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Abstract—Kolmogorov-Arnold Networks (KANs) is a new
perspective direction in Machine Learning (ML) domain. KANs
use spline functions to enhance interpretability and adaptability
of the ML models. However, their robustness against Adversarial
Attacks (AAs) has not been fully researched. This paper aims to
address this gap by evaluating KAN performance under Gaussian
noise and AAs, by using the Fast Gradient Sign Method (FGSM)
and Projected Gradient Descent (PGD) attacks. The objective of
this paper is to assess the comparative robustness of KANs and
Multi-Layer Perceptrons (MLPs) when exposed to Gaussian noise
and adversarial attacks, aiming to identify areas of improvement
for KANs and to provide insights into their performance under
real-world, noisy conditions. The results show that KANs achieve
higher accuracy than MLPs in a clean environment. At the same
time, KANs demonstrate noticeable reduction in accuracy under
conditions where increased noise and adversarial perturbations
are present. KANs experience a more substantial accuracy drop
under FGSM and PGD attacks compared to MLPs, which reveals
critical areas for improvement and further research. The sensitivity
of KANs to Gaussian noise further highlights their limitations
in real-world scenarios. These findings underscore the need for
further research to develop more resilient KAN architectures and
better understand their role in secure ML systems.

Keywords-Kolmogorov-Arnold Network, KAN, MLP, FGSM, PGD,
MNIST, Classification.

I. INTRODUCTION

The rapid advancement of Machine Mearning (ML) has led
to increasingly sophisticated models that perform well across
a variety of tasks. Among these developments, Kolmogorov-
Arnold Networks (KANs) represent a novel approach based on
the Kolmogorov-Arnold representation theorem. KANs bring
a promise to enhance models’ interpretability and flexibility.
However, the robustness of KANs, particularly to Adversarial
Attacks (AAs) and noisy data, has not been thoroughly
researched.

Traditional Multi-Layer Perceptrons (MLPs) often struggle
with capturing complex nonlinear relationships due to their
reliance on fixed activation functions and linear weight matrices.
This can lead to limitations in model flexibility and interpretabil-
ity, making them less effective in handling intricate patterns
present in real-world data. Moreover, MLPs can be vulnerable
to overfitting and may not generalize well to unseen data,

especially under adversarial conditions or noise. To address
these challenges, KANs introduce learnable activation functions
on edges, replacing static weights with parameterized functions.
This architectural shift enhances the model’s ability to capture
complex, nonlinear relationships, offering improved flexibility
and interpretability over traditional MLPs [1].

Robustness of the ML models is an important quality for
real-world applications, often characterized by suboptimal
conditions. AAs, such as the Fast Gradient Sign Method
(FGSM) and Projected Gradient Descent (PGD), exploit the
models’ vulnerabilities by making small perturbations to
input data, while noise can obscure key features and degrade
performance.

This paper explores the robustness of KANs compared to
MLPs, focusing on their resilience to Gaussian noise and AAs
like FGSM and PGD. The goal of this paper is to assess the
security and practical limitations of KANs by comparing their
performance under various perturbations. All experiments are
conducted using the Modified National Institute of Standards
and Technology dataset (MNIST) [2], [3], a widely recognized
benchmark for evaluating image classification models.

MLPs are selected as a benchmark for comparison because
they represent one of the most widely used and established neu-
ral network architectures in machine learning. Their simplicity,
effectiveness in various tasks, and resistance to adversarial
conditions provide a useful baseline for evaluating the perfor-
mance and robustness of newer, more complex architectures
like KANs. Focusing on KANs provides an opportunity to
assess a novel architecture that could potentially address some
limitations of traditional models, thereby justifying its selection
over other alternatives.

The primary objective of this paper is to systematically
assess the robustness of KANs compared to traditional MLPs
under adversarial conditions. Specifically, this study aims
to evaluate how KANs and MLPs perform when exposed
to Gaussian noise and AAs, such as the FGSM and PGD.
By comparing their resilience across key metrics such as
accuracy, precision, recall, and F1-score using the MNIST
dataset, the paper seeks to identify the strengths and limitations
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of KANs in real-world, noisy environments. The findings aim
to inform further research and development of more robust
KAN architectures for secure machine learning systems.

The remainder of this paper is organized as follows: Section
II reviews related work and existing approaches in the field.
Section III outlines the methodology, including the experimental
setup and evaluation metrics. Section IV presents the results of
the experiments, followed by a discussion in Section V. Finally,
Section VI concludes the paper and suggests directions for
future research.

