
The Random Gate Principle

Sheagan John
Department of Mathematics

The University of the West Indies

Mona, Kingston 7, Jamaica

Email: sheagan.john@mymona.uwi.edu

Curtis Busby-Earle
Department of Computing

The University of the West Indies

Mona, Kingston 7, Jamaica

curtis.busbyearle@uwimona.edu.jm

Abstract---We present the main theoretical ideas be-

hind a proposed symmetric key algorithm. We show that

it can be fairly easily constructed from mathematical

pseudo-random parameters and known secure crypto-

graphic functions. We describe how time intervals can be

used to establish our algorithm for encryption purposes.

We will briefly discuss the decryption of messages passed

through the algorithm.

Keywords-algorithm; encryption; gate; symmetric

I. INTRODUCTION

There exists a plethora of encryption cryptosystems

and algorithms of varying security. The 3DES [1] and

AES [2] algorithms are well known examples of such

symmetric key methods. In this paper, we give the

theoretical construction for a symmetric key algorithm

which we call the Random Gate Principle (RGP). A

schematic overlay of the basic nature of the system is

shown in Fig 1.

The Random Gate Principle is a symmetric key

algorithm which relies fundamentally on the properties

of wide ranging time intervals in order to ensure

cryptographic security. The RGP, though unrelated

to the public-key system underlying the concept of

Merkle's puzzles [3], is influenced by them. While

Merkle's puzzles use a large number of messages to

hide a particular one, the RGP conceals this message

through inserting "garbage" of arbitrary length within

the original message itself. The algorithm separates

a plaintext message into blocks of predetermined bit

lengths and feeds each of these individual blocks

through a set of logical gates, which allow passage

of a given block after a randomly determined time

period. In this way, during the period between the

passage of successive blocks, a string of bits can be

inserted, where the insertion length varies according

to the time interval. As a result, the original message

is hidden within a longer garbled one which is then

further encrypted using two internally generated keys.

The final output from the procedure has the property

that no attacker can determine the length of the original

message from that of the encrypted one, or from the

length of time taken for encryption.

The main idea with regards to proposing the RGP is

the ability to combine low complexity cryptosystems

to create a secure encryption algorithm. The remainder

of this paper is organized as follows. In Section II

we provide an outline of the encryption procedure,

in Section III some bounds related to the message

length are calculated, in Section IV we give an example

of some simple attacks against the algorithm, and in

Section V the method of decryption is outlined.

Throughout the paper it is to be understood that the

output of all deterministic functions changes with the

master key used for the encryption process.

II. OUTLINE OF ENCRYPTION

A particular gate of the RGP is denoted by ak or

bk as shown in Fig 1. The gates are mathematical

constructs, essentially consisting of functions which

either have a defined image for a given input or do

not. These functions have a predetermined and static

set of parameters which describe their restricted ranges

and as such the set of valid inputs. The most important

criterion is that no two gates may ever both consider

the same input as valid. Each gate also contains a

check function and this will be discussed in relation

to Ain and Aout. The total number of gates, N , may

be some predetermined value which is known by both

the sender and receiver of the encrypted message.

Alternatively, this value may vary accordingly with the

output from some deterministic function known to both

parties.

The space Aout contains a check function and two

pseudo-random number generators (PRGs) which we

shall denote as PRG1 and PRG2. We denote by Ain,

the representation of a space for implementation of

three main functions.

The first function separates the initial plaintext mes-

sage of length L into individual blocks each of length
L
N with the ability to pad a string of zeroes to the last

piece until it is of exact length L
N . Each block then

undergoes a left circular shift, where the number of bit

positions shifted is equal to the block's position within

Ain. This shift is to prevent the blocks of a random

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

Ain

a1

a2

a3

ak

aN

...
...

...
...

Aout Bin

b1

b2

b3

bk

bN

...
...

...
...

