
A Model for Conducting Security Assessment

within an Organisation

Nor Fatimah Awang

Faculty of Defence Science and Technology

National Defence University of Malaysia

Kuala Lumpur, Malaysia

 e-mail: norfatimah@upnm.edu.my

Azizah Abd Manaf

Advanced Informatics School (UTM AIS)

UTM International Campus

Kuala Lumpur, Malaysia

e-mail: azizaham.kl@utm.my

Abstract—Security Assessment is widely used to audit security

protection of web applications. However, it is often performed

by outside security experts or third parties appointed by a

company. The problem appears when the assessment involves

highly confidential areas which might impact the company’s

data privacy where important information may be accessed

and revealed by the third party. Even though the company and

third party might have signed a non-disclosure agreement, it is

still considered a high risk since confidential information on

infrastructure and architecture are already exposed. It is

important to keep the confidential information within the

project team members to protect the data used by the system.

Therefore, this paper proposes a model to conduct internal

security assessment to ensure all organisational assets are

protected and secured. The main objective of this paper is to

discuss the activities and processes involved in conducting the

security assessment.

Keywords-Web application; vulnerability; security testing;

security assessment; penetration testing.

I. INTRODUCTION

Today, more than one billion people worldwide use the
Internet in their daily routine for a variety of reasons, such as
communicating with others, conducting research, shopping,
banking and electronic commerce [1]. Due to the high usage
of the Internet in today‟s highly competitive world, more
organisations are relying solely on web-based applications
and the Internet to change their daily manual activities to
online-based activities. Most of the organisations have
shifted to the Internet to make more profits and at the same
time to increase the efficiency of their activities such as
customer support services, data transactions and quality of
information supply [2]. From businesses, industries,
governments to non-profit organisations, the Internet has
simplified a lot of business processes and activities. The
growth of internet applications gave a high impact and
created business opportunities to the organisations. However,
the Internet has also brought unintended consequences, such
as criminal activities, spamming, credit card frauds, online
fraud, theft of sensitive information, phishing and other
related cyber-crimes [3][4]. According to surveys conducted
by the security firm McAfee and the Center for Strategic and
International Studies, millions of dollars have been lost due

to cyber-crime attacks [3]. In fact, Symantec Group
reported, attacks against web applications have increased in
2010 by 93% compared to 2009. Another report showed
that, almost 150,000 new sites are registered per day on the
internet, which has the potential to introduce around two
billion serious vulnerabilities [5].

There are numerous researches that focused on the issues
of web application security and vulnerability. Many of the
studies provide models, methodologies and technologies to
enhance the security in web applications. One important step
to ensure web application security is to conduct security
assessment periodically. Security assessment is a process to
search for potential loopholes or vulnerabilities contained in
a system. Through the security assessment, an organisation
can then assure that systems and applications are operating
effectively in providing appropriate product or service
confidentiality, integrity and availability [6]. The assessment
is important to make sure all systems are secure and all
vulnerabilities are discovered before any system is being
deployed [7][8]. Some companies choose to use consultants
or outsource security assessments to third-parties.
Outsourcing security assessment is mandatory in security
audit for banking and online business industries, therefore a
software industry for any related business can just
concentrate on developing their system and let the third-party
evaluate their product before releasing it to the market.
However, according to a study conducted by Corwill and
Nasimmbeni, there are some security issues involved when
using external party to conduct an assessment [10][11]. Even
though a non-disclosure agreement has been signed by both
parties to prevent them from divulging information, it is still
considered a high risk as the third-party already has the
confidential infrastructure and architecture information. It is
therefore important to keep the internal information within
project members to protect the confidential data used by the
system.

This paper discusses a model for conducting security
assessment and detecting vulnerabilities that exist in web
applications. Security assessment is a process to find
potential security loopholes or vulnerabilities in target
systems. Using this model, many organisations will have the
opportunity to perform security assessment internally
without having to outsource it to third-party security experts.

92Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

The structure of this paper is as follows. Section II briefly
describes the background of web application architecture and
discusses related techniques which are commonly used in
detecting vulnerabilities in web applications. Next, Section
III discusses in detail the proposed model. Section IV
discusses the results and finally, Section V presents the
conclusion.