II. RELATED WORK

KANs are a new neural architecture based on the
Kolmogorov-Arnold representation theorem, offering an al-
ternative to traditional MLPs. Instead of fixed activation
functions on nodes and linear weight matrices, KANs use
learnable activation functions on edges, with each weight
replaced by a 1D learnable function parameterized as a
spline. This new architecture promises improved accuracy
and interpretability compared to traditional MLPs and can
find application in various domains [1]. Figure 1 provides a
comparative visualization of KANs and MLPs. On the left,
the KAN architecture is shown, where the edges represent
learnable activation functions, unlike traditional networks. In
KANs, nodes perform sum operations across these learned
functions, enabling greater flexibility and non-linearity. On
the right, the MLP architecture is depicted, where the edges
correspond to learnable weights and fixed activation functions
are applied at each node. This distinction highlights the novel
design of KANs, which replace static activations with adaptive
spline functions, allowing for potentially better handling of
complex relationships in data compared to MLPs.

Figure 1. KAN and MLP Architecture, derived from [1]

KANs have been explored in computer vision, where they
have been compared to architectures like MLP-Mixer, CNNs,
and Vision Transformers. Studies [4]–[6] demonstrate that
KANs can achieve competitive accuracy on datasets like
CIFAR10 and MNIST while offering benefits in computational
efficiency and parameter reduction. However, they sometimes
fall short compared to models like ResNet-18, indicating both
their potential and limitations.

In time series analysis, KANs have been applied to capture
complex temporal patterns and enhance model interpretabil-
ity. Models like Temporal Kolmogorov-Arnold Transformer
(TKAT) [7], Temporal Kolmogorov-Arnold Networks (T-KAN),

and Multivariate Temporal Kolmogorov-Arnold Networks (MT-
KAN) [8] have shown improved performance in handling
multivariate data streams and detecting concept drift. These
studies highlight KANs’ adaptability and efficiency, particularly
in forecasting tasks [9].

However, KANs have limitations that were discussed in
several studies. For instance, [10] compares KANs with MLPs
and finds that KANs do not always outperform MLPs. KANs
can fall behind when dealing with irregular or noisy functions.
Both models struggle with noise, and while increasing training
data helps, KANs often match, rather than surpass, MLPs
in such noisy conditions. [11] further emphasizes KANs’
sensitivity to noise, showing that even small amounts can
significantly degrade performance. Although oversampling and
denoising techniques can mitigate these issues the increased
computational cost can become a limiting factor for the practical
applications of KANs. Additionally, [12] explores KANs in
hardware applications, finding that they fall short of MLPs in
complex datasets and require more hardware resources. [5] also
concludes that benefits of KANS for more complex datasets
like CIFAR-10 are not evident. While KANs excel in capturing
complex patterns and promise improvements in interpretability,
their vulnerability to noise and ability to handle more complex
tasks raises concerns about potential susceptibility to AAs, an
area yet to be thoroughly explored.

Recent developments in AAs have focused on refining
techniques that exploit vulnerabilities in machine learning
models [13]–[16], particularly in computer vision [17], [18].
Two well-researched methods for evaluating model robustness
are the FGSM and PGD. FGSM, introduced by [19], generates
adversarial examples through small perturbations to input data,
which can cause models to make incorrect predictions. PGD, a
more iterative and sophisticated method, was introduced by [20]
and is now a benchmark for testing resilience against stronger
attacks. These methods are particularly impactful in computer
vision, where minor input changes can lead to significant shifts
in model outputs [21]. Defenses against FGSM and PGD have
been explored [22]–[24]. Despite these advancements, FGSM
and PGD remain the standard for assessing robustness of ML
models.

Tools like the Adversarial Robustness Toolbox (ART) provide
methods for crafting adversarial examples and defenses [25],
and datasets such as MNIST [2] are frequently used for
benchmark adversarial vulnerability across studies. While
KANs have been applied to various domains, their resistance
to AAs, particularly FGSM and PGD, is largely unexplored.
This paper aims to fill that gap, enhancing the understanding
of KANs’ robustness in adversarial settings.

III. METHODOLOGY, TOOLS AND ENVIRONMENT

Methodology: The experiments compare two machine learn-
ing models: a KAN and a traditional MLP-based feedforward
classifier. Both are trained on the MNIST dataset to maintain
consistency. Their robustness is evaluated through various
performance metrics under different conditions, including noise
and AAs. Model architectures and pre-trained weights remain
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unchanged throughout the experiments, with only the test data
being manipulated for assessment.