Bout

Fig. 1. A schematic presentation of the RGP gates.

message from exhibiting exceptional structure within

the "garbage" surrounding them.

The first permuted L
N block is prepended with the

16-bit representation of 1 and likewise each subsequent
block till the last is prepended with that of the 16-bit

representation of N . This concatenation will be de-

noted by m|| LN where m is m'th integer.

The second function H(X) takes each block of

the form m|| LN , in order, and maps it to a gate ak.
This is not based on the parameters which govern the

distinct valid inputs for ak but rather on a conditional

statement which assigns the prepended 16-bit value

to a local variable within ak if and only if a certain

condition is met. In order for the choice of gate to be

indistinguishable from random it is thus needed that

the output of H(X) also be indistinguishable from

random. As an example, suppose that the Yarrow-160

[4] protocol is implemented within H(X) in order to

generate a random number, the last 32 bits of which

are evaluated mod(N +1). If the result is zero, a new
number is generated and evaluated, otherwise the block

m|| LN is sent to the gate which has the number which is

equal to the H(X) output. In this manner the mapping

H(X) : Ain −→ ak is independent of the message

itself.

The third function is a check function which takes

as input a number and outputs either 0, 1 or ⊥(null).

A gate, in order that only the blocks of the original

message pass through it, does not assign a value to the

local variable until the block is mapped directly to it

fromH(X). Once the block is accepted, a single, static
256 bit number unique to each gate is relayed to the

Ain check function. If this number matches the stored

value associated with that gate, the check function

outputs 0 and no new strings are fed into the H(X)
function. Simultaneously, a unique but static 256 bit

number is sent from the gate to the check function of

Aout, which outputs 1, thus initiating the two pseudo-

random generators within Aout.

Each output of PRG1 is a 32-bit number sent to

and evaluated by all gates. The PRGs output cycle is

attached to a counter which increases with every output

and beginning with a value of 1 the counter value c
increases to a value of N at which point the counter

resets to 1. PRG2 outputs a 16-bit number between

1 and N inclusive and prepends this number r to the

output of the first PRG. The gate which receives this

concatenated string as input and considers it valid, uses

its check function to compare the r value to the value

of the number m present in the m|| LN block from

H(X). If the gate contains no information or the m
value present is not equal to r, the check function will

output 0 and upon receiving a zero value the check

function within Aout outputs ⊥ forcing PRG2 to output

0 until the counter value c has reseted to 1. At this point
PRG2 will again output a valid non-zero number and

prepends this to a new output from PRG1 which the

accepting gate again checks for equality to m.

If the two values are equal the check function of the

gate outputs a single, unique, static 256 bit number

to Aout which causes the check function of Aout

to output 0 and terminate the loop for both PRGs.

Simultaneously a unique 256 bit number is sent to the

check function of Ain which outputs 1, enabling a new

block to be fed into H(X). As soon as the m value is

checked to be equal to r the gate passes the reference

value of its local variable to an array in Aout and is

dereferenced in order for the variable to take a new

value.

A. Bit Insertion

The data in Aout is sent through a one way route to

Bin (see Fig 1) where the configuration of Bin is the

same as that of Ain. Because of this, the complexity of

implementation may be simplified by using the same

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

Bout I1(X) Storage E(X)

Fig. 2. The encryption process in stages.

set of functions and conditions within the gates for

each pair, ak and bk. In fact the symmetry of the two

halves can be made exact by using Yarrow-160 for both

sets of two PRGs (PRG1,PRG2) and (PRG3,PRG4)
present in Aout and Bout.

We denote by I1(X) the insertion function contain-

ing a one bit PRG linked to two counters. The blocks

leaving Bout are once again in the form of L
N , having

had the prepended 16-bit representation of m removed.

Upon leaving, the first counter analyzes the constant

data stream one bit at a time looking for an null space.

Thus, upon finding the end of the first block, the

counter increments from 0 to 1 while the PRG inserts

a bit into each null space and does so until the counter

detects the beginning of the second block. Since the

PRG is only activated by the presence of an null space

it will not replace any part of the original message.

