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Abstract—In large-scale sensor networks, adversaries may
capture and compromise several of the sensors. A compromised
node can be used to create false messages by generating them
on their own or by fabricating legitimate messages received from
other nodes. Our goal is to locate the compromised nodes that
create false messages and forward them to the sink. Existing
works can only be used in situations where there is one source
node and a routing path from it to the sink is static. This
limitation is a big problem in wireless sensor networks because
of node failures. They also must receive a lot of false messages
before they can locate a compromised node. We propose light-
weight packet marking for detecting compromised nodes. In our
proposed method, each node appends its abbreviated ID and 1
bit code to messages and the sink detects a compromised node
by a statistical method. Our method can be used in static and
dynamic environments and can detect compromised nodes faster.
Our mathematical analysis and the simulations we conducted
prove the effectiveness of our method.

Keywords—Wireless sensor networks; Security; Compromised
node detection.

I. INTRODUCTION

A core function of wireless sensor networks (WSNs) is to
detect and report events. These networks are suitable for tasks
like intruder detection [1], and deploy a large number of sensor
nodes over a vast region. Sensor nodes detect events of interest
and deliver messages to thesink over multihop wireless paths.
However, an adversary may capture and compromise several
of the sensors. They can obtain all information including the
secret keys stored in the compromised nodes, and these nodes
can then be used to create false messages i.e., generate false
messages on their own and/or fabricate legitimate messages
they have received from other nodes.

Although there are many works on detecting such false
messages [2]–[6], they cannot detect compromised nodes.
There are currently three ways of detecting compromised
nodes: verifying the integrity of the code running on a node,
monitoring conducted by the nodes themselves, and traceback
from the sink. Verifying the integrity of the code mechanism
requires a challenge-response protocol [7], [8]. This mecha-
nism is usually used only after detecting a suspicious node
using other mechanisms, and can check whether or not the
suspicious node is compromised. In our proposal, the sink
can detect a compromised node at a high probability, i.e., it
can detect a suspicious node. Therefore, verifying the integrity

of the code running on a node, and the use of our proposal
can coexist. The monitoring done by nodes mechanisms is
vulnerable to collusion attacks because the monitor nodes may
be compromised as well (we discuss this in Section III). Works
on traceback in WSNs also exist [9], [10]. However, they can
only be used in situations where there is only one source node
and a routing path from it to the sink is static. However, this
situation is unrealistic in WSNs because of node failures [11].
Although AK-PPM [12] can be used in environments where the
rouging paths are changeable, it cannot identify compromised
nodes that fabricate messages.

Our goal is to detect the compromised nodes that create
false messages and forward them to the sink. We use the
packet marking method to detect the source nodes that generate
false messages and the nodes that fabricated messages. In our
method, each forwarding node appends its ID and only 1-
bit code to the message. Of course, compromised nodes can
generate a correct code with 50% probability. Even so, we
can detect compromised nodes by using a statistical procedure
when some false messages reach the sink. Moreover, to reduce
communication traffic further, we propose an optional method
of abbreviating node IDs. We propose and analyze our method
in a mathematical way. The simulations we conducted prove
the effectiveness of our method compared with existing works.

The rest of this paper is organized as follows. Section II
presents the models of false messages and sensor networks.
Section III discusses the related methods and their problems.
Section IV presents the design of our algorithm. Section V
analyzes security of LPM. Section VI presents the results of
our simulations. Section VII discusses several design issues in
our method. Section VIII concludes the paper.

II. SYSTEM MODELS

In this section, we define our assumed sensor network
model and the model of false message attacks.

A. Sensor Network Model

We assume a sensor network composed of a large number
of small sensor nodes. The nodes can detect an event of
interest. Each of the detecting nodes reports the signal it
senses to the sink. We also take into account a static sensor
network where the sensor nodes do not move once deployed.
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We assume that the sensor nodes are not equipped with tamper-
resistant hardware, because they are normally inexpensively
designed. Sensors are usually built with limited battery energy,
memory, and communication capabilities. In our model, we
assume that the destination of messages is the sink. Our target
is to detect compromised nodes that create false messages and
forward them to the sink. The sink is a data collection center
with large computation and storage capabilities that protects
itself using advanced security solutions.

B. Creating false message attacks

An attacker may compromise multiple sensor nodes in a
network. Once a sensor node is compromised, all the secret
keys, data, and codes stored on it are exposed to the attacker.
The compromised node can be used to create false messages,
i.e., generate false messages by itself and/or fabricate messages
it has received from other nodes. Such bogus reports can
cause the user to make bad decisions and can cause mission-
critical applications to fail. They can also induce congestion,
and waste a significant amount of network resources (e.g., the
finite amount of energy in a battery powered network and
the bandwidth) along the data delivery paths. Therefore, we
want to detect and eliminate compromised nodes as quickly
as possible.

To decide which messages without fabrication are false
messages is out of scope of this research. We can use many ex-
isting works of detecting such false messages [2]–[6] although
they cannot detect compromised nodes.

III. RELATED WORK

In this section, we describe related works on detecting
compromised nodes and their problems.

A. Verifying the integrity of the code running on a node

Code attestation mechanisms have been proposed [7], [8],
[13] to verify the integrity of the code running on a node. These
mechanisms are usually used only after the detection of a
suspicious node by using other mechanisms, and they can also
check whether or not the suspicious node is a compromised
node. This is because the verification process requires a
large amount of communication traffic and computation cost.
The authors of the attestation methods mentioned this and
recommended using their proposal with other mechanisms that
can detect a suspicious node.

