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Abstract—Recent interest in applying Kolmogorov-Arnold
Networks (KANs) to the Machine Learning (ML) domain has
grown significantly. Different KAN implementations leverage
various architectures, with the primary distinction being their use
of different learnable activation functions. While recent studies
have benchmarked and evaluated the performance of different
KAN models, little attention has been given to their robustness
against Adversarial Attacks (AAs). In our previous work, we
compared the performance of a single KAN model to a Multi-
Layer Perceptron (MLP) classifier under Gaussian noise and AAs,
using the Fast Gradient Sign Method (FGSM) and Projected
Gradient Descent (PGD) attacks on the MNIST dataset. In this
paper, we extend that analysis by comparing several popular
KAN implementations subjected to the same attacks. We evaluate
standard metrics, including accuracy, precision, recall, and F1-
scores, using the MNIST dataset as in prior research. The aim
is to empirically investigate how different activation functions
influence the robustness of KAN models under AAs. Our results
reveal substantial differences in accuracy loss across KAN models
when exposed to AAs.

Keywords-FGSM; MNIST; Kolmogorov-Arnold Networks; KAN;
PGD; Classification.

I. INTRODUCTION

The fast-paced growth of Machine Learning (ML) has led to
the development of increasingly advanced models that excel in
various tasks. Among these innovations, Kolmogorov-Arnold
Networks (KANs) introduced a novel framework grounded
in the Kolmogorov-Arnold representation theorem [1]. KANs
hold great potential for mobile device applications since they
require less computation, memory, and thus energy to run. They
also show potential for applications where interpretability is
important. In addition, KAN models could be incrementally
and continuously trained, although the initial training time is
generally (significantly) longer for KANs, when compared to
MLP models.

The increasing sophistication of adversarial attacks poses
significant challenges for deep learning models, especially in
safety-critical applications such as autonomous systems and
cybersecurity. In addition, the growing use of ML in real-life
applications are increasingly running into environmental noise

that is not present during training. Despite their potential, the
robustness of KANs, especially against Adversarial Attacks
(AAs) and noisy data, remains mostly underexplored in spite of
several recent papers [2], [3]. Robustness is a critical aspect of
machine learning models in real-world applications, which often
operate under less-than-ideal conditions [4]. Adversarial attacks,
such as the Fast Gradient Sign Method (FGSM) and Projected
Gradient Descent (PGD) exploit weaknesses in models by
introducing subtle alterations to input data, while noise can
obscure important features, leading to performance degradation
[5].

In our previous paper [6], we compare the robustness of one
of the first KAN to that of MLP Classifier. In this paper we
compare different KAN implementations each using a different
learnable function. We utilize adversarial attacks such as the
FGSM and PGD, which fall under the category of white-
box, evasion attacks, where the attacker has full knowledge of
the model and seeks to degrade performance by introducing
carefully crafted perturbations to the input data. Additionally,
we employ Gaussian noise as a form of non-adversarial
perturbation, which can obscure critical features and simulate
natural noise, further impacting model robustness. By aligning
these attack methods within widely recognized taxonomies
of adversarial attacks, we provide a structured approach to
evaluating model vulnerabilities under both adversarial and
stochastic noise conditions.

The objective of this paper is to assess the impact of these
activation functions on the robustness of KAN models. The
key contributions of this work include a detailed evaluation of
robustness using metrics such as accuracy, precision, recall, and
F1-score, a comparative analysis of model performance under
various adversarial attack scenarios, and comprehensive charts
and figures that visually highlight the performance differences
between the models.

Paper Structure: The remainder of this paper is organized
as follows. In Section II, we provide an overview of the
related work, discussing key contributions and architecture
of KAN. Section III outlines the methodology, detailing the
models architecture, implementation and parameters used in
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experiments. In this section we also describe the details and
tools used for AAs. The experimental results are presented
and analyzed in Section IV. Section V concludes the paper,
summarizing the main findings, and potential directions for
future work.

II. RELATED WORK

A. Kolmogorov-Arnold Representation Theorem

The Kolmogorov-Arnold Representation Theorem, or the
superposition theorem, was introduced by Andrey Kolmogorov
in 1957 and later extended and refined by Vladimir Arnold in
1963. The theorem proposes that any multivariate continuous
function f(x1, ...., xn) within a bounded domain can be
represented as a superposition of continuous single-variable
functions, which is typically written as:

f(x) = f(x1, ...., xn) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)
where ϕq,p : [0, 1] → R and Φq : R → R.

B. KAN Architecture

KANs is a novel neural network architecture based on
the Kolmogorov-Arnold representation theorem, presenting an
alternative to traditional multilayer perceptrons (MLPs). Unlike
MLPs, which use fixed activation functions on nodes and
linear weight matrices, KANs introduced learnable activation
functions along edges. Each weight in KANs is replaced by
a one-dimensional learnable function, often parameterized as
a spline. However, other alternatives to splines can also be
used. This architectural shift promises enhanced accuracy and
interpretability compared to MLPs, making KANs suitable
for diverse applications in various fields [1]. An especially
interesting aspect is the reduced demand for resources and the
increased interpretability.

KANs and MLPs share a similar approach and architecture.
Figure 1 from [1] shows KAN and MLP architectures compared
side by side.

Figure 1. KAN vs MLP Architectures Compared, source: [1]

Learnable activation functions along the edges are a critical
component of KANs, and the choice of these functions

has a significant impact on the robustness of the model
against adversarial attacks. While splines are well established
for approximating the one-dimensional functions required
by KAN decomposition, there are other methods capable
of representing any continuous multivariate function as a
finite sum of continuous univariate functions, as outlined by
the Kolmogorov-Arnold theorem. Selecting the optimal one-
dimensional functions is one of the most important decisions
when implementing KANs, as it directly influences efficiency
and model performance.