When each new block is detected, the counter increases

and the PRG begins insertion once more. This cycle

continues until the counter reaches N and resets, thus

deactivating the PRG. The second counter records the

number of bits (B1, B2, . . . , BN−1) inserted by I1(X)
during each cycle.

The entire string is stored in a dynamic array called

Storage which holds each incoming bit in sequence.

The insertion length values are similarly stored in

separate arrays. Two functions are contained within

Storage.
D(X) takes as input the values (B1, B2, . . . , BN−1)

and outputs (C0, . . . , CN−1).
An insertion function, I2(X) uses a PRG- such

as the Yarrow-160- to generate multiple outputs of

random bits. These outputs are concatenated until they

exceed the length of some value based on the N − 1
insertion lengths. For example, a naive value may be

given by

V1 =

⌈
B1 +B2 + · · ·+BN−1

|Bi −Bj |

⌉
(1)

where the choice of i and j depends on the master key.

At this point the concatenated string has all rightmost

bits removed until it is of the exact length as V1. The

shortened concatenation is prepended to the garbage

filled message . An similar procedure is followed for

a second set of outputs of final length V2, which is

appended instead.

In the construction below, we denote the following:

P,Q are large prime numbers which are known be-

forehand by both parties; αi 6= ji are numbers ranging

from 1 to N − 1.

C0 = P (Bj1)
Q (2)

C1 ≡ Bα1
(modBj1) (3)

C2 ≡ Bα2
(modBj2) + C1 (4)

...

CN−1 ≡ BαN−1
(modBjN−1

) + CN−2 (5)

Since each αi, ji is unique then each of the insertion

bit values is used twice; once as a modular base and

once as the number being reduced. The function D(X)
is deterministic, in that the sequence of pairs (αi, ji) is
fixed regardless of the message being encrypted. This

means that the value Bj1 = Bk (1 ≤ k ≤ N − 1) for
a fixed value of k. The importance of the equations

given above is shown in Section V, with regards to

decryption.

B. Keys and Authentication Codes

At this point the garbled message string and the set

of values C0, C1, . . . , CN−1 are transfered to arrays in

the space denoted by E(X). This space contains an ex-
clusive bitwise addition function and two deterministic

functions, E1(X) and E2(X). The deterministic func-

tions may be of varying mathematical complexity or

may even be physically determined such as described

in [6]. We do require that they be difficult to invert.

The purpose of E2(X) is to output two strings of

128 bits in length where the first output is prepended

to the data and a second output is appended to the

data. The first output of E2(X) may be determined

by the length of the garbage filled message. The

second output is determined using the value of the first

output and thus by association would also be dependent

on message length. The reliance on message length

for generating input values for E2(X) underlines the

importance of widely varying lengths of inserted bits.

Given a large range of possibilities, and since it

is likely that any change in the first output will

affect the second we can use these pairs as message

authentication codes (MAC) [9]. See Section IV for

more detail on this procedure.

We wish that an active attacker who either deletes

bits from the encrypted message or inserts bits will,

through tampering with message length, almost cer-

tainly invalidate one or both E2(X) outputs upon

decryption. This is a useful implementation due to

the simplicity of verification and given that MAC

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

authentication has been proven to be very secure [7].

To rigourously prove the claim of invalidation of

E2(X) outputs would require a detailed explanation of

how E2(X) works. Due to constraints on the amount

of material which can be presented, we have decided

to discuss this in future work.

Unfortunately we do not obtain non-repudiation [8]

nor defend against an active attacker who does not

change message length. This last concern can be some-

what countered by structuring E2(X) to depend not

entirely on message length but on some other unique

property such as a combination of message length and

number of 0's contained in the message.

Two fixed length keys are outputted by E1(X) given
the Bj1 value mentioned above as its input.