Both models are trained using the MNIST dataset [2], [3],
which contains samples of handwritten digits. Initial evaluations
are conducted on unaltered test data to set a performance
baseline. Metrics like accuracy, confusion matrices, precision,
recall, and F1-scores are used to assess both models. The same
evaluation approach is maintained across all experiments to
ensuring uniformity.

Experiments: To test noise sensitivity, Gaussian noise with
mean zero and varying standard deviations is added to the
test data, with noise levels increasing from 10 to 90 in
increments of 10. These standard deviation values represent the
intensity of the noise added, simulating conditions from mild
to severe distortion. The noise is added to each pixel in the
images, introducing variability that can blur edges and obscure
important features necessary for accurate classification. This
method measures the models’ ability to maintain accuracy as
the noise level increases, providing insights into each model’s
robustness in noisy environments To test robustness against
FGSM attack, adversarial examples are created by introducing
perturbations in input data and applied to both models. The
attack’s strength is controlled by the epsilon parameter, ranging
from 0.1 to 0.8. Models’ accuracy degradation is tracked
as epsilon increases, showing each model’s vulnerability to
FGSM attacks. Similarly, the PGD attack, a more iterative
adversarial method, is tested with epsilon values between 0.1
and 0.8. This reveals how both models handle stronger attacks.
Once the experiments on noise, FGSM, and PGD attacks are
completed the results are aggregated to compare the robustness
of KAN and the MLP. Table I summarizes a performance
comparison of MLP and KAN models under different scenarios.
A discussion follows, highlighting key performance strengths
and weaknesses under different conditions and further research
directions are suggested.

Tools and environment: The MNIST dataset is used
throughout the experiments [2], [3], while adversarial examples
are generated using the Adversarial Robustness Toolbox (ART)
[25]. The KAN implementation is sourced from GitHub
repositories [26], [27] and the MLP is implemented using
PyTorch and Scikit-learn python libraries. These standardized
tools ensure the experiments’ reproducibility and reliability.

Models Architectures

The MLP implementation is a feedforward neural network
with five hidden layers, each followed by ReLU activation
and dropout for regularization. The input is a flattened 28x28
pixel image, resulting in 784 features. The layers progressively
reduce in size from 512 to 64 neurons, and the output layer
contains 10 neurons for the digit classes. The model uses the
AdamW optimizer with a learning rate of 0.001 and weight
decay to prevent overfitting. This regularization penalizes larger
weight values and encourages the model to maintain smaller
weights, which helps prevent overfitting by reducing model
complexity and improving generalization to unseen data. An
Exponential Learning Rate Scheduler adjusts the learning rate

during training, and the CrossEntropyLoss function is used for
classification.

The KAN implementation [27] leverages spline-
parametrized univariate functions instead of traditional activa-
tions, based on the Kolmogorov-Arnold theorem. It begins with
a 784-feature input layer, followed by two KANLinear layers,
which transform the features using spline-based activations.
The first KANLinear layer outputs 1569 units, while the second
produces 10 units corresponding to the digit classes. The
model includes customizable spline parameters like grid size
and spline order, which allow it to learn complex functions.
Regularization techniques, including activation and entropy
penalties, are applied to maintain model stability. Like the
MLP, KAN is optimized with AdamW and trained with the
CrossEntropyLoss function, with the learning rate dynamically
adjusted by an Exponential Scheduler. Figure 2 provides
architectural diagrams for MPL and KAN implementations.

IV. RESULTS

Default models: In the initial experiment on the clean
MNIST test dataset, both the MLP and KAN performed
similarly well. The MLP achieved an accuracy of 97.40%,
while KAN outperformed it with 97.95%. Both models showed
comparable precision, recall, and f1-scores, with minor differ-
ences in misclassifications (Table II). KAN’s slight edge in
accuracy and recall suggests better handling of data variability.

Gaussian Noise: When exposed to noisy data, both mod-
els showed accuracy degradation as noise levels increased
(Figure 3). At a noise level of 90, the MLP showed 94.77%
accuracy, while KAN’s performance dropped to 88.21%.
The MLP showed stronger resistance to noise, achieving
higher precision, recall, and f1-scores across all digits. KAN
particularly struggled with digits 1 and 8, where performance
dropped drastically (Table III). At lower noise levels, KAN
outperformed the MLP, but its accuracy deteriorated more
quickly at higher noise levels.

Fast Gradient Sign Method: Under the FGSM AA, both
models experienced accuracy declines as epsilon increased
(Figure 4). At epsilon 0.3, the MLP showed 92.48% accuracy,
while KAN’s dropped to 63.87%. The MLP retained more
consistent precision, recall, and f1-scores, while KAN saw
sharp declines, particularly with digits 1 and 8 (Table IV).
KAN’s accuracy fell rapidly as epsilon increased, indicating
a greater vulnerability to adversarial attacks compared to the
MLP, which maintained resilience until epsilon values grew
larger.