II. BACKGROUND AND RELATED WORK

A. Web Application Architecture

Since a web application runs in the dynamic and
distributed environment that is different from the traditional
programmes, hence more vulnerability exists. This section
gives some explanations on the architecture of web
applications and several common vulnerabilities which exist
in web applications. In general, a web application has three
tier constructions as shown in Figure 1 [12][13]. Figure 1
describes the architecture of a web application. The
architecture of a web application consists of web browser,
web server, web application and database server. In Tier 1,
web server receives input and interacts with clients through
web browser by using http or http protocol. The web
applications are developed using different programming
language such as Active Server Page (ASP), Common
Gateway Interface (CGI), Ruby or Java in Tier 2. Generally,
the web server will manage the page requested from the web
client by sending the request to the application server and the
application server constructs codes dynamically and passed
the codes back to the web server. The flow of data amongst
the tiers gives rise to input validation problem for the web
application server; it must check and/or modify incoming the
input before processing it further or incorporating the input
into output that it passes to other tiers to execute. Failure to
check or sanitise the input appropriately can compromise the
web application‟s security [14]. Similarly, Tier 3 is
responsible for the access of authenticated users and
rejection of malicious users from the database.

Figure 1. Web Application Architecture

B. Web Application Vulnerabilities

In this paper, the definition of web application
vulnerabilities follows the definition from the Open Web

Application Security Project (OWASP) [18], which defines
vulnerability as a hole or a weakness in the application,
which can be a design flaw or an implementation bug that
allows an attacker to cause harm to the application.

There are a few web application vulnerability databases
available on the Internet, e.g., OWASP Top 10 Web
Application Vulnerability [18], SANS Top 20 2007 Security
Risks, and WASC Threat Classification [15]. These
databases classify and identify all known web application
vulnerabilities and attacks, and they are continuously
updated and maintained. The public security knowledge
databases are very useful to testers for self-education and
used as test references. With lots of vulnerabilities appearing
in web applications, it is more difficult for system or network
administrators to protect core assets such as personal
information, confidential data and customer credit card
numbers. The most common and popular vulnerabilities
exploited by attackers are SQL injection and cross site
scripting [16]. These are due to improper sanitisation in
input validation fields. The researcher in [17] highlighted
some potential vulnerabilities that will help security tester or
assessor to understand possible vulnerabilities in login page
that would be useful for security assessment.

The model of this study aims to identify potential
vulnerabilities which exist in web applications. The goals of
testers are to mimic the possible techniques commonly used
by the attacker to attack the system, identify possible
vulnerability based on the functionality, identify test cases to
the system and find out how to exploit these attacks to
improve the web application security. The testers can obtain
information that help them to understand what are the
function and vulnerability that are commonly used by the
attacker to exploit the system by analysing the intentions of
functionality and vulnerability. This paper extends the
results presented in [8] and [9].

C. Techniques to Detect Vulnerability

There are many techniques for detecting vulnerabilities

during the process of software development life cycle such

as static code analysis, dynamic analysis and security

assessment, and penetration testing. Static Analysis consists

of analysis on the application source code [19]-[21]. It is

performed on the source code without executing the

application. This can be done manually or by using code

analysis tools such as FORTIFY, Ounce or Pixy [22].

Reports are generated and presented to the developer team

after reviewing the source code. Generally, it helps to catch

implementation structural bugs early and it is important to

know that static analysis cannot solve all security problems.

There are different tools available now for this kind of test

but it is not easy to find mature and well tested tools to

discover all the security defects in an application. The

problem is that code analysis may be difficult and may not

find all security flaws because of the complexity of the code

[23].

Dynamic Analysis, also known as Dynamic Testing is

used to test a program by executing it in real-time [24].

Dynamic Analysis test will communicate with a web

93Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

application through the web browser in order to identify

potential security vulnerabilities and architectural

weaknesses in the web application. The objective is to find

security errors in the web application while it is running.

This technique can be performed either manually or by

using automated tools [25]. Automated tool provides an

automatic way to search for vulnerabilities by avoiding the

repetitive and tedious task of doing hundreds or even

thousands of tests manually for each vulnerability type [26].