As an example, take a set of 512 bit keys, where

the bitwise XOR function applies the first 512 bit key

to the first 512 bits of the data. The next 512 bits

of data (if more than 512 bits remains) is similarly

XORed by the same key until all data is encrypted.

This newly encrypted message is again XORed, but

with the second key. It is after this procedure that the

MACs are concatenated to the message.

III. MESSAGE LENGTH BOUNDS

In this section we must stress that the very nature

of the randomness of the gate mechanism only allows

for the calculation of expected values for most of the

bounds. In particular there is no true upper bound as

a gate may theoretically never be opened. In fact it is

of great importance that the number of gates is small

enough so as to allow a high expectation that every

gate will open within some reasonable time span.

All the values obtained assume perfectly random

behaviour. In practice there will likely be some small

bias for particular gates.

Let us begin by calculating the lower bounds of

time interval between exactly two consecutive blocks

of form m|| LN . The denotation L is the length of

the original plaintext, and L̄ is the total length after

insertions.

The lower bound can be found exactly, where

P(X → ak) describes the probability of a block being

sent to a given gate. Here, X represents a plaintext

block. Assuming the Yarrow-160 protocol is indistin-

guishable from true random, then P(X → ak) will be
1
N whilst the time (th) to execute is constant regardless
of the chosen gate. The probability P(X → Aout)
is 1

N2 since the probabilities that the non-empty gate

accepts the 32-bit number generated PRG2 and the

correct output from PRG1 is prepended both have

probability 1
N . Assuming that both PRGs output the

correct values then the time taken is just the constant

tg(o) which is the time taken to open the gate and is

a measure of the time taken for one complete cycle of

the mechanism process described above. At this point

the second block trails the first by a value of tg(o)+ th
but if the first block fails to pass through the second

set of gates in one try then the second block will join

it in Bin. Furthermore, if the second passes through

immediately then the time interval remains tg(o) + th.
In fact this true for any two blocks for which the first

block takes longer to pass through the second set of

gates than the second block takes to pass through the

first set of gates. It should also be noted that the time

taken to send data from Aout to Bin is assumed to be

negligible compared to tg(o)+th thus this value is what

the lower bound is expressed as between consecutive

message blocks.

The upper bound occurs when the time interval

between two consecutive message blocks is greatest.

This will occur when the first block passes through

both sets of gates immediately whilst the second takes

all tries. Using the probabilities above, we can show

that the time taken for first block to pass from, Ain to

Bout is equivalent to

T1 = 2(tg(o) + th) (6)

The time taken for the second block to pass from Ain

to Aout is

T2a = (th + (N3 −N)tg(r) + tg(o)) (7)

where tg(r) represents the time taken for the gate to

receive and reject r.
Since the probability P(X → Aout) is 1

N2 this

means that there will be (N2 − 1) attempts where

PRG2 is forced to output 0 until the counter resets.

Each counter cycle takes time Ntg(r) and thus for all

incorrect attempts the total time is

(N2 − 1) ∗Ntg(r) (8)

with the single correct attempt being of time tg(o). By
the same argument the time

T2b = (th + (N3 −N)tg(r) + tg(o)) (9)

which is the time taken for the second block to pass

from Bin to Bout is the probabilistic upper bound.

Therefore the total time interval is established as

2(th + (N3 −N)tg(r) + tg(o))− 2(th + tg(o)) (10)

assuming a perfectly random mechanism.

The effect of this time interval is to allow the one

bit PRG within the insertion function to insert zeros

and ones between two consecutive blocks. If the PRG

performs an insertion every tins then the number of

bits inserted between the two blocks has bounds given

by equation (11).

40Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

tg(o) + th

tins
≤ n(Bits)

≤
2[th+tg(r)(N

3−N)+tg(o)]− 2(tg(o)+th)

tins

=
2(N3−N)tg(r)

tins
(11)

This upper bound, however, is true only for the first

two blocks after which the bound is represented by that

of equation (12).

tg(o) + th

tins
≤ n(Bits)

≤
(th+(N3−N)tg(r)+tg(o))− 2(tg(o)+th)

tins

=
tg(r)(N

3−N)− (tg(o)+th)

tins
(12)

This wide ranging insertion length is meant to ensure

that accurate prediction of the final length is extremely

difficult. The probability of an inserted string being of

a given possible length is 1
N2 and that of each N − 1

insertion all having a particular length such that the

sum of the lengths of all inserted strings is a given

value can be approximated.

The probability of a message of original length L
being mapped into that of maximum or minimum

length; max(L̄), min(L̄) is

1

N2 ∗NN−1
(13)

since there is only one way of summing to either the

maximum or minimum possible final length.

The probability P(L → L̄) where the insertion

length is non(max, min) increases with N and is

largest for a total insertion length corresponding to N
gate rechecks. We will determine the least number of

repeats of the same message that may be processed

before the output lengths are forced to match.

This can be solved exactly by considering the weak

partition, wp(N)N−1, of N into N − 1 non-negative

integers.

wp(N)N−1 =
1

(N − 2)!

N−2∏
i=1

(N + i) (14)

P (L → L̄) =
wp(N)N−1

N2 ∗NN−1
(15)

Thus the number of repeated cycles of the same mes-

sage must be no more than this absolute smallest value

for mandatory correlation for any message length.

The more numerous the gates, the larger this value

becomes. At N = 16 this value is

P(L → L̄) =
wp(16)15
162 ∗ 1615

∼=
1

240.89
(16)

and this represents the total insertion length most likely

to be present. An equal total length, however does not

indicate that the sequence of insertion lengths is the

same, as the probability of a given inserted length is

still 1
N2 .

The last bound of importance is that of message

length to number of gates. Since the security is based

on random insertion length, the original message length

must be at least N -bits. The upper bound of message

length is determined by the security of encrypting a

string of zeros, as will be shown in the next section.

IV. SIMPLE ATTACKS

We illustrate a chosen-plaintext attack. Consider an

attacker who knows that the MAC lengths are 128 bits.

We show the method by which an attacker can break

the security in the shortest possible time with only this

knowledge.

Assume the attacker sends a string of zeroes through

the RGP to be encrypted. The garbled message has

been XORed by two 512 bit keys, as in Fig. 3. Note

that the circular shift on each block of zeroes does not

affect it at all.

We let the length of 1stDivision, denoted by C,

be arbitrarily long and thus the last 512 − V1 bits of

the XORed keys will always be XORed with zeros.

Knowing the combined length of the first MAC and

B is 128 + V1 bits, the attacker assumes C is XORed

with some 512 − V1 bit portion of the keys. The

attacker knows that the encrypted 512 − V1 bits they

are searching are in fact the keys themselves but does

not know what V1 is, and will not know even if the

length of C is exactly 512 bits. This is because the

beginning V1 bits of the first 512 bit encrypted portion

are different than the first V1 bits of the subsequent

portion and thus no repeating pattern yet emerges. As

C exceeds 512 bits the sequence of the further bits

exactly repeats that of the aforementioned 512 − V1

bits. At C = 1024 − V1 bits the entire repetition is

shown and the attacker can determine what the XOR

value of the last 512 − V1 bits of the two keys is.

This gained information is enough to determine which

portions of the ciphertext are simply a long string of

zeroes. The same method can be used if C is just a

string of ones.

