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Abstract—This paper describes a work in progress on the 

usage of Acceptance Test-Driven Development (ATDD) during 

the construction of cryptographic software. As cryptography 

becomes universalized, it is becoming hard to separate good 

implementation from bad ones. The paper argues that Test 

Vectors for cryptography can be used as User Stories in 

Behavior-Driven Development (BDD) and automate ATDD 

during software development, complementing algorithm’s 

specification, and contributing to augment software reliability 

and the overall trust in the correctness of cryptographic 

implementations. The acquired confidence is preserved even 

after performing program transformations for improvements, 

such as performance optimization and hardenings. 

Keywords-BDD; TDD; ATDD; User Stories; Security; Test 

vectors; Cryptography; Assurance. 

I.  INTRODUCTION 

Nowadays, it is a well-accepted idea that the most likely 
attacks over software-based cryptosystems are against 
implementation faults and key management failures 
[2][16][17]. On the other hand, as cryptography becomes 
universalized, it is becoming difficult to assure that what is 
implemented in the real world is actually good cryptography.  

The objective of this paper is to discuss preliminary 
results on the understanding of how the concepts of 
Behavior-Driven Development (BDD) and Acceptance Test-
Driven Development (ATDD) can be applied to the 
construction of cryptographic software, and how these two 
concepts can increase both the security and overall trust of 
software that rely on cryptographic implementations. The 
idea discussed here was experienced during the construction 
of a cryptographic library for Android devices [1]. 

Test-Driven Development (TDD) has become very 
popular in the agile programming community. In any secure 
software construction, the correctness of basic security 
functions is of major concern, and must be preserved even in 
an ever changing environment. The idea behind this text is 
that, in cryptography implementation, Test Vectors are User 
Stories formulated as automated acceptance tests, which can 
be successfully used to validate the implementation of a 
cryptographic algorithm against a specification, and prepare 
the room for future code optimizations and hardenings. 

Once automated acceptance tests are available for a 
specification-based implementation of cryptography, further 

improvements on the source code can take place in order to 
address industry concerns, such as performance 
optimizations, power consumption, and security controls 
against side-channel attacks and other vulnerabilities in 
source code. Even after all these transformations, acceptance 
tests preserve trust by giving strong evidence of correctness. 

This work has two motivating drivers. The first is an 
actual need for increasing the confidence in cryptographic 
algorithm implementations, which are not under the scrutiny 
of cryptologists. It is a fact of life that cryptologists are 
scarcely available human resources, and ordinary 
programmers are not only more available, but less expensive 
as well. A frequently asked question in industry is whether or 
not it is possible to produce high quality implementations of 
good cryptography, even when there is no cryptologist 
neither writing source code nor deeply inspecting it. 

The second is a lack of literature concerning the 
combination of TDD, ATDD, or BDD and specific security 
technologies, like cryptography. Today, common usages of 
TDD are related to general topics in software, such as 
enterprise applications, mobile code, data-access code, and 
so on. The authors could not find any reported case of TDD 
in cryptographic software. 

The text is organized as follows. Section II offers 
background information on related subjects. Section III 
details the proposed idea. Section IV discusses practical 
issues of the proposed approach. Section V contains 
concluding remarks and future work. 

II. BACKGROUND AND RELATED WORK 

This section offers background on ATDD, BDD, TDD 
for security, and Test Vectors for cryptography validation. 

A. Acceptance Test-Driven Development 

ATDD is strongly related to BDD, both of them drive 
TDD, Acceptance Tests, and Unit Test from User Stories. 
The core idea of TDD was proposed in 2002 [7] and the state 
of the practice was studied recently [18], with good text 
books available on the subject [9]. 