III. THE PROPOSED MODEL

This section describes the phases and activities of the

proposed model as shown in Figure 2. The three main

phases are Data Gathering, Attacks, and Reporting. Each

phase comprises of several major activities together with

their flows and stages.

A. Data Gathering – Phase 1

This is the first stage in the model. There are six major
activities involved in this stage. The first three activities are
basically planning focused activities. In this phase, there are
some items that should be highlighted and prepared such as
identifying which target system that should be tested to
detect vulnerability, and what type of potential threat or
vulnerability that commonly exists in web applications.
Additionally, questions such as how long the testing will be
carried out, which methodology will be used and what
restrictions or limitations need to be applied must be tackled.
The test plan should also outline the tools needed to conduct
the tests, as well as exploring opportunities for automated
testing. Next is to find other test planning criteria as shown
in Table I. The tools used for the assessment are
combinations of both commercial and open source software.
At least two different tools are used to perform the test to
ensure accuracy of the result. Table II lists the tools used
during this assessment.

The other three activities, as discussed below, are more
hands-on and mostly based on the first three activities in data
gathering and findings.

Scanning - This phase is more on mapping of the
potential vulnerabilities detected by scanners with main
system components. This activity uses the vulnerability
scanner to scan the services in identifying potential loop
holes and vulnerabilities in web applications.

Discovery Scanning Analysis - In this activity, results
produced by different tools are compiled for further analysis.

Risk Rating - In this activity, discovery analysis findings
are used as the main source and subject in risk rating. The
risk rating outcomes or results are more specific to the
assessed system. The findings are then categorised in
Section IV into three risk levels such as high, medium and
low in order to indicate the level of severity. The severity
levels are based on the guidelines from OWASP and
recommendation from tools. This rating is used throughout
this assessment to provide common understanding of the
risk.

Figure 2. Model for detecting vulnerability in web applications

TABLE I. TEST PLANNING CRITERIA

Criteria

Planning Detail

No. of Security

Tester and Qualification

To get the number of certified security

tester and the tester unified qualification.

Type of Tools To see if they use open source tools

available on the net or commercial tools.

Number of Server How many servers will be involved in

this assessment?

Test Time Frame How long is the duration for this

assessment?

TABLE II. LIST OF TOOLS

Tools

Testing Activities

Zenmap

To get banner grabbing for

server

Nessus

Nexpose

Burp Suite Free Edition

Acunetix Web Vulnerability Scanner

During Scanning phase

Test Case generator

Attack Generator

During Attack phase

B. Attacks – Phase 2

This is the second stage in the model. As the name
suggests, it is responsible for performing the attacks on the
system. The attacks are performed on the vulnerabilities that
have been discovered during the data gathering phase. The
attack phase is executed in a cascaded manner where every
successful attack leads to obtaining more privileges and
system information. There are two major activities involved
in this phase, which are test cases development and
penetration testing.

Test Cases - Structured test cases are developed based on
the OWASP testing guidelines [17]. In this study,
information on existing known vulnerabilities are collected
and analysed to generate attack test cases. In this phase, a
tool called Test Case Generator was developed to generate
attack test cases. There were 1600 test cases generated to
perform SQL Injection in the vulnerable web applications.
Table III presents some samples of test cases which were

94Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

generated by the Test Case Generator. These test cases were
used to perform the attack during the penetration testing
phase.

Penetration Testing – Usually, in this stage penetration
testing is manually performed by a security expert to confirm
the vulnerabilities detected during the scanning phase (to
check false positive of the vulnerabilities). In the study
model, the attack generator tool which was developed is used
to automatically perform penetration testing. The attack test
cases generated from the previous stage were utilised to
inject and detect vulnerabilities. The fundamental objective
of this Section is the design of the model that covers all steps
to automate the injection attack process. This tool injects
abnormal input to input parameter and discovers unexpected
defects and vulnerabilities. The Attack Generator starts
processing a set of target URL and target parameter. Some
manual works are still required before automating the attack
generator process. A Tester is needed to identify the target
URL and target parameter. The test cases generated in the
previous stage will be used as an input in this stage. In order
to extract HTTP response and injecting them to the target
system automatically, the model was developed using
Apache HTTP Client API. The Attack Generator component
uses input.xml (Figure 3) file to attack the target system by
using POST or GET method, and it also identifies which
parameter is chosen to inject the test cases. The target URL,
HTTP method and parameter are chosen by the researchers.