For complete security of any message encrypted

with a key of length K it is thus recommended that the

message be no longer than KN bits in length where

N is the number of gates. This is easily remedied

by forcing an initial message to be split into pieces

and each piece fed into Ain in sequence, where new

keys are generated each time. Another, less simple

countermeasure is to construct E1(X) such that key

length is dynamic and the keys may have differ-

ing lengths. Under these two improvements, chosen-

41Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

| 512 bit key 2 | 512 bit key 2 | |

⊕ ⊕

| 512 bit key 1 | 512 bit key 1 | |

⊕ ⊕

| 128 bits | V1 bits | 1stDivision | . | 128 bits |

MAC B C D MAC

Fig. 3. Ciphertext output for an arbitrary message.

plaintext attack is not enough to break security. This

is since the MAC, the value of V1, the two keys,

and the garbage inserted, constantly change with each

encryption, even with the same plaintext used multiple

times.

We will now allow the same attacker to record the

time intervals between several different length message

inputs and their encrypted outputs. We must show that

such a timing attack is insufficient to determine with

non-negligible probability which encrypted message

the attacker is viewing. The attacker is given the power

to submit an arbitrary length string of zeros or string of

ones, both of which have length less than or equal to

KN . The attacker then outputs the probability that the

encrypted message is that of the zeros. The probability

will be 1
2 + ε where the value of ε must be non-

negligible for the algorithm to be considered secure.

One way to accomplish this is by forcing all en-

crypted messages to remain in the system until a

minimal time

2(N3 −N)tg(r) ∗ (N − 1) ∗ α (17)

has elapsed, where α may be arbitrarily large. Though,

theoretically, a message portion may take an infinite

amount of time to pass through the gates, by choosing

a large value for α the majority of message encryption

times can be standardized. Such an α would depend on

the number of gates and would be determined experi-

mentally. The obvious downside to this approach is the

artificially long encryption time for some messages.

A. MAC and Key Integrity

With regards to an attack on message integrity we

consider an attacker attempting an existential forgery

under a chosen-plaintext attack. Also the attacker

wants to be able to create a message which has the

same pair of MACs as a valid message.

Suppose that the attacker intercepts an encrypted

message and attempts to use the same MACs on an

arbitrary plaintext of his choosing. As was shown in

Section III, even with only sixteen gates, the number

of messages that must be encrypted to guaranteed mes-

sage length collision is large. Even then, the probability

that the number of 0's occurring is the same in both

cases is unlikely. Given that the E2(X) outputs depend
on these two factors, a breach of integrity reduces to

finding a collision for E2(X). It is thus extremely

important that E2(X) be sensitive to even very minor

changes in its inputs as well as possessing a large range

of outputs. Taking into consideration a birthday attack,

the number of random messages an attacker must send

before being guaranteed a collision pair for both MACs

is

264 · 264 = 2128

This assumes that there is no exploitable bias in the

construction of E2(X).
Similarly, trying to force decryption of an arbitrary

message with an externally generated message authen-

tication code is an undertaking by brute force.

Assuming the bounds of message length for se-

curity against pattern recognition are adhered to and

the function E1(X) which generates the keys is not

known, then any simple attack on the message through

key integrity which does not rely on exploiting some

unforeseen weakness in the E1(X) function will be a

brute force attack on the key length.

V. MESSAGE RECOVERY

Consider a fully encrypted message which has

been sent to a recipient along with the values,

C0, C1, . . . , CN−1. The intended recipient must pos-

sess knowledge of various portions of the encryption

process. Namely, the number of gates, the values of the

prime pair P,Q as well as the sequence of pairs (αi, ji)
(see Section II.A) must all be shared knowledge. It

is given that the recipient's RGP decryption algorithm

contains exact replicas of E1(X), E2(X), the circular
shift function, and the deterministic sub-function of

I2(X) which calculates the values V1 and V2.

Firstly, the value Bj1 is recovered from C0 by

dividing by P and then applying Fermat's Little The-

orem using Q. Once Bj1 is found it is used as input

for E1(X) and thus the key pair is generated. The

ciphertext is XORed, initially with the second secret

key, and then with the first. We will assume, as

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

proposed in Section II.B, that E2(X) takes as its input
a combination of ciphertext length and number of 0's

occurring. It is thus easy to determine both of these

values, and consequently, to verify the validity of the

MACs. If the MACs are valid then the ciphertext may

now be "ungarbled" in order to extract the original

data; otherwise it is discarded.

