
Authentic Quantum Nonces

Stefan Rass, Peter Schartner and Jasmin Wachter
Department of Applied Informatics, System Security Group

Universität Klagenfurt, Universitätsstrasse 65-67
9020 Klagenfurt, Austria

email: {stefan.rass, peter.schartner, jasmin.wachter}@aau.at

Abstract—Random numbers are an important ingredient in
cryptographic applications, whose importance is often underesti-
mated. For example, various protocols hinge on the requirement
of using numbers only once and never again (most prominently,
the one-time pad), or rest on a certain minimal entropy of
a random quantity. Quantum random number generators can
help fulfilling such requirements, however, they may as well be
subject to attacks. Here, we consider what we coin a randomness
substitution attack, in which the adversary replaces a good
randomness source by another one, which produces duplicate
values (over time) and perhaps numbers of low entropy. A binding
between a random number and its origin is thus a certificate of
quality and security, when upper level applications rest on the
good properties of quantum randomness.

Keywords–Quantum Cryptography; Randomness Substitution
Attack; Random Number Generation; Security; Authentication.

I. MOTIVATION

Random numbers play different roles in cryptographic
systems. Mostly, they are used to generate keys or create
uncertainty towards better security in different attack scenarios.
Concerning the latter, it is often necessary to assure a certain
minimum entropy of a random value, and to prevent coinciden-
tal equality of two random numbers chosen at different times
or different places. While the former requirement is obvious,
revealing the problem with the latter requires some more ar-
guing: as a simple example, consider two independent persons
A,B instantiating individual RSA (Rivest-Shamir-Adleman)
encryption systems. Both choose large primes pA, qA and
pB , qB , respectively, making up the key-parameters nA =
pAqA and nB = pBqB . If {pA, qA}∩{pB , qB} 6= ∅ and nA 6=
nB , then gcd(nA, nB) ∈ {pA, pB , qA, qB}, which defeats
security of both RSA instances. Adhering to recommended
key-sizes, it is tempting to think that the chances of a match
of two, say 512 bit long, primes is negligible. Even mathemat-
ically, the prime number theorem assures that there are at least
1.84×10151 primes within the range

{
2511, . . . , 2512 − 1

}
, so

there appears to be no problem in choosing those parameters
independently from each other. Unfortunately, reality differs
from the theoretical expectations in a devastating manner:
according to findings of [1], approximately 12,500 out of more
than 4.7 million RSA-moduli could be factored by humble
pairwise greatest common division computation!

At least for this reason, quantum randomness would –
at first glance – be a good replacement for user-supplied
randomness (such as mouse movements). However, a proper
post-processing to authenticate a generator’s output and to
avoid random number generators coming up with identical
outputs is nevertheless an advisable precaution.

Furthermore, while the statistical odds to accidentally hit
the same integer over a search in the range of 512 bit or

higher is sure negligible, reframing this possibility towards a
potential attack scenario is worthwhile to look at. Especially
so, as standard cryptosystems like RSA or ElGamal (and
hence also the digital signature standard) can be attacked most
easily, when the involved randomness source gets under the
attacker’s control or influence, regardless of whether or not
the randomness is used to find primes or simply as a general
input. We call this a randomness substitution attack. Scaling up
this thought, distributed attacks on random number generators
that make only a portion of those emit random numbers with
low entropy may already suffice to establish a significant lot
of RSA instances [2] that are vulnerable to simple gcd-based
factorization, or instances of ElGamal signatures [3] [4] (such
as the digital signature standard is based on), where the secret
key sk can easily be recovered if the same signature exponent
k in r = gk MOD (p − 1) is used twice, e.g., if the random
number generator has been hacked.

The foremost danger of randomness substitution is not
its sophistication, but its simplicity and apparent insignifi-
cance that may cause countermeasures to be hardly consid-
ered as necessary. Nevertheless, authentic random values with
lower-bounded entropy and explicit avoidance of coincidental
matches are easy to construct yet advisable to use.

The paper is organized as follows. In Section II, we
will sketch the basic cryptographic building blocks used to
embed certain additional information into a quantum-generated
random bitstring. This additional information will not only
assure distinctness of values generated by otherwise indepen-
dent generators, but also assure uniqueness of values over an
exponentially long range in the (infinite) sequence of random
numbers emitted by the same generator. We call such numbers
nonces. Section III shows the construction and how to verify
the origin of a random number. Notice that in this context, we
neither claim nor demand information-theoretic security (as
would be common in a full-fledged quantum cryptographic
setting), but our focus is on classical applications that use
quantum randomness to replace user-supplied random values.
However, replacing the generator itself is an issue that must
as well be avoided, which is doable by classical techniques,
as we will outline here.