TABLE III. TYPES OF TEST CASES

Type of

Vulnerability

Test Cases

SQL Injection ' or 1=1--

" or 1=1--

' or 1=1 /*

or 1=1--

' or 'a'='a

" or "a"="a

%27+OR+%277659%27%3D%277659

%22+or+isnull%281%2F0%29+%2F*

a' ORDER BY 1;#

Cross Site

Scripting

<script>alert("TEST");</script>

<script>alert("HELLO");</script>

<SCRIPT

SRC=http://ha.ckers.org/xss.js></SCRIPT>

C. Reporting - Phase 3

This final stage in the model concludes the assessment from

the combination of the two main phases – data gathering

and attacks. Vulnerability analysis result is based on the

results of two activities from these two different phases.

Mapping the risk rating conducted in Phase 1 and validation

of penetration testing in Phase 2, are the major sources of

vulnerability analysis. Once completed, the report will

provide the identification of all security vulnerabilities

found. Each finding will be assigned a risk rating based on

certain criteria, together with remediation recommendations

to resolve the vulnerability. This phase analyses all the

vulnerabilities based on http response collected after the

injection of attacks to the target application. The results are

then categorised into three classes as shown in Table IV.

Figure 3. Sample of input.xml

TABLE IV. CLASSES OF RESULT

Example of

attack string

Example of HTTP

Response

Classes of

result

„ You have an error in your SQL syntax SQL Error

“ The username/password combination

you have entered is invalid

No error

' OR '1'='1 ID: ' OR '1'='1

First name: admin

Surname: admin

ID: ' OR '1'='1

First name: Gordon

Surname: Brown

Bypass

Application

IV. RESULTS AND DISCUSSION

This Section presents the results of tests carried out to
verify the model of study. Three vulnerable websites were
chosen for this experiment; WackoPicko is an online photo
sharing website that allows users to upload, comment and
purchase pictures, while Peruggia is a website which is
similar to WackoPicko. The third website is Damn
Vulnerable Web Application (DVWA), normally used as an
aid for security professionals to test their skills and tools in a
legal environment, and help web developers understand
better the processes of securing web applications. All these
websites are designed with a number of vulnerabilities, such
as cross-site scripting and SQL injection. Usually, the
vulnerable websites were selected by researchers to test,
investigate and verify their methods or approaches [27][28].
This experiment focuses only on SQL injection vulnerability.
Our model was deployed by setting up the Eclipse
development environment with Java Program. The Apache
HTTP Client API library was installed in the machine to
extract HTTP header from response pages. In the test case
generation phase, 1600 attack test injections were generated
for SQL injection attack. We ran the model with attack test
cases, and the results are summarised in Table V and Table
VI. The response results will indicate the vulnerability if
error messages and bypass authentication results appeared in
the HTML document header. Based on results of the test, it
could be concluded that all input forms are vulnerable to the
website. Due to some constraints, Acunetix was the only

95Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

tool available to us at the time of writing this paper. The
results of running the scanner against vulnerable web
applications in the scanning phase are shown in Table V.
SQL vulnerabilities were discovered in WakcoPicko and
DVWA websites, but not in the Peruggia website. The
function of the scanning tool is to find weaknesses in the
application. The examples in Table V, when the tool
inserted attack string 1 ' ", and the database error generated
with SQL error in the message status, the tool will indicate
that there are vulnerabilities. The tool provides only an
overview of SQL error without explicitly detailing the
weaknesses in the system. If seen randomly, SQL error does
not give any meaning to a new tester (not an expert security
tester). Thus, our model can solve problems found in Phase
2. Usually in penetration testing, the security tester will
verify manually whether an attack can be executed or
otherwise. Usually the attack used to verify whether the
attack is successful or not (for the login form) is by using the
attack string ' OR 1 = 1--.