Projected Gradient Descent: During the PGD attack, a
more iterative adversarial method, both models again showed
performance declines (Figure 5). At epsilon 0.3, the MLP
showed 96.29% accuracy, while KAN dropped significantly to
53.12%. The MLP exhibited strong overall precision, recall,
and f1-scores, while KAN struggled significantly, particularly
with digits 1 and 8, where precision and recall dropped sharply
(Table V). KAN’s performance deteriorated more rapidly than
the MLP as the epsilon value increased emphasizing its greater
vulnerability to stronger adversarial attacks.
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Figure 2. MPL and KAN Implementations

TABLE I
PERFORMANCE COMPARISON OF MLP AND KAN MODELS UNDER DIFFERENT SCENARIOS

Scenario MLP KAN
Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Default models 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98
Gaussian Noise (Level 30) 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Gaussian Noise (Level 60) 0.97 0.96 0.97 0.96 0.96 0.96 0.96 0.96
Gaussian Noise (Level 90) 0.95 0.95 0.95 0.95 0.89 0.92 0.89 0.89
FGSM (eps. 0.1) 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.96
FGSM (eps. 0.3) 0.92 0.93 0.92 0.92 0.64 0.77 0.64 0.64
FGSM (eps. 0.6) 0.65 0.67 0.65 0.66 0.20 0.43 0.20 0.19
PGD (eps. 0.1) 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97
PGD (eps. 0.3) 0.96 0.96 0.96 0.96 0.53 0.68 0.53 0.55
PGD (eps. 0.6) 0.42 0.46 0.42 0.42 0.07 0.08 0.07 0.02

Figure 3. Gaussian Noise: Accuracy by Noise Level

Figure 4. FGSM: Accuracy by Eps Level

Discussion: Across all experiments, KAN displayed greater
sensitivity to noise and adversarial attacks especially in more
challenging conditions, while the MLP showed more stable
performance and resilience. The vulnerabilities of KANs to
noise and adversarial attacks could be linked to their reliance on
spline-based transformations, which may be more sensitive to

Figure 5. PGD: Accuracy by Eps Level

perturbations compared to the simpler linear activations used in
MLPs. KANs’ flexibility in modeling complex functions might
lead to overfitting, making them less robust when faced with
data that deviates from the training distribution, such as noisy
inputs or adversarial perturbations. The spline functions used in
KANs may also be more prone to distortions from small input
changes, explaining their susceptibility to adversarial attacks.
Additionally, KANs’ complexity might hinder their ability to
generalize well in adversarial scenarios, where simpler MLP
structures could offer more stability.

V. CONCLUSION AND FUTURE WORK

The results of the experiments show clear differences in
how KANs and classic MLPs handle AAs and noise. In clean
conditions, both models perform similarly, with KAN slightly
outperforming the MLP in accuracy (97.95% vs. 97.40%) and
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TABLE II
PERFORMANCE COMPARISON: DEFAULT MODELS.

Class MLP KAN
Precision Recall F1-score Precision Recall F1-score

0 0.99 0.99 0.99 0.99 0.99 0.99
1 0.98 0.99 0.98 0.98 0.99 0.99
2 0.98 0.96 0.97 0.98 0.98 0.98
3 0.97 0.96 0.97 0.98 0.97 0.97
4 0.98 0.97 0.98 0.98 0.98 0.98
5 0.96 0.97 0.97 0.97 0.97 0.97
6 0.98 0.99 0.98 0.98 0.99 0.98
7 0.98 0.97 0.97 0.98 0.98 0.98
8 0.97 0.97 0.97 0.98 0.97 0.98
9 0.96 0.96 0.96 0.96 0.98 0.97

TABLE III
PERFORMANCE COMPARISON: MODELS EXPOSED TO NOISE LEVEL 90.

Class MLP KAN
Precision Recall F1-score Precision Recall F1-score

0 0.98 0.98 0.98 0.98 0.98 0.98
1 0.98 0.97 0.97 1.00 0.58 0.73
2 0.95 0.95 0.95 0.92 0.95 0.94
3 0.93 0.95 0.94 0.94 0.92 0.93
4 0.95 0.94 0.94 0.95 0.91 0.93
5 0.91 0.94 0.93 0.96 0.88 0.92
6 0.97 0.97 0.97 0.97 0.94 0.96
7 0.95 0.96 0.95 0.98 0.85 0.91
8 0.94 0.92 0.93 0.56 0.99 0.72
9 0.92 0.91 0.92 0.90 0.88 0.89

TABLE IV
PERFORMANCE COMPARISON: MODELS EXPOSED TO FGSM, EPS0.3.