B. Monitoring conducted by the nodes themselves

Mechanisms to overhear neighboring communications have
also been proposed. Watchdog [14] focuses on message for-
warding misbehavior. In the watchdog scheme, the sender of
a message watches the behavior of the next hop node of
that message. If the next hop node drops or fabricates the
message, the sender announces it as a compromised node to
the rest of the network. Other works [15], [16] have proposed
a collaborative intruder identification scheme.

These mechanisms are based on monitoring by partici-
pating nodes. These mechanisms are vulnerable to collusion

M0 = M|n0|HK0
(M|n0)

M1 = M0|n1|HK1
(M0|n1)

Node n0 Node n1
Node n2

(Compromised)
Node n3

M2 = M’1|n2|HK2
(M’1|n2)

Figure 1. Algorithm of LPM (Compromised noden2 fabricates the message
from M1 to M ′

1)

attacks, because the detector nodes may be also compromised
[17]. We would need to use these kinds of mechanisms if
we wanted to send and receive messages within only the
sensor nodes without a sink. However, we take into account a
situation where the destination of the messages from the nodes
is the sink. Therefore, we can assign the task of detecting
compromised nodes to the sink, not to the nodes.

C. Traceback from the sink

Many traceback mechanisms for the Internet have been
proposed, such as [12], [18], [19]. They used a probabilistic
packet marking algorithm in which each router appends its ID
to packets with some probability. At the victim site, it can
construct an attack graph i.e., the routing path of malicious
packets. These mechanisms assume that the routers are reli-
able. Therefore, if forwarding router fabricates packets, the
victim site cannot detect it. In WSNs, sensor nodes work as
routers and they may be compromised. Therefore, we cannot
use a probabilistic packet marking algorithm on the Internet
without modification for WSNs.

PNM [9] modified probabilistic packet marking algorithm
for WSNs. In PNM, each forwarding node appends its message
authentication code (MAC) as well as its ID. Because each
node appends its MAC, PNM can detect fabricated messages.
In PNM, the sink constructs an attack graph from false
messages in the same way as a probabilistic packet marking
algorithm on Internet. However, the construction can be done
only in the situations where the source node of messages is
only one node and the routing path is static. Moreover, they
also must receive a lot of false messages before they can
construct an attack graph and locate a compromised node.

The mechanism in [10] can detect the source node that
generated the false messages from fewer false messages than
PNM. However, it cannot detect the node that fabricated a
message. It also cannot be used in environments where the
routing paths are changeable.

AK-PPM scheme was proposed for packet traceback in
mobile ad hoc networks [12]. This method can be used in en-
vironments where the rouging paths are changeable. Although
AK-PPM can identify the source node that creates a message,
it cannot identify compromised nodes that fabricate messages.

IV. METHOD

We propose light-weight packet marking algorithm to de-
tect compromised nodes that create false messages. Then we
propose an optional method to abbreviate node IDs that are
appended to messages.
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A. Light-weight Packet Marking

In our proposed method,every forwarding node appends
its ID and 1-bit hash value to messages. Its basic scheme is
shown in Fig. 1. A MAC is used in PNM. The authors did
not mention the bit length of a MAC. We usually consider the
length of a MAC to be 64 bits or more in WSNs [20]. We
reduce the length of a MAC to only 1 bit.

We assume that each sensor node has a unique IDni and
shares a unique secret keyki with the sink.H represents a
secure hash function, and it is shared among all the nodes and
the sink.Hki(m) means the 1-bit hash value of messagem
calculated by a shared hash functionH and nodeni’s secret
key ki. We express a stream concatenation as|. The initial
messageM may contain the event type detected at noden0,
the detected time, and the location among other things. After
creating an initial messageM , noden0 calculates the 1 bit hash
value ofM |n0 by using its keyk0 and creates the message
M0 = M |n0|Hk0(M |n0). The next noden1 receives message
M0. Node n1 calculates the 1 bit hash value ofM0|n1 by
using its keyk1 and creates messageM1.

When the sink receives the final messageMnr
=

Mnr−1 |nr|Hkr (Mnr−1 |nr), it starts a verification process. The
sink has a shared hash functionH and all the secret keys
shared by each node. First, the sink calculates the 1 bit hash
value ofMnr−1 |nr by using keykr. If this value is the same
as that included in messageMnr , the sink retrieves the node
ID of the previous hopr−1 and verifiesHkr−1(Mnr−2 |nr−1).
The sink continues this process until it finds an incorrect hash
value or verifies all the hash values. The node with the last
verified hash value is represented as anLVN. If we use 64-bits
MAC proposed in [9], [10], a compromised node (the source
node of this message or the forwarding node that fabricated
this message) is located in the LVN within a one-hop neighbor
node.

However, in our proposed method, the compromised node
(and its one-hop neighbor node) should not become always a
LVN because the compromised node can generate a correct
code for another node with 50% probability. Consider the
situation shown in Fig. 1. When noden2 fabricates a message,
the candidates of a LVN are all the nodes between the source
node and the compromised node, i.e., nodesn0, n1, andn2 in
this example. However, we can use the fact that the probability
that noden2 becomes a LVN is highest among these nodes.
Therefore, we can decide which node is most suspicious by
counting the times each node becomes a LVN.