Recovering the plaintext is accomplished by using

Bj1 and the values C1, . . . , CN−1 given by equations

(3) to (5) to obtain B1, . . . , BN−1. For this procedure

it is vital that the sequence of pairs (αi, ji) be known.
Once each of the values B1, . . . , BN−1 is obtained,

it is simple to remove all inserted bits . Now, the

beginning of the ungarbled message is prepended by

the first output of I2(X),so we proceed by removing

the V1-bits. Likewise, the appended V2-bits is similarly

removed. Reversing the circular shift on each block,

concatenating the remaining data, and removing the

padded zeroes from the final block recovers the origi-

nal plaintext.

VI. A SIMPLIFIED EXAMPLE

We now give an example of encryption of some

sample messages using a method based on a significant

simplification of the RGP algorithm. We thank Ritesh

Reddy for writing the code which implements this

encryption.

Number of Blocks: 10 Plaintext Length:
24 Ciphertext Length: 30

Original Plaintext: Hello My Name is
Ritesh!

Encrypted:æx °a0\xd¥Êür}næÛ”‹‹‹ñ¬õËËË
Decrypted: Hello My Name is Ritesh!

Number of Blocks: 4 Plaintext Length:
21 Ciphertext Length: 24

Original Plaintext: NSA NSA NSA SECRET!!!
Encrypted: õúèÇõúcBpucBvhfuhw×××444

Decrypted: NSA NSA NSA SECRET!!!

VII. CONCLUSIONS

In addition to the specific issues noted in previous

sections, as an immediate concern, we aim to practi-

cally ascertain the relative performance and safety of

the RGP versus some of the commonly used crypto-

graphic methods. At the time of writing this paper, this

analysis is only preliminary due to lack of a complete

working model of the RGP. We also plan to investigate

the robustness of the algorithm with regards to accurate

decryption when the initial message is comparatively

long and to determining how the ciphertext length

varies with the number of gates.

References

[1] http://csrc.nist.gov/publications/nist-
pubs/800-67-Rev1/SP-800-67-Rev1.pdf (Accessed on July 10,
2015)

[2] http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf (Ac-
cessed on July 10, 2015)

[3] R. C. Merkle, "Secure communications over insecure channels,
" Communications of the ACM, Vol. 21, Issue 4, pp. 294-299,
1978.

[4] B. Schneier, J. Kelsey, N. Ferguson, "Yarrow-160: Notes on the
design and analysis of the Yarrow cryptographic pseudorandom
number generator, " SAC '99 Proceedings of the 6th Annual
International Workshop on Selected Areas in Cryptography, pp.
13-33, 1999.

[5] G. Hanaoka, J. Shikata, Y. Zheng and H. Imai, “Uncondition-
ally secure digital signature schemes admitting transferability,
" ASIACRYPT, LNCS, vol. 1976, pp.130-142, 2000.

[6] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, "Physical
one-way functions, " Science, vol. 297, pp. 2026-2030, 2002.
[DOI:10.1126/science.1074376]

[7] G. Hanaoka, J. Shikata, Y. Zheng and H. Imai, “Uncondition-
ally secure digital signature schemes admitting transferability,
" ASIACRYPT, LNCS, vol. 1976, pp.130-142, 2000.

[8] F. Oggier, H. Fathi, "An authentication code against pollution
attacks in network coding, " IEEE/ACM Transactions on
Networking, 2009. [DOI:10.1109/TNET.2011.2126592]

[9] A. S. Aiyer, L. Alvisi, R. A. Bazzi and A. Clement, "Matrix
signatures: From MACs to digital signatures in distributed sys-
tems, " Distributed Computing, 22nd International Symposium,
DISC 2008, Arcachon, France, September 22-24, 2008.

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