TABLE V. DETECTION RESULT AT SCANNING PHASE

Application Target

parameter
Attack
String

Result
Analysis

Wacko
Picko

username/
password

1'" SQL Error

Peruggia username/
password

None None

DVWA userid 1'" SQL Error

TABLE VI. DETECTION RESULT AT ATTACK PHASE

Application Target
parameter

Attack
String

Result
Analysis

WackoPicko username/
password

„ SQL error

1'" SQL error

' OR '1'='1 Bypass
application

' order by 1 # Bypass
application

1 ORDER BY 1 No error

"a' OR database()
LIKE '%A%';#

Bypass
application

Peruggia username/
password

„ No error

1'" No error

' OR '1'='1 No error

' order by 1 # No error

1 ORDER BY 1 No error

"a' OR database()
LIKE '%A%';#

Bypass
application

DWVA userid „ SQL error

1'" SQL error

' OR '1'='1 Bypass
application

' order by 1 # No error

1 ORDER BY 1 Bypass
application

"a' OR database()
LIKE '%A%';#

Bypass
application

Table VI shows a list of attack strings which successfully
bypass the application and entered the application. As seen
in Table VI, WackoPicko and DVWA are the easiest to
bypass the application. By simply using the simple attack
string ' OR 1 = 1, one can easily enter into the application.

On the other hand, Peruggia requires advance test cases to
enter the application. Acunetic scanner tool could not detect
any vulnerability found in the Peruggia website. The result
of this study proves that the study model successfully detects
vulnerability even though it cannot be detected during the
scanning phase.

V. CONCLUSION

This paper aims to provide a web security assessment
model for in-house self-assessment exercise which will help
to identify the weaknesses and potential vulnerabilities of
web applications. OWASP Top Ten vulnerabilities
classification is used as the main reference or guidelines to
seek security holes in the web applications and simulate
hackers‟ actions via specific test cases to validate the real
existence of vulnerabilities. The overall methodology is
relatively straightforward, but the existing method was
extended with newly generated test cases and analysed http
response with three different classifications; SQL error, no
error and bypass application. After conducting the security
assessment in selected web applications, the result shows
that the model has successfully detected vulnerability in the
web applications even though it cannot be detected during
the scanning phase. The result is then categorised based on
three classifications and it was found that the class with
bypass applications is with critical vulnerabilities and
requires immediate action to mitigate risks. There is
intention of implementing other attack types such as cross
site scripting and parameter manipulation attack to replace
the SQL injection in future.

ACKNOWLEDGMENT

This work was supported by the Advanced Informatics
School (AIS), University Technology of Malaysia and
National Defence University of Malaysia.

REFERENCES

[1] G. B. shelly and M. E. Vermaat, “Discovering Computers

2009: Living in Digital World, Complete,” Cengage Learning
Course Technology, 2009.

[2] A. Al-dahoud and C. Universitaria, “E-Government : Benefits
, Risks and a Proposal To Assessment Including Cloud
Computing and Critical Infrastructure,” 2013.

[3] P. Katsumata, J. Hemenway and W. Gavins, “Cybersecurity
risk management,” Military Communications Conference,
2010 - MILCOM 2010 , vol. Oct. 31 2010-Nov. 3 2010, no.,
pp.890-895.

[4] K. Francis, B. Andoh and K. O. Bryson, “Exploring the
characteristics of Internet security breaches that impact the
market value of breached firms,” Expert Systems with
Applications, Volume 32, Issue 3, April 2007, pp. 703-725,
ISSN 0957-4174.

[5] G. Jeremiah, “The State of Website Security,” Security &
Privacy, IEEE , vol.10 no.4, 2012, pp.91-93.

[6] J. D. Meier, A. Mackman, M. Dunner, S. Vasireddy, R.
Escamilla and A. Murukan, “Improving Web Application
Security: Threats and Countermeasures,” Microsoft
Corporation, http://msdn.microsoft.com/en-
us/library/aa302420.aspx, 2003 [retrieved: July, 2015].

96Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

[7] A. Ahmad, S. R. Ahmad, N. F. Awang and M.Z. Ali, “Web
Vulnerability Assessment: Outsource dilemmas,” Electrical
Engineering and Informatics (ICEEI), 2011 International
Conference , vol., no., 2011, pp.1-6.