Note that we consider only the node with thelast verified
hash value (LVN) although several codes might be incorrect.
Therefore, even if a compromised node changes the content of
the message or the 1-bit code appended by other sensors, our
proposed method can detect the compromised node.

The problem becomes more difficult when we think that the
routing paths can change. For example, consider the situation
shown in Fig. 2. In this example, noden2 may become a LVN
with the highest probability. Moreover, noden2 may change
the next node for forwarding messages to noden′ rather than
nodesn3, n4, andn5. In this situation, detecting compromised

Node n0 Node n1 Node n2

Node n3

Node n4

Node n5

Node n6

Figure 2. Collusion attacks in situations where routing paths can change

nodes without making wrong decisions becomes even more
difficult.

The compromised node can select whether or not it will
append acorrect hash value of a false message for its 1-
bit code. In the following of the paper, we assume that
compromised nodes always append the correct code of false
messages to simplify the discussion. If this assumption is
wrong, we may make the node next to a compromised node a
compromised node. This limitation is common among existing
works that use a traceback mechanism, such as [9], [10], [12].

1) Marking and Verification:We assume that each sensor
node has a unique IDni and shares a unique secret keyki with
the sink. All forwarding nodes append their node IDs to the
message and generate a 1 bit code by using their own secret
keys. Then, the nodes append the 1 bit code to the message.

The procedure for detecting compromised node is as fol-
lows. Let us take a nodenu into consideration. We count
the number of times nodenu became a LVN. We also count
the number of times the nodes around nodenu became
LVNs. Then, we calculate the probability of nodenu being
a compromised node given these values. If the probability of
nodenu being a compromised node exceeds a threshold (e.g.
0.999), we conclude that nodenu is a compromised node.

When the sink receives a false message, it records all the
IDs included in the message, and calculates a LVN. Let the
routing path of a false message bepi = ⟨na, nb, ...⟩ (here,
a, b... represents the node IDs). The number of hops from the
source node to the sink is represented by|pi|. A set of all the
routing paths of the false messages the sink has received is
represented byP = {p1, ..., pd}. The valued is the number of
times the sink received false messages.

The node ID of a LVN in routing pathpi is represented by
L[pi]. The order of nodena appearing in pathpi is represented
by Ma[pi]. The order of the LVN appearing in pathpi is
represented byML[pi] = ML[pi][pi].

Every time the sink receives a false message, it starts a
process of detecting compromised nodes. Let the last LVN be
nodenu. We extract all the routing paths that includenu and
satisfy ML[p] > Mu[p] from P and let these paths bePu.
That is,

Pu = {pi | pi ∈ P &nu ∈ pi &ML[pi] > Mu[pi]}. (1)

Let the i-th path of Pu be Pu,i. We prepare the counters
B(u) = ⟨b1(u), ..., bNu

(u)⟩ andC(u) = ⟨c1(u), ..., cNu
(u)⟩.

Here,Nu is the maximum number -1 of hops from nodenu
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Node nu

2. LVN

3. LVN

b1(u)=1 b2(u)=2 b3(u)=0

1. LVN1

2

3

Node na Node nb

Node nc Node nd Node ne

Node nu Logical node n’1(u) Logical node n’2(u) Logical node n’3(u)

Figure 3. Logical nodes.

to the sink inPu, that is,

Nmax
u = max

i
(|Pu,i| −Mu[Pu,i])− 1. (2)

Then, we calculate allbi(u) and ci(u) as follows. A bi(u)
value represents the number of times that a node, which is
situated nearer the sink in relation to nodenu and is i hops
away from nodenu, became a LVN inPu. Note that the
node corresponding tobi(u) is changeable, because we assume
that the routing paths can change (Fig. 3). In the figure,
arrows represent routing paths of three false messages and text
LV N represents that node became a LVN. We call the node
corresponding tobi(u) a logical noden′

i(u). That is, logical
noden′

i(u) represents a node situated nearer the sink in relation
to nodenu and isi hops away from nodenu in each path of
Pu. For example, in Fig. 3, logical noden′

2(u) represents node
nb in paths 1 and 2, and nodend in path 3. By introducing
a logical node, we can deal with the change in routing paths
and can reduce the amount of calculation at the sink. Each
bi(u)value is calculated by

bi(u) =

|Pu|∑
j=1

δi,ML[Pu,j ]−Mu[Pu,j ], (3)

whereδi,j is the Kronecker delta.

A ci(u) value represents the expected number of times that
a logical noden′

i(u) became a LVNcaused by the node itself
in Pu. That is, ci(u) is a value ofci(u) minus the number
of times logical noden′

i(u) became a LVNcaused by nodes
other than the node. For example, see Fig. 3. Theb1(u) value is
1. The candidate nodes that created false messages are logical
nodesn′

1(u), n
′
2(u), andn′

3(u). It is possible that logical node
n′
1(u) created false messages one or more times and the node

became a LVN once. It is also possible that logical noden′
2(u)

and/orn′
3(u) created false messages and logical noden′

1(u)
did not create any, and noden′

1(u) became a LVN once. In the
first case, the logical noden′

1 became a LVN caused by itself
once. In the second case, logical noden′

1(u) never became a
LVN caused by itself. We can calculate the expected number
of times that logical noden′

1(u) became a LVN caused by
itself, i.e.,ci(u).

First, we initialize allci(u) to bi(u). We prepare an integer
j initialized toNmax

u . We update eachci(u) (i = 1, ..., j−1):

ci(u) → max(0, ci(u)− cj(u) · 2·(i−j)), (4)

where the functionmax gets two arguments and returns a
greater one. We repeated this calculation fromj = Nmax

u
to j = 1.

Let the number of times nodenu became a LVN inPu be
Lu. The probability that nodes other than nodenu increased
the number of times nodenu became LVNs by less thanLu

is the same as the probability that nodenu increased it one or
more times caused by itself, i.e., nodenu is a compromised
node. The probability is represented by

P̂ (u) =

Lu−1∑
z=0

I(z), (5)

whereI(z) represents the probability that logical nodes ofnu

increased the number of times nodenu became a LVN byz.
For example,I(0) represents the probability that nodes other
than nodenu have not increased the number of times nodenu

became a LVN, i.e., only nodenu affected it. That is, nodenu

created false messages more thanz times, and because of this,
it became a LVNz times. On the other hand,I(Lu) represents
the probability that only nodes other than nodenu affected the
number of times nodenu became a LVN, i.e., nodenu is not
a compromised node.

Equation 5 represents the probability that nodenu in-
creased the number of times it became a LVN by at least
one. This probability equals the probability that nodenu is a
compromised node.

We calculateI(z) in the following way. Let us take into
consideration a nodena, and thatVa (the number of times node
na became a LVN caused by itself) isc andWa (the number
of times nodena created false messages) isr. From Bayes’
theorem, the conditional probability of nodena creating a false
messager times given the situation where it became a LVNc
times caused by itself,Pa(Wa = r|Va = c) is represented by

P (Wa = r|Va = c) =
P (Wa = r) · P (La = c|Wa = r)∑∞
i=0 P (Wa = i) · P (La = c|Wa = i)

,

(6)
where P (Va = c|Wa = r) represents that the conditional
probability of nodena became a LVNc times caused by itself
given the situation where nodena created false messagesr
times.

Consider that nodena creates a false message and the sink
detects that the message is a false message. If the verification
of the next node to nodena fails, nodena becomes a LVN.
This probability is1−1/2. If the verification of the next node
to nodena succeeds, the nodena does not become a LVN.
This probability is1/2. Therefore,

P (Va = c|Wa = r) = rCc(1− 1/2)c(1/2)r−c. (7)

P (Wa = r) in (6) represents the probability that nodena

created false messagesr times. Since the number of times
that nodena became a LVN caused by itself isc, the number
of times nodena create false messagesr should be greater
or equalc. Therefore, whenr < c, P (Wa = r) = 0. When
r ≥ c, we can assume that everyP (Wa = r) has the same
value, because a compromised node can create false messages
arbitrary times. Therefore,

P (Wa = r|Va = c) =
rCc(1− 1/2)c(1/2)r−c∑∞
i=c[iCc(1− 1/2)c(1/2)i−c]

= (1/2)1−c−r(1− 1/2)c(−1 + 2)rCc. (8)
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Node n0000

Node n1010

Node n0111

Node n0110

I1010[0111] = 1I1010[0000] = 0

I1010[0110] = 10

Figure 4. Node IDs and abbreviated IDs for noden1010 (IDs are represented
by a binary numeral system).

The conditional probability of nodena, which ish hops away
from nodenu, having increased the number of times nodenu

became a LVN byDa = q times, given the situation where
Va is c and nodena created false messagesr, is

P (Da = q|Wa = r&Va = c)

=
P (Wa = r) · P (Da = q&Va = c|Wa = r)

P (Wa = r) · P (Va = c|Wa = r)
(9)

The conditional probability of nodena, which ish hops away
from nodenu, having increased the number of times nodenu

became a LVN byDa = q times, given the situation where
Va is c, is

dp(h, q, c) = P (Da = q|Va = c)

=

∞∑
r=c+q

P (Wa = r|Va = c) · P (Da = q|Wa = r&Va = c)

=
2−hq(1 + 2−h)−1−c−q(c+ q)!

c! q!
. (10)

The probability that logical nodesn′
1(u), ..., n

′
Nu(u)

of node
nu increased the number of times nodenu became a LVN by
z is

I(z) =

z∑
q1=0

z−q1∑
q2=0

...

z−
∑Nu−2

i=1 qi∑
qNu−1=0[

dp(h, z −
Nu−1∑
i=1

qi, cN )

Nu−1∏
i=1

dp(h, qi, ci)

]
(11)

From (5) and (11), when̂P (u) > th is satisfied, the probability
that nodenu is a compromised node is greater thanth.
Therefore, we conclude that nodenu is a compromised node.

2) After deciding which node is a compromised node:If
node nu, in which we concluded that a suspected node is
actually a compromised node, we can physically remove or
isolate the node from the network. We do not mention in this
paper how to do this after a compromised node is detected.

If node nu, in which we concluded that a suspected node
is not a compromised node, we reset the number of times
nodenu became a LVN to 0 for the later process of detecting
compromised nodes.

B. Abbreviation of Node IDs

Because each node appends its ID and a 1 bit code
to messages in LPM, the node IDs can be a bottleneck.
Therefore, we propose an optional method to abbreviate node
IDs appended to messages. We assume that sensor nodes do
not move after deployment.

1) Creation of Abbreviated IDs:The node IDs are repre-
sented by a binary numeral system here. After deployment,
each node broadcasts its ID to one-hop neighbor nodes.
Consider that nodenu receives IDs of its neighbor nodes from
them. Then nodenu creates an abbreviated IDn′

u[i] for each
neighbor nodeni and teaches it to nodeni. That is, each node
ni learns its abbreviated IDn′

j [i] from each neighbor nodenj

and they can be all different.