II. PRELIMINARIES

Let x ∈ {0, 1}` denote bitstrings of length `, and let
{0, 1}∗ be the set of all bitstrings (of arbitrary length). The
notation x‖y denotes any encoding of x and y into a new
string, from which a unique recovery of x and y is possible
(e.g., concatenation of x and y, possibly using a separator
symbol). Sets are written in sans serif letters, such as M, and
their cardinality is |M|.

139Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

To establish a binding betweeen random numbers and
their origin devices, and to assure uniqueness of random
values over time and across different number generators, we
will employ digital signatures with message recovery, and
symmetric encryption. Recall the general framework of these,
into which RSA-, Rabin or Nyberg-Rueppel signatures fit [5]:
let M ⊆ {0, 1}∗ be the message space, and let MS be the
signing space, i.e., the set of all (transformed) messages on
which we may compute a digital signature. Furthermore, let
R : M → MS be an invertible redundancy function that is
publicly known, and for simplicity, equate R(M) = Im(R) =
MS . We define the mappings Sign : MS × K → S and
Extract : S × K → Im(R) as the signing and verification
functions, where S is the signature space and K is the keyspace,
where the secret signature key and public verification key come
from.

A digital signature is obtained by computing s =
Sign(R(m), sk). As we demand message recovery, the ver-
ification proceeds in four steps, assuming that we received the
signature s∗ to be validated:

1) Obtain the signer’s public key pk from a valid cer-
tificate (also provided by the signer),

2) Compute m̃ = Extract(s∗).
3) Verify that m̃ ∈ Im(R) = MS , otherwise reject the

signature.
4) Recover the message m = R−1(m̃).
Our construction to follow in Section III will crucially rely

on the recovery feature of the signature, so that resilience
against existential forgery mostly hinges on a proper choice
of the redundancy function R. In general, this choice should
be made dependent on the signature scheme in charge, and to
thwart existential forgery, the redundancy function should not
exhibit any homomorphic properties. A possible choice would
be R(m) = m‖h(m), where h is a cryptographic (or universal)
hash-function, where we emphasize that no rigorous security
proof of this choice is provided here.

As a second ingredient, we will use a symmetric encryption
E, writing Ek(m) to mean the encryption of m under key k
and transformation E. The respective decryption is denoted
as E−1k (m). Our recommended choice for practicality is the
Advanced Encryption Standard (AES).

Finally, we assume that each random generator is equipped
with a world-wide unique identification number, such as is
common for network cards (Media-Access-Control (MAC)
address) or smartcards (Integrated Circuit Card Serial Number
(ICCSN) [6]). Hereafter, we will refer to this quantity as the
ID of the generator.

III. CONSTRUCTION

Given a generator equipped with a unique identifier ID
and an internal counter c ∈ N (initialized to zero), let r ∈
{0, 1}∗ denote a raw random bitstring that the quantum random
generator emits per invocation.

The final output of the random generator is now constructed
over the following steps, (see Figure 1).

1) Increment c← c+ 1
2) Compute x← ID‖c‖r
3) Apply a digital signature with message recovery,

using the secret signature key sk, i.e., compute s←
Sign(R(x), sk).

Figure 1. Schematic of post-processing for authentic nonces

4) Append the generator’s public key pk and identity
ID to get y ← s‖pk‖ID

5) Choose another (quantum) random number k and
deliver the final output (the authentic nonce)

z := Ek(y)‖k.

It is easy to see that the so-constructed sequence of
numbers enjoys all the properties that we are looking for. The
last step ensures randomness, as parts of the random values
(the public key and identity) remain constant over time. Note
that all of the above transformations are invertible and hence
injective. We examine each of the properties separately in the
following.

a) Uniqueness: To this end, let z1 = Ek1
(y1)‖k1, z2 =

Ek2
(y2)‖k2 be two outputs of a generator (possibly the same

one or different devices). Uniqueness is trivial if k1 6= k2, so
assume a coincidental match between the two or the possibility
that k1, k2 origin from an attacker. If z1, z2 match upon the
least significant bits making up the keys k1 = k2 = k, then
uniqueness requires Ek(y1) 6= Ek(y2). Since Ek is injective,
we hence look at y1 = s1‖pk1‖ID1 and y2 = s2‖pk2‖ID2. If
z1, z2 come from the same generator so that ID1 = ID2 = ID
(e.g., if an attacker substituted the components), then the prob-
lem rests with the signature s1 hopefully being different from
s2. Recovering x1 = ID1‖c1‖r1 from s1 and x2 = ID2‖c2‖r2
from s2, we ultimately have a difference, as in case the gener-
ator is the same, the counters are different by construction. In
case the generators are different, the two IDs are different too.
It follows that the entire output of the generator, regardless of

140Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

adversarial influence at any postprocessing stage – excluding
the signature generation – is unique. We refer the interested
reader to [7] for a comprehensive discussion.

b) Authenticity: Having stripped all layers of signatures
and encryptions as sketched above, we are left with two
identity strings ID and ID′ when we reach the innermost
piece of data x = ID‖c‖r, being wrapped inside s‖pk‖ID′.
One indicator of an attacker having made changes is a mis-
match between ID and ID′. However, a stronger indication
is provided by the digital signature verification, which is the
primary measure to assure authenticity. At this point, it is
important to stress the need for the manufacturer’s certificate
that links the public key of the generator to its ID (for
otherwise, an attacker could create his own signature key
pair and trick the user of the random number generator into
using the wrong key to check authenticity). The certificate can
be standard (say, X.509), such as used in most conventional
public-key infrastructures.

c) Entropy and Min-Entropy: Notice that besides ran-
domness that possibly went into the signature (e.g., if a
Nyberg-Rueppel signature was in charge) or later stages of the
postprocessing (i.e., the key k), the assured entropy coming
out of the quantum random generator is limited by what
has been authenticated. Hence, only the innermost value r
can be used to lower-bound the entropy of the final output
(assuming possible adversarial modifications), leading to the
entropy bound H(z) ≥ H(r).

Besides Shannon-entropy H , min-entropy H∞ of the gen-
erator’s output may be of interest, as most applications demand
high min-entropy for matters of randomness extraction. This
is most easily done by extracting the authenticated quantum
random bitstring r from the generator’s output z. By our con-
struction, it is possible to recover the true randomness from the
generator’s output, thus the above inequality holds in exactly
the same fashion for H∞ in place of H . This can be proven
easily, as all processing functions are injective by construction
and thus cannot lower the min entropy. These considerations
lead to the min-entropy bound H∞(z) ≥ H∞(r).

We stress that the injectivity of the signature is vital
for this bound to hold, and the inequality could be violated
if the signature with message recovery were replaced by a
conventional signature (for a hash-then-sign paradigm, the lack
of injectivity in the hash function would invalidate the above
argument).

IV. SECURITY AND EFFICIENCY

Roughly, the postprocessing stage adds some redundancy
to the randomness r, which depends on the specific implemen-
tations of the signature and encryption. In case of RSA and
AES, we end up with (currently [8]) 4096 bits for R(ID‖c‖r).
Defining R(m) = m‖h(m), where h is a 256-bit cryptographic
hash function like the SHA-2 (Secure Hash Algorithm 2), and
using a 128 bit counter as well as an 80 bit ID (e.g., an ICCSN
in a smartcard taking 10 bytes), we are left with a remainder of
4096−256−128−80 = 3632 bits of raw quantum randomness
r. Attaching the ID and a short RSA public key pk (16 bits), we
expand the input via AES-CBC (cipherblock chaining (CBC)
with ciphertext stealing) to 4096 + 80 + 16 = 4192 bits.
Concatenating another 128 bits for the AES key k yields final
output of 4192 + 128 = 4320 bits, among which 3632 bits

are pure quantum randomness. The relative overhead is thus
≈ 19%.

In addition, the application of digital signatures naturally
puts the chosen signature scheme in jeopardy of a known-
message attack. Assuming that the generator is tamper-proof,
chosen- or adaptive chosen message attacks (cf. [9]) are not of
primary danger in this setting. Yet, we strongly advice to take
hardware security precautions to protect the secret key against
physical leakage and backward inference. Nevertheless, to
avoid an attacker replacing the randomness source by another
one (with low entropy), the signature scheme must be chosen
with care.