Class MLP KAN
Precision Recall F1-score Precision Recall F1-score

0 0.98 0.99 0.98 0.97 0.91 0.94
1 0.98 0.98 0.98 0.67 0.02 0.03
2 0.97 0.94 0.96 0.91 0.78 0.84
3 0.91 0.92 0.91 0.81 0.79 0.80
4 0.86 0.89 0.88 0.77 0.64 0.70
5 0.85 0.95 0.90 0.77 0.56 0.65
6 0.96 0.96 0.96 0.92 0.82 0.87
7 0.92 0.91 0.92 0.96 0.41 0.58
8 0.88 0.88 0.88 0.24 0.96 0.38
9 0.90 0.80 0.85 0.58 0.61 0.60

TABLE V
PERFORMANCE COMPARISON: MODELS EXPOSED TO PGD, EPS0.3.

Class MLP KAN
Precision Recall F1-score Precision Recall F1-score

0 0.98 1.00 0.99 0.96 0.94 0.95
1 1.00 0.98 0.99 0.00 0.00 0.00
2 1.00 1.00 1.00 0.88 0.64 0.74
3 0.93 0.98 0.96 0.90 0.67 0.77
4 0.90 0.97 0.94 0.68 0.34 0.46
5 0.94 0.91 0.93 0.78 0.41 0.54
6 0.99 1.00 0.99 0.90 0.71 0.80
7 0.97 0.93 0.95 1.00 0.33 0.49
8 0.93 0.98 0.95 0.17 0.98 0.29
9 0.96 0.84 0.90 0.52 0.43 0.47

showing marginally better metrics overall. However, KANs
struggle when noise is introduced. As noise levels increase,
KANs experience a sharper drop in accuracy compared to
the MLP. This indicates that while KANs perform better in
clean environments, they suffer accuracy degradation under
noisy conditions, revealing a weakness in robustness in real-life
scenarios. Under FGSM and PGD AAs, KANs demonstrate
even greater vulnerability. Their accuracy declines much faster
than that of the MLP as the epsilon value rises. For example,
at epsilon 0.3, KANs’ accuracy falls to 63.87%, while the
MLP still shows 92.48%. This trend continues with increasing
perturbations, showing that KANs are more vulnerable to
AAs than the MLP. Although KANs show high performance
in optimal conditions, they face challenges in robustness
and security. Their rapid decline in accuracy under noise
and adversarial conditions suggests they are more vulnerable
than traditional models. This poses risks in security-sensitive
applications, where resilience against such attacks is crucial.

Future Research Directions

Improving KANs’ robustness could involve exploring ad-
vanced regularization methods, adversarial training, or defense
mechanisms tailored for KANs. Additionally, designing archi-
tectures that better handle noisy inputs and conducting more
comprehensive security analyses across diverse attacks and
datasets would further enhance KANs’ resilience and security.

The future research directions include:
• Investigating and developing advanced robustness tech-

niques tailored for KANs. This may include exploring
novel regularization methods, adversarial training, or
defensive strategies specifically designed to improve
KANs’ resilience to noise and AAs. Trying different types
of activation functions could provide new insights into
improving model performance and robustness. Activation
functions based on Fourier transforms, for instance, can
capture periodic patterns in data, while Chebyshev and
Jacobi polynomials might offer superior approximation
capabilities for certain types of functions. Investigating
these alternatives could lead to the development of KANs
that are more resilient to noise and adversarial attacks by
leveraging the mathematical properties of these functions.

• Designing KAN architectures that inherently handle noisy
inputs better. This might involve incorporating noise-
robust activation functions or more sophisticated noise-
handling mechanisms within the network. One approach
could be to employ regularization methods that penalize
overly sensitive spline functions, making the network
less reactive to small perturbations in the input. Another
strategy is to integrate preprocessing steps or layers within
the KAN that filter out noise before it propagates through
the network.

• Conducting a thorough security analysis of KANs across
a broader range of AA methods and datasets is imperative,
as it can provide deeper insights into KANs vulnerabilities
and help in devising more effective defense strategies.
Future work will involve testing KANs against more
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sophisticated attacks like the Carlini & Wagner attack,
DeepFool, and black-box attacks to evaluate their robust-
ness comprehensively. Additionally, experimenting with
diverse datasets such as CIFAR-10, ImageNet, or domain-
specific datasets will help assess the generalizability of
KANs’ resilience across different types of data.
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