Node nu should identify nodeni from its abbreviated
ID n′

u[i]. The pseudo-code of creating abbreviated IDs is
described in Algorithm 1. When a node receives IDs of its
all neighbor nodes, it starts this algorithm. An abbreviated ID
n′
u[i] is created by extracting the minimal part of bits, of an

original ID i, that is different from all other abbreviated IDs
n′
u[j].

We use Fig. 4 for an example. Focus on noden1010 and
consider that only other three nodes are neighbor nodes of
node n1010. For noden1010, node n0111 can be identified
by only ID 1 because the first bit of the ID of each other
two nodes (n0000 andn0110) is 0. In the same way, for node
n1010, noden0000 and noden0110 can be identified by ID
00 and ID 10, respectively. Then we delete prefix all ’0’s of
the abbreviated ID except for the first bit. Therefore, ID00 is
further abbreviated to0.

Let b denote the bit length of an original node ID. In the
Algorithm 1, the function getBit returns thei-th bit of the ID
and the function getBits returns from thei-th bit to the first
bit of the ID. For example, when an ID is01011, the function
getBit(1) returns 1 and the function getBit(3) returns011. The
function deletePrefixZeros deletes the prefix all ’0’s of the ID
except for the first bit. For example, when the function receives
an input000, it returns0. If it receives an input0100, it returns
100. Each nodenj teaches to its each neighbor nodenk a
corresponding abbreviated IDabbrIDs.get(k).

Algorithm 1 createAbbreviatedIDs
Input: IDs = Set of IDs of neighbor nodes
Output: abbrIDs = Table of ID and its abbreviated ID

1: while IDs is not emptydo
2: ID ← one ofIDs;
3: IDs ← IDs \ {ID};
4: for i = 1 to b do
5: isMatch ← false;
6: for all eachID ∈ IDs do
7: isEachMatch ← true;
8: for j = 1 to i do
9: if ID.getBit(j) != eachID.getBit(j) then

10: isEachMatch ← false;
11: end if
12: end for
13: if isEachMatch is true then
14: isMatch ← true;
15: end if
16: end for
17: if isMatch is false then
18: abbrIDs.put(ID, deletePrefixZeros(ID.getBits(i)));
19: end if
20: end for
21: end while
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2) Using Abbreviated IDs:In LPM, the sink should iden-
tify nodenu from its abbreviated IDnx[u]. The value ofx is
each ID of neighbor nodes of nodenu.

When nodeni transfers a message to nodenj for the first
time, nodeni appends to the message its original IDi. After
that, when nodeni transfers a message to nodenj , its appends
to the messagen′

j [i] as its ID.

When the sink receives a message, it records all original
node IDs on the path, specifically, it creates/updates listLi

of previous node IDs of each nodeni. For example, consider
that nodenj1 transferred a message to nodeni and nodenj2
transferred another message to nodeni, and both messages
were sent to the sink. In this case,Li containsj1 andj2. If the
sink receives another message and it knows from the message
that noden′

i[x] transferred it to nodeni, the sink seeks the
corresponding original ID of the abbreviated IDn′

i[x] from
list Li. The corresponding original ID is surely in listLi. Let
the bit length ofn′

i[x] is m. The sink get IDs whose the lower
m bits are coincident withn′

i[x]. If the sink get only one ID,
the ID is the corresponding original ID ofn′

i[x]. Otherwise, the
sink add ’0’ to them+1-th bit of n′

i[x] (i.e., the resultant bits
is 0|n′

i[x], here| represents a concatenation of bits), then gets
IDs whose the lowerm + 1 bits are coincident with0|n′

i[x].
Until the sink gets only one ID, it incrementsm and repeats
this process.

3) Analysis: We require the expected bit length of an
abbreviated ID. Consider that there are three nodesnu, n1,
and n2, and nodenu is creating abbreviated IDs of nodes
n1 and n2. If the first bits of IDs of nodesn1 and n2 are
different, the bit length of their abbreviated IDs is 1 (i.e.,
0 and 1). If not, the bit length is 2 if the second bits are
different. In specifically, with probability1/2x, the bit length
of an abbreviated ID isx. Let X denote a random value of
the bit length of an abbreviated ID in situations where there
are two nodes determining their abbreviated IDs. Therefore,
the probability distribution of the bit length of an abbreviated
ID is represented by

f(x) = P (X = x) =

{
2−x if x = 1, 2, ..., b− 1

21−b otherwise (i.e.,x = b)
(12)

We approximate (12) byf(x) = 2−x for all x = 1, 2, ..., b and
we require an upper bound of the expected bit length of an
abbreviated ID. Therefore, thecumulative distribution function
of f(x) is represented by

F (x) = P (X ≤ x) =
x∑

u=−∞
f(u) = 1− 2−x. (13)

Let d denote an average number of neighbor nodes. Consider
node na, which is one of neighbor nodes of nodenu. Let
ni (i = 1, ..., a − 1, a + 1, ...d) denote another neighbor node
of node nu. Let Xi (i = 1, ..., a − 1, a + 1, ...d) denote a
random value of the bit length of abbreviated IDs of two nodes
na and ni when we consider only these two nodes. Every
Xi is independent from each other. Therefore, the cumulative
distribution function of the bit length of the abbreviated ID of
nodena when we consider all neighbor nodes of nodenu is

represented by

FA(x) = P (X1 ≤ x, ...,Xa−1 ≤ x,Xa+1 ≤ x, ...,Xd ≤ x)

= [P (X ≤ x)]d−1 = (1− 2−x)d−1 (14)

The probability distributionfA(x) of the bit length of nodena

when we consider all neighbor nodes of nodenu is required
by differentiating the cumulative distribution functionFA(x).
Hence,

fA(x) =
dFA(x)

dx
= 2−x(1− 2−x)d−2(d− 1) log 2 (15)

Therefore, the expected bit length of an abbreviated ID is

EL =
b∑

i=1

i · fA(i) (16)

Next, we consider the effect of deleting prefix 0s. With
probability 1/2, an ID has no prefix 0s. With probability
1/2x+1, an ID has justx prefix 0s. Therefore, the expected
number of prefix 0s is

E0(b
′) =

b′∑
x=1

x(2−x−1) = 1− 2−1−b′(2 + b′) (17)

Hence, the final bit lengthLa is

La = EL − E0(EL) (18)

V. ANALYSIS

We analyze the security strength of LPM. LPM can de-
tect compromised nodes within one-hop neighborhood area
asymptotically as the sink receives sufficient number of false
messages over time.

First, we prove Theorem 1 the unavoidableness of becom-
ing a LVN for a compromised node. Next, we prove

• Theorem 2:P̂ (u) ≤ 0.5 for legitimate nodes, and

• Theorem 3:P̂ (u) → 1 for compromised nodes that
create false messages infinitely,

when we assume that the probability of which node becomes
a LVN follows exactly the probability distribution. That is, a
compromised node shoule become a LVN one or more times
if it created false messages several times from Theorem 1, and
we define that a compromised node is a node that became a
LVN one or more times to prove Theorems 2 and 3.

Theorem 1. Node nu or its one-hop neighbor nodenv

becomes a LVN with some probability (> 0) if nodenu creates
a false message.

Proof. Consider that nodenu is a source node of a false
message, and it appends a legitimate code to the message. In
this case, the sink succeeds to verify all the codes. Therefore,
nodenu becomes a LVN. Next, consider that nodenu is a
source node of a false message, and it appends a false code
to the message. In this case, the sink succeeds to verify codes
until nodenv, which is one-hop next node of nodenu (i.e.,
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node nv receives the message from nodenu) and fails to
verify code of nodenu. Therefore, nodenv, which is one-
hop neighbor of nodenu becomes a LVN.

Consider that nodenu fabricates a message, and it appends
a legitimate code to the message. In this case, the codes of from
the source node to one-hop previous nodent of nodenu (i.e.,
nodenu receives the message from nodent) can be false. The
probability that the code of nodent is false is1/2. Therefore,
nodenu becomes a LVN with probability1/2. Next, consider
that nodenu fabricates a message, and it appends a false code
to the message. In this case, the sink succeeds to verify codes
until nodenv, which is one-hop next node of nodenu and
fails to verify code of nodenu. Therefore, nodenv, which is
one-hop neighbor of nodenu becomes a LVN.□

Theorem 2. P̂ (u) ≤ 0.5 for legitimate nodes.

Proof. Here, we use Lemmas 1, 2 described after and we
denote just nodeni in place of logical noden′

i(u). Consider
nodenu and a set of pathsPu, in which each path contains
nodenu and a LVN that is situated nearer the sink in relation
to nodenu.

Case 1.Consider the situations where there is no compro-
mised nodes in pathsPu. In this case, nodenu never becomes
a LVN. Therefore,P̂ (u) = 0.

Case 2.Consider the situations where there is only one
compromised nodenv in pathsPu. Let nodenu become a
LVN c times and nodenv is h-hop away from nodenu. We
considerO1 = P̂ (u) in this case. We prove thatO1 ≤ 0.5
whenh, andc ≥ 1.

The expected number of times that compromised nodenv

becomes a LVN caused by itself iscv(u) = 2khc when node
nodenu becomes a LVNc times. The expected value ofci(u)
is 0 for each node (which is legitimate) in pathsPu other than
nodenv from Lemma 1.

First, consider the situations where there are only two
nodes a compromised nodenu and a legitimate node in paths
Pu. Let I2(z) denote the value of (11) in this case.

I2(z) =

z∑
r=0

dp(h, 2hc, r)dp(h2, 0, z − r). (19)

I2(z) increases whenh2 increases. And,

lim
h2→∞

dp(h2, 0, r) →
{
1 if r == 0,
0 otherwise.

(20)

Therefore,I2(z) has a maximum valuedp(h, 2hc, z) whenh2

is an infinite value. Therefore,dp(h, 2hc, z) ≥ I2(z). We can
prove dp(h, 2hc, z) ≥ I(z) when there are one compromised
nodenv and arbitrary number of legitimate nodes in pathsPu

in the same way. Therefore,

O1 =
c−1∑
z=0

I(z) ≤
c−1∑
z=0

dp(h, 2hc, z). (21)

Here,

dp(h, 2hc, z) =
(1 + 2−h)−1−2hc−z(2hc+ z)!

2hz(2hc)!z!
. (22)

dp(h, 2hc, z) increases whenh increases becausez > 0& c >
z. Therefore,

dp(h, 2hc, z) ≤ lim
h→∞

dp(h, 2hc, z) → e−ccz

z!
. (23)

Therefore,

O1 ≤
c−1∑
z=0

e−ccz

z!
=

Γ(c, c)

Γ(c)
. (24)

Here,Γ(x) is the Gamma function andΓ(a, x) is the upper
incomplete gamma function.Γ(c,c)Γ(c) increases whenc increases.
And,

lim
c→∞

Γ(c, c)

Γ(c)
→ 0.5. (25)

Therefore, we getO1 ≤ 0.5.