[8] P. Xiong and L. Peyton, “A model-driven penetration test
framework for Web applications,” Privacy Security and Trust
(PST), 2010 Eighth Annual International Conference on , vol.,
no., 2010, pp.173-180.

[9] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai, “Web
application security assessment by fault injection and
behavior monitoring,” Proc. twelfth Int. Conf. World Wide
Web - WWW ‟03, p. 148, 2003.

[10] C. Colwill, and A. Gray, “Creating an effective security risk
model for outsourcing decisions,” BT Technology Journal,
Vol. 25 No. 1, 2007, pp. 79-87.

[11] G. Nassimbeni, M. Sartor and D. Daiana, “Security risks in
service offshoring/outsourcing: an assessment model based on
the Failure Mode and Effect Analysis,” POMS 21st Annual
Conference, Vancouver, Canada, 2010.

[12] J. G. Kim, “Injection Attack Detection Using the Removal of
SQL Query Attribute Values,” Information Science and
Applications (ICISA), 2011 International Conference on ,
vol., no., April 2011, pp.1-7, doi:
10.1109/ICISA.2011.5772411

[13] Z. Su and G. Wassermann, “The Essence of Command
Injection Attacks in Web Applications,” In Conference
Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2006, pp. 372-382.

[14] T. Scholte, D. Balzarotti, and E. Kirda, “Have things changed
now? An empirical study on input validation vulnerabilities in
web applications,” Comput. Secur., vol. 31, no. 3, pp. 344–
356, 2012.

[15] Trustewave, The Trustwave 2012 Global Security 2012,
https://www.trustwave.com/spiderlabs, 2012. [retrieved: July,
2015].

[16] S. Zanero, L. Carettoni and M. Zanchetta, “Automatic
Detection of Web Application Security Flaws,” Black Hat
Forum, 2005.

[17] N. F. Awang, A. A. Manaf and W. S. Zainudin, “A Survey on
Conducting Vulnerability Assessment in Web-Based
Application,” 2014, pp. 459–471.

[18] The Open Web Application Security Project: The Ten Most
Critical Web Application Security Vulnerabilities.
https://www.owasp.org/index.php/Main_Page:OWASP_Top_
Ten_Project, [retrieved: July, 2015].

[19] N. Jovanovic, C. Kruegel and E. Kirda, “Static analysis for
detecting taint-style vulnerabilities in web applications,”
Journal of Computer Security, 2010, pp. 861-907.

[20] Y. Xie and A. Aiken, A, “Static detection of vulnerabilities in
scripting languages,” Proc. 15th USENIX Security
Symposium, 2006, pp. 179-192.

[21] N. Antunes and M. Vieira, “Comparing the effectiveness of
penetration testing and static code analysis on the detection of
SQL injection vulnerabilities in web services,” 2009 15th
IEEE Pacific Rim Int. Symp. Dependable Comput. PRDC
2009, 2009, pp. 301–306.

[22] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix and
W. Pugh, “Using Static Analysis to Find Bugs,” IEEE
Software, 2008, pp 22-29.

[23] M. Vieira, N. Antunes and H. Madeira, “Using Web Security
Scanners to Detect Vulnerabilities in Web Services,”
IEEE/IFIP Intl Conf. on Dependable Systems and Networks,
DSN 2009.

[24] R. S. Basaval, “Web application vulnerability detection using
dynamic analysis with penetration testing,” International
Journal of Enterprise Computing and BusinessSystems, Vol 2,
2012.

[25] M. Curphey and R. Araujo, “Web Application Security
Assessment Tools,” IEEE Security & Privacy, Published By
The IEEE Computer Society, 2006.

[26] OWASP Testing Guideline,
https://www.owasp.org/index.php/OWASP_Testing_Guide_v
4_Table_of_Contents. [retrieved: July, 2015].

[27] R. Akrout, E. Alata, M. Kaaniche, and V. Nicomette, “An
automated black box approach for web vulnerability
identification and attack scenario generation,” J. Brazilian
Comput. Soc., vol. 20, 2014, p. 4.

[28] Z. Djuric, “A black-box testing tool for detecting SQL
injection vulnerabilities,” 2013 2nd Int. Conf. Informatics
Appl. ICIA 2013, 2013, pp. 216–221.

97Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents

