side code is correct.

Outside the research arena, the most sophisticated tools
to aid web development are found within web development
frameworks like Ruby on Rails (RoR) [11], Google Web
Toolkit (GWT) [12], and Django [13]. Google Web Toolkit
allows a programmer to specify which code is common to the
client and the server. However, the programmer factors her
code into the validation running on just the client, the valida-
tion running on just the server, and the validation running on
both. Furthermore, GWT fails to provide the same robustness
that CAVEAT does in the face of unknown values on the client
as discussed in Section III.

We are only aware of the following two tools that al-
low a developer to write validation in one place and have
it enforced in other places: (a) Ruby on Rails with the
client_side_validations plugin [5], and (b) Prado [14].
With RoR, a developer writes the constraints that data should
satisfy on the server, and client_side_validations en-
forces those constraints on the client. The limitation, however,
is that the constraints extracted are limited to a handful of
built-in validation routines and are implemented on the client
using built-in validation of HTML5. Prado’s collection of
custom HTML input controls allows a developer to specify
required validation at server-side, which is also replicated in
the client using JavaScript. However, it also allows developers
to specify custom validation code for server and client thus
introducing avenues for inconsistencies in client and server
validation. CAVEAT, in contrast, extracts constraints checked
by the server and implements them on the client using custom-
generated JavaScript code, thereby avoiding the possibility of
inconsistency.

VII. CONCLUSION

CAVEAT obviates the need for developers to write and
maintain two separate data validation code bases, a notoriously

difficult problem in practice, and improves the overall security
of the application by allowing developers to focus on the
security-critical server-side data validation code. CAVEAT
is implemented in Ruby on Rails, an especially attractive
deployment target for CAVEAT since server-side validation is
built into the framework itself, which makes the identification
of server-side validation code much simpler than with other
web programming languages and frameworks. CAVEAT was
designed to operate on validations expressed in a fragment of
the Ruby programming language that admits deep, semantic
analysis. We evaluated CAVEAT’s effectiveness by construct-
ing three new applications using CAVEAT, and we evaluated
its applicability to 25 existing applications by investigating the
proportion of validation checks that CAVEAT could replicate
on the client.

ACKNOWLEDGMENTS

This research is support in-part by the following grants
from the U.S. National Science Foundation: CNS-1141863,
DUE-1241685, CNS-0845894, CNS-1065537, DGE-1069311.

REFERENCES

[1] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and V. Venkatakr-
ishnan, “NoTamper: Automatic Blackbox Detection of Parameter Tam-
pering Opportunities in Web Applications,” in CCS’10: Proceedings of
the 17th ACM Conference on Computer and Communications Security,
Chicago, IL, USA, 2010.

[2] P. Bisht, T. Hinrichs, N. Skrupsky, and V. Venkatakrishnan, “WAPTEC:
Whitebox Analysis of Web Applications for Parameter Tampering
Exploit Construction,” in CCS’11: Proceedings of the 18th ACM
Conference on Computer and Communications Security, Chicago, IL,
USA, 2011.

[3] R. Wang, S. Chen, X. Wang, and S. Qadeer, “How to Shop for Free
Online – Security Analysis of Cashier-as-a-Service Based Web Stores,”
in Oakland’11: Proceedings of the 2011 IEEE Symposium on Security
and Privacy, Oakland, CA, USA, 2011.

[4] M. Alkhalaf, T. Bultan, S. R. Choudhary, M. Fazzini, A. Orso, and
C. Kruegel, “ViewPoints: Differential String Analysis for Discovering
Client and Server-Side Input Validation Inconsistencies,” in ISSTA’12:
Proceedings of the 2011 International Symposium on Software Testing
and Analysis, Minneapolis, MN, USA, 2012.

[5] “Client-side validation Ruby gem,” https://github.com/bcardarella/
client side validations, last accessed: 01 Apr 2013.

[6] “CLib: Configuration benchmarks library,” http://www.itu.dk/research/
cla/externals/clib/, last accessed: 01 Apr 2013.

[7] T. L. Hinrichs, “Plato: A Compiler for Interactive Web Forms,” in
PADL’11: Proceedings of the 13th International Conference on Prac-
tical Aspects of Declarative Languages, Austin, TX, USA, 2011.

[8] K. Vikram, A. Prateek, and B. Livshits, “Ripley: Automatically Se-
curing Distributed Web Applications Through Replicated Execution.”
in CCS’09: Proceedings of the 16th Conference on Computer and
Communications Security, Chicago, IL, USA, 2009.

[9] D. Bethea, R. Cochran, and M. Reiter, “Server-side Verification of
Client Behavior in Online Games,” in NDSS’10: Proceedings of the
17th Annual Network and Distributed System Security Symposium, San
Diego, CA, USA, 2010.

[10] N. Skrupsky, M. Monshizadeh, P. Bisht, T. L. Hinrichs, V. N. Venkatakr-
ishnan, and L. Zuck, “Waves: Automatic synthesis of client-side vali-
dation code for web applications,” ASE Science Journal, 2013.

[11] “Ruby on Rails,” http://rubyonrails.org/Last accessed: 01 Apr 2013.
[12] “Google Web Toolkit,” http://code.google.com/webtoolkit, last ac-

cessed: 01 Apr 2013.
[13] “django: Python Web Framework,” https://www.djangoproject.com/

Last accessed: 01 Apr 2013.
[14] “Component Framework for PHP5,” http://www.pradosoft.com, last

accessed: 01 Apr 2013.

133Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

https://github.com/bcardarella/client_side_validations
https://github.com/bcardarella/client_side_validations
http://www.itu.dk/research/cla/externals/clib/
http://www.itu.dk/research/cla/externals/clib/
http://rubyonrails.org/
http://rubyonrails.org/
https://www.djangoproject.com/
https://www.djangoproject.com/
http://www.pradosoft.com

	Introduction
	Background
	Running Example
	Example in Rails
	Rails Validations

	Approach
	Challenges
	Architecture

	Implementation
	Validation Identifier
	Validation Translator
	Validation Installer

	Evaluation
	New Rails Applications
	Existing Rails Applications

	Related Work
	Conclusion
	References