Case 3.Consider the situations where there more than one
compromised nodes in pathsPu. First, consider that there are
two compromised nodesnv1 andnv2 and one legitimate node
in pathsPu. Let compromised nodesnv1 andnv2 be inh-hop
andh′-hop away from nodenu, respectively, and leth′ < h.
We considerO2 = P̂ (u) in this case. We prove thatO2 ≤ O1

whenh, andc are the same as that ofO1.

Consider that nodenv becomes a LVNr times caused by
nodenv1 andc−r times caused by nodenv2 . Therefore, node
nu becomes a LVNc times in total. In this case, the expected
number of times nodenv1 becomes a LVN caused by itself is
2hr and the expected number of times nodenv2 becomes a
LVN caused by itslef is2h(c− r).

First, consider the situations where there are two compro-
mised nodesnv1 and nv2 , and one legitimate nodent. Let
nodent be in h2-hop away from nodenu. Let I3(z) of node
nu denote the value of (11).

I3(z) =

z∑
i=0

z−i∑
j=0

dp(h, 2hr, i)dp(h′, 2h
′
(c− r), j)dp(h2, 0, z − i− j). (26)

I3(z) increases whenh2 increases. When we consider that
h2 → ∞,

I3(z) ≤
z∑

i=0

dp(h, 2hr, i)dp(h′, 2h
′
(c− r), z − i)

≤
z∑

i=0

dp(h, 2hr, i)dp(h, 2h(c− r), z − i) (27)

Let I ′3(z) denote the last expression. As mentioned above, both
of O1 =

∑c−1
z=0 I2(z) andO2 =

∑c−1
z=0 I3(z) increase whenh2

increases. We get alreadyO1 ≤ 0.5. Therefore, if we can prove
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limh2→∞(O1 −O2) ≥ 0, we getO2 ≤ 0.5.

lim
h2→∞

(O1 −O2) ≥
c−1∑
z=0

(dp(h, 2hc, z)− I ′3(z))

=

c−1∑
z=0

2h(1−z)(1 + 2−h)−2hc−z(1 + 2hc− 2hz)(2hc+ z)!

(1 + 2h)2z!(1 + 2hc)!
.

(28)

Becausec > z, O1 − O2 ≥ 0. We can proveP̂ (u) ≤ O1

when there are arbitrary number of compromised nodes and
legitimate nodes in pathsPu, in the same way. Therefore, we
get P̂ (u) ≤ 0.5. □

Lemma 1. ci(u) = 0 for legitimate logical nodesn′
i(u)

and ci(u) > 0 for compromised logical nodesn′
i(u).

Proof. Consider two logical nodesn′
i(u) andn′

j(u) and let
i < j. Let logical noden′

j(u) is a compromised node. Consider
that logical noden′

i(u) becomes a LVNc times caused by
logical noden′

j(u). In this case, the expected number of times
logical noden′

j(u) becomes a LVN is2(j−i)c. Let the number
of times logical noden′

i(u) becomes a LVN caused by itself
be c′. If logical node n′

i(u) is a legitimate node,c′ = 0.
Otherewise,c′ > 0. From (4),ci(u) = c′. We can prove this
when there are arbitrary number of compromised nodes, in the
same way.□

Theorem 3. P̂ (u) → 1 for compromised nodes that create
false messages infinitely.

Proof. When a compromised nodenu creates false mes-
sages infinitely, it becomes a LVN infinitely. In this case,P̂ (u)
is,

lim
c→∞

c−1∑
z=0

I(z) → 1.□ (29)

VI. EVALUATION

We conducted simulations to verify our analysis. We de-
veloped our own simulation platform, mainly because other
simulators scale poorly for large numbers of nodes. Our
simulator was implemented with basic geographic forwarding
[21]. We set the length of the bits of the node ID to 10 by
default and the bit length of a MAC to 64 just as in related
work for PNM.

In the first simulation, we set the number of forwarding
nodes on a path to 20 and the routing path was fixed. The
first node is the source node of a message and the 10th node
was set as a compromised node. The last node forwarded
the messages it received to the sink. The 10th node always
fabricated the messages it received. The source node repeatedly
generated a message until the sink decided which node was the
compromised node. This process was repeated 10,000 times.

Figure 5 presents the results. We changed theth from 0.1
to 0.99. The number of false messages the sink needed to
conclude which node was a compromised node is shown in the
figure. We know that we can detect compromised nodes earlier
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Figure 5. No. of false messages and success rate for detecting a compromised
node
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Figure 6. No. of false messages the sink received until it detected compro-
mised node depending on the no. of hops from the compromised node to the
sink

if we setth to a smaller one. The success rate in which the sink
correctly detected a compromised node is shown. The success
rate is the number of compromised nodes (here, the number is
one), divided by the number of times that the sink decided a
node was a compromised node until the sink detected all the
compromised nodes (here, one compromised node). Figure 5
also shows the average of the success rates. We can say that
the success rate in these simple simulations (i.e., the routing
path is fixed) is almost the same as the thresholdth. When
the sink failed to detect a compromised node the first time, it
followed the process outlined in Subsection IV-A2 and could
finally detect a compromised node.