ATDD drives development on the feature level, similarly 
to TDD in code level with Unit Tests. Acceptance tests act as 
micro specifications for the desired behavior and 
functionality of a system. They tell how the system handles 
certain conditions and inputs and with what kinds of 
consequences and outputs. The benefits of ATDD are the 
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following: (i) clear definition of “work done”, by providing 
the knowledge of where the development is and of when to 
stop working; (ii) promotion of trust and commitment, 
because there’s a direct connection between what the 
customer specifies and what she gets; and (iii) specification 
by example, when requirements are expressed by 
comprehensible examples, rather than by complex formulas 
or ambiguous descriptions. Tests expressed with concrete 
examples are easier to read, easier to understand, easier to 
validate, and easier to write [9]. 

In Acceptance TDD, a requirement is translated into a set 
of executable tests and then applied to the implementation, 
which is validated against tests, rather than against the 
developer’s interpretation of a requirement. 

1) User Stories 
User Stories are a useful, lightweight technique for 

managing requirements. User Stories are short sentences 
written with customer’s assistance, stating who does what 
and why. The story is intended to represent a requirement, 
acting as a promise of a future conversation between the 
customer and the developer. A story is typically only one 
sentence long, it is not intended to document the 
requirement, and it does not substitute actual specifications. 

The most common format or template for User Stories 
contains the name of the story and three phrases: As a [user 
role of the system], so that [I can achieve some goal or 
objective], I want to [perform some task]. These three 
phrases resemble a simple desire of users or customers. 

Ideally, a User Story can be formulated as acceptance test 
before code is written. Well written User Stories, that 
produce good acceptance tests, usually have quality 
attributes called Specific, Measurable, Achievable, Relevant, 
and Time boxed (SMART). The SMART attributes mean 
that it has to be at least a pair of valid input and 
corresponding output that: (i) is expressed in the language of 
the domain specialists; (ii) is concise, precise and 
unambiguous; and (iii) could be tested within a finite (and 
short) amount of time. As discussed further in this text, 
cryptographic test vectors comply with all these attributes. 

2) Behavior-Driven Design and TDD 
 Behavior-Driven Design (BDD) is a way to develop 

User Stories to describe features on computer programs. 
BDD concentrates on program’s behavior, instead of its 
implementation. In BDD, the development team asks 
questions about program’s behavior, before and during 
development, to reduce miscommunication. The questions 
generate requirements written down as simple User Stories. 
Later on, User Stories become acceptance tests and 
integration tests of those programs. 

The advantages of BDD are that User Stories are 
expressed in common language for all stakeholders, and 
make it feasible to write tests before or during coding. This 
only feature turns debugging time into validation time. The 
disadvantages of BDD are twofold: (i) continuous contact 
with customer is difficult to achieve in most software 
projects and (ii) BDD almost always leads to bad software 
architecture, thus requiring frequent refactoring of source 
code. The compliance to standard Application Programming 

Interfaces (APIs) and algorithm specifications minimize the 
impact of this disadvantage in cryptographic software. 

Test-Driven Development (TDD), or Test-First 
Development (TFD), is the practice of writing automated 
Unit Tests for low-level program constructions (e.g., objects) 
based on simple User Stories. TDD is guided by a sequence 
of User Stories obtained from the customer or user. On TDD, 
the supposed result of writing low-level Unit Tests is that 
only few defects show up during tests. 

Advocates of TDD may question the usefulness of Unit 
Tests in the presence of automated ATDD. Unit Tests are 
still useful to validate compliance to programming contracts 
of an API or to the programming dialog of Frameworks, 
contributing to regression tests when acceptance tests are not 
effective. That is exactly the case of cryptography 
implementation, when testing accessory functionality, such 
as padding schemes, and conformance to APIs are 
requirements.  

B. TDD and Software Security 

There are few works relating TDD or ATDD and 

security [3][10][21][22]. The work of Smith, Williams, and 

Austin [3] assesses the relative effectiveness of system and 

unit level testing of web applications to reveal both SQL 

injection vulnerabilities and error message information 

leakage vulnerabilities, when used with an iterative test 

automation practice by a development team. 

More recently, three related works [22][21][10] 

addressed TDD for security testing. First, Kobashi et al [22] 

proposed a method to validate implementations of security 

pattern using TDD. In this method, developers specify the 

threats and vulnerabilities in the target system during an 

early stage of development, and then the proposed method 

validates whether the security patterns were properly 

applied and assessed whether vulnerabilities were resolved. 

Then, Yoshizawa et al [10] evolved the previous work 

by proposing a validation method, using TDD, for security 

design patterns in the implementation phase of software 

development. Finally, Kobashi et al [21] implemented their 

method in a tool called TESEM (Test Driven Secure 

Modeling Tool), which supports pattern applications by 

creating a script to execute model testing automatically. 

During an early development stage, the developer specifies 

threats and vulnerabilities in the target system, and then 

TESEM verifies whether the security patterns are properly 

applied and assesses whether vulnerabilities are resolved.  

 None of the above mentioned works treat ATDD in the 

context of cryptographic software development. 

C. Test Vectors for Cryptography 

Test Vectors have been used in validation of 
cryptographic implementations for many years, mostly for 
product certification, post construction. This section 
describes the validation of cryptographic implementations 
with Test Vectors during development. 

Test Vectors are data sets constructed with the aim of 
evaluating the correctness of cryptographic implementations, 
not their security. However, the functional correctness is a 

56Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies



 

Figure 2. The User Story for a single Test Vector. 

 

 

01 @Test 

02 public void pkcs5PaddingTest(){ 

03  byte[] result = new byte[8],  

04  input = "AAAA".getBytes(); 

05  int inputOffset=0, inputLen=4; 

06  int totalInputLen=8, blockLength=8; 

07  result = Padding.pkcs5Padding(input, 

08    inputOffset,inputLen,totalInputLen, 

09    blockLength); 

10  assertEquals(Util.ByteArrayToHexStr(result), 

11            "4141414104040404"); 

12 } 
 

Figure 1. Unit Test for PKCS#5 padding of size 4 on a 8-byte block. 
 

strong prerequisite for security because, in principle, an 
incorrect implementation is both unreliable and insecure. 

In order to make de validation feasible, cryptographic 
software under evaluation should allow the necessary control 
over the input parameters needed for testing. For example, 
the ability to configure or load known values for the 
variables required for a specific test may be available via an 
API. Tests cannot be performed if cryptographic software 
does not allow control over the values of input parameters. 

There are publicly available Test Vectors [11][13][14]. A 
well-known set of vectors is provided by US National 
Institute of Standards and Technology (NIST) within the 
Cryptographic Algorithm Validation Program (CAVP) [13]. 
All validations based on Test Vectors are designed to test 
compliance with the norms and standards of the specific 
algorithm being evaluated. Therefore, they are not meant to 
provide a measure of the security for a particular 
cryptographic implementation. 

Crafted validation tests are designed to detect accidental 
defects of implementation and operation, and are not 
designed to detect intentional attempts to misrepresent 
validation. For example, malicious implementations can be 
constructed to give the correct answer for a particular set of 
tests, then passing as a correct implementation, while 
concealing some other malicious function. Hence, it is a 
good practice the use of updated, randomly-generated 
vectors in conjunction with crafted or standard vectors. 

It is noteworthy that Test Vectors are constructed using 
statistical sampling. That is, only a small amount of samples 
is extracted from the universe of test cases. Therefore, the 
successful validation implies strong evidence, but not 
absolute certainty, of correctness for the implementation 
under evaluation. 

In order to exemplify the structure of Test Vectors, this 
text uses the Advanced Encryption Standard (AES) [12], 
along with NIST’s vectors [8]. The validation of AES covers 
various operation modes (e.g., ECB, CBC, OFB, CFB1, 
CFB8, and CFB128). For each mode, three key sizes are 
selected (128, 192, and 256 bits). 

The AES validation consists of three types of test: 
Known Answer Tests (KAT), Multi-block Message Test 
(MMT), and Monte Carlo Test (MCT). There are extra 
vectors for GCM and XTS modes. The KAT test suite tests 
four algorithm-specific components. For instance, the 
GFSbox set tests finite field arithmetic, the KeySbox set tests 
transactions on subkeys, the Variable Key set tests fixed 

plaintext against varying keys, and the Variable Text set tests 
fixed keys against varying plaintext or cipher texts.  

The MMT tests are designed to test the ability of the 
implementation to process input data consisting of many 
blocks, and require correct implementation of chaining from 
block to block. Both KAT and MMT are simple comparisons 
of known values. MCT still performs comparisons of known 
values of ciphertexts, but the current ciphertext is computed 
by chaining previously generated ciphertexts as input to new 
encryptions into a loop. The last ciphertext is then compared 
to the value of test vector.  

Table I shows KAT vectors for AES encryption in CBC 
mode with a 128-bit key. The table follows NIST’s format 
and contains examples of the four KAT subtypes. IV, PT and 
CT stand for Initialization Vector, Plain Text, and Cipher 
Text, respectively. 

III. TDD AND ATDD FOR CRYPTOGRAPHY 

This section proposes an approach to perform TDD and 
ATDD over cryptographic implementations. First, it 
discusses a strategy for conducting Unit Tests that fits on the 
TDD framework. Then, a strategy to perform ATDD with 
Test Vectors as User Stories is presented and discussed. 

The code snippet in Figure 1 is an example of how JUnit 
[6], a simple framework to write repeatable tests in Java, can 
be used in automated testing of security functions. The 
method tests the structure of padding in PKCS#5 format. The 
code works for blocks of 8 bytes (for example, used by 
3DES) and the input data of 4 bytes, so the function must 
include 4 bytes of padding with the hexadecimal value 0x4. 
This code can be generalized to other test cases for padding.  

In the case of padding, the exhaustive coverage of all 
possible test cases becomes feasible, since the padding has a 
small number of options that depend on the block size of the 
cryptographic algorithm. For instance, there are 8 test cases 
for algorithms with 64-bit block, as well as 16 test cases for 

TABLE I. FOUR AES KAT VECTORS (ENCRYPTION, CBC, 128-BIT KEY). 

Vector type 

and index 
Vector value for each parameter 

GFSbox 

test data 

for CBC #0 

KEY = 00000000000000000000000000000000 

IV  = 00000000000000000000000000000000 

PT  = f34481ec3cc627bacd5dc3fb08f273e6 

CT  = 0336763e966d92595a567cc9ce537f5e 

VarKey 

test data 

for CBC #0 

KEY = 80000000000000000000000000000000 

IV  = 00000000000000000000000000000000 

PT  = 00000000000000000000000000000000 

CT  = 0edd33d3c621e546455bd8ba1418bec8 

KeySbox 

test data 

for CBC #0 

KEY = 10a58869d74be5a374cf867cfb473859 

IV  = 00000000000000000000000000000000 

PT  = 00000000000000000000000000000000 

CT  = 6d251e6944b051e04eaa6fb4dbf78465 

VarTxt 

test data 

for CBC #0 

KEY = 00000000000000000000000000000000 

IV  = 00000000000000000000000000000000 

PT  = 80000000000000000000000000000000 

CT  = 3ad78e726c1ec02b7ebfe92b23d9ec34 
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algorithms with 128-bit blocks. Considering both insertion 
and removal of padding as distinct test cases, there are 48 
test cases. In terms of JUnit, there are two approaches for 
implementing these test cases. In one, all the 48 test cases 
can be individually automated. In other, one single function 
can be built for all test cases. An option sitting in between is 
to build two separated functions, one for padding additions 
and other for removals. 

The choice of a method for each test case is preferable 
because complies with TDD’s philosophy of identifying 
errors quickly and directly. Moreover, the option with a 
single method encapsulating all test cases still implies that 
there must be debugging to identify which test cases have 
failed. Therefore, by not eliminating depuration, it yields 
only partial benefit from TDD philosophy. A similar 
approach can be adopted to test cryptographic routines, but 
with major limitations. TDD and JUnit can be used to test 
the basic operation of the encryption routine by using 
particular Test Vectors for encryption and decryption. 