In the presented form, authenticity, i.e., protection of
known-message attacks, is solely based on computational
intractability properties. If one wishes employ information-
theoretic security, the digital signature with message recovery
may be replaced by a conventional Message Authentication
Code (MAC), based on universal hashing and continuous
authentication, as it is the case for quantum key distribution
(QKD) [10]. There, an initial secret r0 shared between the
peers of a communication link, is used to authentically ex-
change another secret r1, which is then used to authenticate
the establishment of a further secret r2, and so on. (in the
application of [10], r1 would be a quantum cryptographically
established secret key).

We can play the same trick here by putting an initial
secret r0 in charge of authenticating the first random val-
ues emitted by our quantum random generator. Instead of
signature with message recovery we will use a “MAC with
appendix”, i.e., we use a function MAC : {0, 1}∗ × K →
{0, 1}` (e.g., a universal hash-family [11]) to authenticate
the string ID‖c‖r1 by concatenating a keyed checksum as
R(ID‖1‖r1)‖MAC(R(ID‖0‖r1), r0), when r1 is the first
random number ever emitted by our generator. After that, the
authentication is done using the respective last number ri,
i.e., we emit R(ID‖c + 1‖ri+1)‖MAC(R(ID‖c‖ri+1]), ri),
whenever ri+1 follows ri in the sequence (see Figure 2 for an
illustration).

However, we might run into issues of synchronization
here, thus opening another potential attack scenario, when the
adversary succeeds in blocking some of the random values.
In that case, we would either have to attach multiple MACs
and maintain a list of past authenticators, or periodically re-
synchronize the process (which requires a fresh authentic key
exchange with the generator). Hence, this variant may not
necessarily be preferable in practical applications.

V. CONCLUSIONS

Applications that require high-quality random sources like
quantum physics based ones, most likely do so because the
upper level cryptographic application crucially rests on the
statistical properties of the involved random quantities. Binding
a random number to its origin is thus perhaps an overlooked
precaution to avoid working with low-entropy or potentially
coincidental random values in a cryptographic application.
Interactive proofs of knowledge, as well as recent empirical
findings [1] on parameter selection for RSA and the digital
signature standard, dramatically illustrate the need for such
post-processing.

141Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

Figure 2. Variant with continuous authentication instead of digital signatures

REFERENCES
[1] A. K. Lenstra et al., “Ron was wrong, whit is right.”, Cryptology

ePrint Archive, Report 2012/064, http://eprint.iacr.org/ [retrieved: July
7th, 2018].

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining dig-
ital signatures and public-key cryptosystems,” Commun. ACM, vol. 21,
no. 2, 1978, pp. 120–126.

[3] T. ElGamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” in Proceedings of CRYPTO 84 on Advances
in cryptology. New York, NY, USA: Springer New York, Inc., 1984,
pp. 10–18.

[4] G. Locke and P. Gallagher, “Digital Signature Standard (DSS),” Federal
Information Processing Standards (FIPS), Tech. Rep. FIPS PUB 186-3,
2009.

[5] A. Menezes, P. C. van Oorschot, and S. Vanstone, Handbook of applied
Cryptography. CRC Press LLC, 1997.

[6] ISO/IEC, “ISO/IEC 7812-1:2006 Identification cards – Identification
of issuers – Part 1: Numbering system,” http://www.iso.org, ISO/IEC,
2006, [retrieved: July 7th, 2018].

[7] P. Schartner, “Random but system-wide unique unlinkable parameters,”
Journal of Information Security (JIS), vol. 3, no. 1, January
2012, pp. 1–10, ISSN Print: 2153-1234, ISSN Online: 2153-1242.
[Online]. Available: https://www.scirp.org/Journal/PaperInformation.
aspx?PaperID=16723

[8] D. Giry, “Bluecrypt – cryptographic key length recommendation,” http:
//www.keylength.com/, October 2011, [retrieved July 7th, 2018].

[9] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme
secure against adaptive chosen-message attacks,” SIAM J. Comput.,
vol. 17, no. 2, Apr. 1988, pp. 281–308, [retrieved: July 7th, 2018].
[Online]. Available: http://dx.doi.org/10.1137/0217017

[10] G. Gilbert and M. Hamrick, “Practical quantum cryptography: A com-
prehensive analysis (part one),” 2000, uRL: http://arxiv.org/pdf/quant-
ph/0009027 [retrieved: July 7th, 2018].

[11] M. Wegman and J. Carter, “New hash functions and their use in
authentication and set equality,” Journal of Computer and System
Sciences, 1981.

142Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