Then, we compared our method with that from a related
work on PNM. The results are shown in Fig. 6. We set the
average number of neighbor nodes to 8. The x-axis represents
the average overhead of communication traffic for forwarding
a message per node. This was calculated by dividing the total
communication traffic from the source node to the sink by the
number of hops. We set the success rateth to 0.9. The results
in Fig. 6 helped us to determine that our method could detect
a compromised node from fewer false messages than that of
PNM. For example, we can detect a compromised node with
only from 4% to 8% of the false messages as compared with
PNM when the number of hops from the source node to the
sink set to from 10 to 30.

To confirm the effectiveness of using abbreviated IDs,
we conducted a mathematical analysis. The bit length of an
original node ID was set to 10. We change the average number
of neighbor nodes from 3 to 30. We assumed that the number
of neighbor nodes followed a Poisson distribution. The results
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Figure 8. Resilience to collusion attacks

are shown in Fig. 7. We know from the figure that we could
reduce the bit length of a node ID by from 55% to 85% by
using our abbreviated IDs method.

Next, we conducted an experiment to know whether our
method is resilient to collusion attacks. We set the nodes and
routing paths following the information listed in Fig. 2. The
legitimate noden2 randomly forwarded a message to one of
the next nodes and the node that received a message from node
n2 always fabricated it. The results are shown in Fig. 8. The
x-axis represents the number of branches. For example, it was
three in Fig. 2. We setth to 0.9. If the number of branches was
large, the success rate for correctly detecting a compromised
node decreased. However, the reduction rate was small; from
0.9 to 0.79.

Finally, we conducted an experiment to understand whether
our method is resilient to changes in routing paths. The number
of sensor nodes was set to 1,000. One of them repeatedly
generated a message. We set the number of compromised
nodes from 1 to 100. When a compromised node received
a message, the node fabricated the message with random
probability. Even if a compromised node received a message
that had been already fabricated, it fabricated it further with
random probability. Every time the sink received a false
message, we randomly changed the locations ofall nodes. The
neighboring nodes of each node also changed based on the
locations and then the routing paths of a message changed.
Figure 9 shows the results. We set the thresholdth from 0.6
to 0.9.

From Fig. 9(a), we know that all the success rates were
higher than that for eachth we set. We know that our method
works effectively in the situation where the routing paths can
change for the following reasons. For reference look at Fig. 1.
If the routing paths cannot change, noden1 always becomes
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Figure 9. The number of false messages and success rate

a LVN with some probability when a message routes node
n1 and compromised noden2. However, if the routing paths
change, the neighbor node of compromised noden2 can also
change. Therefore, the probability that the sink decided a
legitimate node was a compromised node decreases.

As a result from the information shown in Fig. 9(b), we
know that the number of false messages needed until the sink
detected all the compromised nodes increases, but we think
that the rate is relatively scalable. Whenth was set to 0.9
and the number of compromised nodes was 100, the average
number of false messages needed was about 7 per detection
of one compromised node. This value is still less than that of
PNM (the routing path in PNM is fixed and there is only one
compromised node).

VII. DISCUSSION

In this section, we discuss several design issues for our
method.

Cost overhead. Many works in WSNs set the default
packet size to about 40 bytes [22], [23]. When the average
number of neighbor nodes is 5 and the average number of hops
from the source node to the sink is 20, the average overhead
is (

∑20
i (1 + 3) · i)/20 = 42 bits = 6 bytes. Therefore, the

overhead rate is 15%.

This value is much less than existing works for packet
traceback as shown in Section VI. Moreover, we may reduce
the average overhead by combining methods for detecting
false messages described in II-B. Although existing works of
detecting false messages [2]–[4], [24], [25] cannot identify the
nodes that create false messages, they can notify the sink of the
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existence of false messages. Only when the sink recognizes the
necessity to identify the compromised node that create false
messages, it floods a message to the network to start using
the LPM protocol. When the sink identifies and removes the
compromised node, it floods a message to stop using the LPM
protocol.

Different ID attack. A compromised node can append a
different ID to a false message. However, if nodes do not move
after deployment, we can trace back to the one-hop neighbor of
a compromised node (discussed also in [9]). We can improve
our method by using neighbor authentication methods such as
those in [26]. Moreover, we can use many studies of detecting
faked IDs in wireless sensor networks [27] [28] [29].

Amount of calculation at the sink. We assume that the
sink has large computation. However, the calculation of (11)
may be a hard task for the sink. In the equation, we useNu.
The value ofNu can be large e.g., 30 and more. For practical
purposes, we can setNu to a smaller value e.g., from 5 to
10. This is because the probability, with which a node far
from nodenu affects the number of times nodenu became
an LVN, is very small. For example, consider a node that is
10 hops away from nodenu and creates a false message. The
probability that nodenu becomes an LVN is only1/210.

VIII. CONCLUSION AND FUTURE WORK

Compromised nodes present severe security threats in sen-
sor networks. We proposed a method to detect a compromised
node that created a false message and reported it to the sink.
Current solutions either are vulnerable to collusion attacks
or cannot use the situation where the routing paths from a
source node to the sink can change. We introduce a 1-bit code
algorithm and a logical node to deal with changes in routing
paths. Our method can be used if the routing paths are can
change or not. We know that we can detect a compromised
node from fewer false messages as compared with related
works from our simulations. For our future work, we need
to implement our method to real sensor nodes and examine
their performance.
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