Despite being useful for simple functional tests of 
security functions, unit tests (based upon JUnit) do not scale 
well when applied to ATDD for cryptography. If each 
possible cipher text is considered a test case, then the amount 
of test cases, though finite and countable, is incredibly large. 
Even a small sample, but statistically significant, greatly 
increases the time to perform unit tests. For this reason, 
ATDD is most suitable for the validation of cryptographic 
implementations than simple TDD based upon stand-alone 
JUnit tests. Figure 2 illustrates the first vector of Table 1 
represented as a User Story for AES encryption. This single 
test case is one in thousands of test cases. For instance, 
NIST’s vectors for AES in CBC mode consist of more than 
2,700 single tests. 

Figure 3 depicts the overall idea of using ATTD for 
cryptography. Test vectors are input data to test cases, which 
are programmed as (automated) User Stories intended for 
Acceptance Tests. Then, ATDD asserts the expected 
behavior of cryptographic algorithms, resembling BDD. This 
approach can be complemented by ordinary unit tests. The 
point of contact between User Stories and cryptographic 
implementations is the cryptographic API. In this way, test 
cases do not act directly on algorithms internals, but verifies 
its behavior, as seen from the API perspective. 

Java programs, such as the one shown in Figure 4, were 
built to enable ATDD through Java Cryptographic 
Architecture (JCA) [4][5]. Before being used in a custom 
cryptographic library [1], the ATDD test suite was validated 
against two presumed correct implementations of JCA 
[5][23]. The test suite was used for testing not only pure Java 
code, but also C code encapsulated by Java Native Interface 
(JNI) adapters and available through the JCA API.  

Figure 4 illustrated how NIST’s Monte Carlo Tests 
(MCT) [8] can be performed by the proposed ATDD test 
suite. The figure shows the source code for a Java method to 
perform MCT tests for encryption in ECB mode. This Java 
code is almost a direct translation of the pseudo code from 
[8]. This code snippet was meant for AES, but can be 
generalized for any block cipher, because it does not depend 
on the specific test data nor cipher implementation. The 

cipher function (a wrapper for the actual encryption function) 
is called only two times, in lines 17 and 19. The loop from 
line 10 to line 36 computes a chain of ciphertexts, which is 
saved (in line 25) for future comparisons. 

IV. PRACTICAL ISSUES AND DISCUSSION 

This section discusses practical considerations that arise 

when implementing the proposed approach.  

 
Figure 3. ATTD asserts whether an implementation follows its specified 

behavior. 
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void mcEncECB(byte[] key, byte[] plainText) { 

  byte[][] bK  = new byte[1000][];//WorkingKey 

  byte[][] bPT = new byte[1000][];//PlainText 

  byte[][] bCT = new byte[1000][];//CipherText 

  TestVector vt; 

  calcVT = new TestVector[100]; 

  bK[0] = key; 

  bPT[0] = plainText; 

 

  for (int i = 0; i <= 99; i++) { 

    vt = new TestVector(); 

    vt.setPT(b2x(bPT[0])); 

    vt.setKey(b2x(bK[i])); 

    int j; 

    for (j = 0; j <= 999; j++) { 

      if (j == 0) {//init cipher with key 

        bCT[j] = crypt(bK[i], bPT[j], true); 

      } else      {//reuse cipher 

        bCT[j] = crypt(bK[i], bPT[j], false); 

      } 

      if (j < 999) { bPT[j+1] = bCT[j];} 

    } 

    j--; // leaves loop when (j == 1000) 

    vt.setCT(b2x(bCT[j])); 

    calcVT[i] = vt; 

    if (i <= 99) { 

      if (key.length == 16) { // 16*8 = 128 bits 

        bK[i+1] = xor128(bK[i], bCT[j]); 

      } 

      if (key.length == 24) { // 24*8 = 192 bits 

        bK[i+1] = xor192(bK[i], bCT[j-1], bCT[j]); 

      } 

      if (key.length == 32) { // 32*8 = 256 bits 

        bK[i+1] = xor256(bK[i], bCT[j-1], bCT[j]); 

      } 

    } 

    bPT[0] = bCT[j]; 

 } 

 return; 

} 

 
 

Figure 4. Monte Carlo Test for encryption in ECB mode, in Java. 

58Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies



A. Examples of Defects Found 

Defects did occur during development. Thus, in addition 
to assert compliance to specifications, test cases are 
structured to detect implementation faults, including 
problems with pointers, insufficient memory allocation, 
incorrect treatment of errors, and other incorrect behaviors. 
This section gives examples of the more interesting defects 
found, usually not related to simple misunderstandings of 
specifications. 

The proposed method was applied over standard (e.g., 
AES, RSA, HMAC, and SHA-2) and non-standard (e.g., 
Serpent, Salsa20, and Blake) cryptography. When testing the 
implementation of AES, two kinds of failures were 
identified. Failures in padding were found when zero 
padding and AnsiX923 padding were used and the value of 
the last byte was less than 16, resulting in a mismatch in test 
vectors. A failure in the CTR mode of operation occurred 
when the first 16 bytes (first block) was correctly encrypted 
(matched test vector), but the remaining blocks do not. Other 
failure was caused by a missing initialization of the hash 
function after the first call to it into HMAC computation. 

Non-standard algorithms produced more severe failures 
than standard ones. It is worth to mention the cases for three 
algorithms: Serpent, Blake, and Salsa20. When testing a C 
implementation of Serpent against its test vectors [19], 
several implementation failures were discovered concerning 
memory leaks, wrong output for either encryption and 
decryption, and program crashes after 1,000 iterations. 

Salsa20 and Blake lack extensive test vectors. In fact, 
only a few unofficial tests were found for Salsa20, which 
were complemented by random tests produced by a reference 
implementation. Blake was tested only with random tests 
produced by a reference implementation. A bug was detected 
in Blake that was caused by wrong calls from Blake224 to 
functions of Blake256. Also, platform upgrades (from 32 bits 
to 64 bits), downgrades (from 64 to 32 bits) and changes 
(from different flavors of Linux) caused errors in encryption 
and hashes that could be detected by regression tests.  

Similar defects were found during development of all 
cryptographic algorithm implementations. By the time of 
writing, there were no collected statistics on the efficiency of 
the proposed method. However, the examples mentioned 
above suggest the method worth the effort when there is no 
cryptologist timely available to support debugging. 

B. Lessons Learned 

Standard algorithms produced fewer defects than non-
standard ones. That is probably because standard algorithms 
possess better documentation available to developers as well 
as good reference implementations. 

The Java APIs for symmetric encryption, secure hash 
functions, and Message Authentication Codes (MAC) have 
shown good testability (meaning the ease with which a given 
test coverage criterion can be satisfied [15]) against NIST’s 
vectors. Unfortunately, the same cannot be said for 
asymmetric encryption. JCA was created before the advent 
of TDD and ATDD, and is not testable by design. The 
authors have found that parts of the API presented poor 
testability and are not suitable for testing with NIST’s 

vectors. In particular, the API for asymmetric encryption was 
designed with “textbook” RSA in mind, and does not allow 
for RSA-PSS and RSA-OAEP to be easily tested, because 
it’s not possible to setup some of the parameters required by 
NIST for these two randomized algorithms. Similarly, the 
key agreement API was designed with “textbook” Diffie-
Hellman (DH) in mind and suffers from the same issue when 
used with Authenticated DH implemented according to 
NIST’s specifications. This means that, in order to be fully 
testable, an implementation has to sacrifice conformance to 
JCA API. Also, security issues have been found in JCA [16]. 

Concerning API compliance, a lesson learned is that any 
cryptographic implementation should have the ability of 
being tested by third parties. Co-design of both functional 
code and test code can favor testability. But that may not the 
case when testing legacy cryptography with ATDD. 

TDD and ATDD can in fact reduce the time of 
debugging, when looking for the causes of failures. A lesson 
learned is that TDD uses the same techniques of debugging, 
but in a productive way, writing automated tests during 
software development. 

Failure isolation seems to be the most important 
advantage of TDD to development of cryptographic 
software. In TDD, if a test fails, the cause must be the most 
recently added code. Failure isolation is almost trivial in 
TDD, because at any moment, all previous test cases must 
have passed. Modes of operation as well as the internals of 
cryptographic implementations are hard to debug otherwise. 

Usually, good test cases are not sufficient for TDD to 
produce good code. Also, good design is eventually 
accomplished by code refactoring. In the case of standard 
cryptographic algorithms, there will always be specifications 
and reference implementations. Furthermore, conformance to 
an API (e.g., JCA), minimizes the need for refactorization. 

Finally, the most criticized disadvantage of TDD is that it 
is strongly dependent on tester’s experience to produce good 
test cases. In cryptography, there is a concern about the need 
for an oracle that could provide good-enough test cases. 
According to [15], an oracle is any (human or mechanical) 
agent that decides whether a program behaved correctly in a 
given test and accordingly gives a verdict of pass or fail. In 
case of cryptography, that need is satisfied by test cases 
provided either by cryptologists or standards organizations. 

Unfortunately, non-standard algorithms usually lack test 
cases and can only benefit from relatively small test sets 
supplied by their authors or other practitioners. In this work, 
for both standard and non-standard cryptography, reference 
implementations were used as oracles for generation of 
random test cases, in complement of third-part test vectors. 

C. Test Vectors as Metrics for Quality Measures 

In order to be useful as a quality measure, tests must have 
clearly defined meanings for success and failure. This text 
adopted the meanings from the Software Engineering Body 
of Knowledge (SWEBOK) [15] as follows: a fault is the 
(root) cause of a malfunction and a failure is the undesired 
effect observed in the behavior of programs. Thus, testing 
can reveal failures, but it is the faults that can and must be 
removed from programs. Still [15], the generic term defect 
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can refer to either a fault or a failure. The result of testing a 
single cryptographic implementation with its test vectors is 
twofold: passing them all constitutes success with a justified 
confidence, but failing only once reveals a failure and 
compromises the whole implementation. 

Failed test cases can be used as indirect measures of how 
distant an implementation is from achieve conformance to 
that test cases and can be used for estimation of effort, team 
assignment, overall cost estimation, and influencing how 
long a test effort should be continued. In this work, the 
criteria for test termination could be positively defined by 
passing all test cases. The term “passed them all” was 
directly related to how much testing was enough and when a 
test period could be concluded. It also involved concerns 
about costs and risks incurred by possible remaining failures, 
as opposed to costs incurred by continuing to test. 

Additionally, when considering whole cryptographic 
libraries with implementations for various algorithms, to 
make testing more effective in making quality predictions, it 
is important to know which types of failures may be found 
and the relative frequency with which these failures have 
occurred in the past. The failure density for an 
implementation under test can be evaluated by counting 
discovered failures as the ratio between the number of 
failures found and the size of that implementation. This 
evaluation was left as a future work. 

V. CONCLUDING REMARKS 

This paper argues that Test Vectors are User Stories and 
can automate acceptance tests for cryptographic software. 
Test Vectors are good acceptance tests because they meet 
halfway between cryptologists and developers. They are 
User Stories from the problem domain, that don't look like 
source code, providing an easy way to reach agreement. The 
approach presented in this text increases confidence in 
cryptographic software by maintaining a strong evidence of 
correctness, even after many code transformations. 

Future work includes the use of ATDD in other 
cryptographic algorithms and protocols. Further research 
includes the design of customized Test Vectors. In order to 
be useful, metrics and statistics concerning the efficiency of 
the approach still have to be collected in structured ways. 
Finally, studies have to be done to combine the approach 
with methods for secure software development. 
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