Splines are a natural choice because of their capacity to
approximate continuous functions with a low number of
parameters and smooth transitions between data points. This
smoothness is particularly advantageous in interpolation tasks,
where data changes are handled efficiently, making splines more
computationally efficient compared to high-degree polynomials.
Their efficiency is crucial for both the training phase and
inference in KANs [1].

Beyond splines, there are several other alternative choices for
learnable activation functions. Each alternative offers different
trade-offs in performance and computational complexity. NNs,
for instance, are capable of approximating non-linear functions
with high accuracy, although training NNs for each one-
dimensional function introduces longer training times. This
trade-off may be beneficial for more complex tasks, where
increased accuracy is needed. Polynomial function approxima-
tions are computationally straightforward and may be suitable
for simpler tasks where minimal approximation is required.
Fourier series offers another alternative, especially for periodic
or smooth functions, using sine and cosine terms to capture
the essential properties of continuous functions [7]. Chebyshev
Polynomial would be another alternative to the use of splines
[8].

KANs have demonstrated potential in computer vision
tasks. In [9], KANs were evaluated on several well-known
benchmarks, and their performance was compared to models
like MLP-Mixer, Convolutional Neural Networks (CNNs), and
Vision Transformers (ViTs). KANs surpassed MLP-Mixer,
however, they were outperformed by the ResNet-18 model
[10].

KANs sensitivity to noise is featured in [2] and [3], where
authors show that even relatively small noise perturbations
are causing significant degradation in KANs performance. In
[11], authors show KANs weaknesses compared to MLPs
in hardware applications using complex datasets requiring
additional resources. Some authors like [10] claim that using
KANs for more complex datasets, like CIFAR-10, shows no
benefits.

C. Adversarial Attacks

Refining techniques that exploit vulnerabilities in ML models
has been the focus of recent research in AAs domain [5],
[12]–[14], and particularly in computer vision [4], [15]. The
FGSM and PGD emerged as the two most prominent methods
for evaluating model robustness. Introduced by [16], FGSM
generates adversarial examples by adding small perturbations
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to input data, which can induce incorrect predictions. PGD, a
more iterative and sophisticated approach developed by [17],
has become a benchmark for testing resilience against stronger
attacks. In computer vision, where minor changes to input
images can lead to significant shifts in the model outputs,
these methods are especially effective [18]. Several different
defenses against FGSM and PGD have been proposed [19]–[21].
However, FGSM and PGD still remain the state of the art
for assessing the robustness of ML models which is why
we selected these methods to evaluate KANs in our research
presented in this paper.

The Adversarial Robustness Toolbox (ART) [22] is one
of many similar tools which offer techniques for generating
adversarial examples and defences, while datasets like MNIST
[23] are commonly used to benchmark adversarial vulnerability
across studies. Although KANs have been applied in various
domains, their resistance to AAs, specifically FGSM and PGD,
remains largely unexamined. In this paper, we examine and
compare different KAN architectures under AA attacks in an
attempt to provide insights into KANs’ robustness relative to
the chosen architecture.

III. METHODOLOGY

The primary objective of this study is to evaluate the relative
change in performance metrics when models are subjected to
adversarial attacks, rather than focusing on achieving optimal
performance. While we acknowledge that each model could
be fine-tuned for better results through parameter optimization
and enhanced training techniques, this paper assumes that the
relative impact of adversarial attacks on model performance will
remain consistent. This assumption will have to be examined
in future research to validate if it can be confirmed and
generalized.

KAN architecture is illustrated in Figure 1. We selected
four different KAN implementations available on GitHub each
using a different activation function, but otherwise the same
architecture as in Figure 1. All models are subjected to one
noise and two AA: the FGSM, and PGD. AA are administered
using ART [22]. Metrics like accuracy, precision, recall, and F1
scores are used to assess models’ robustness. MNIST dataset
[23], which contains 33,600 training samples and 8,400 test
samples of handwritten digits, is used for all training and
evaluation experiments. For a baseline, a control, we use a
simple, typical MLP Classifier based on a feed forward NN.
The four KAN implementations we selected to examine are:
Linear (Efficient) KAN [24], Naive Fourier KAN [25], Jacobi
KAN [26], Chebyshev KAN [27]

A. Model Architectures

We used an AdamW optimizer for all models with a learning
rate of 0.001 and weight decay to prevent over-fitting. During
the training Exponential Learning Rate Scheduler is used to
regulate the learning rate. The CrossEntropyLoss function is
used for classification.

All selected KAN models follow the same basic architecture
illustrated in Figure 1 except for the activation function. The

code is provided by their respective authors on GitHub and
most of the code stems from the original KAN implementation
introduced in [1] and available on GitHub [28].

Linear KAN [24] is based on the original KAN implemen-
tation pykan [28] which is the repo behind the paper [1]. This
model uses splines. It was trained using the (n ∗ n) ∗ 2 + 1
formula derived from the Kolmogorov-Arnold theorem. The
KAN NN needs to map the n-dimensional input space in this
case n = (28 ∗ 28) corresponding to the MNIST image size
used as input, into one-dimensional functions, which are then
summed up to recover the multivariate structure. The factor
of 2 in the formula corresponds to the fact that each variable
influences the other in the decomposition. Adding 1 captures
the residuals, or bias, that pairwise terms may not be able to
capture. The total 784 * 784 * 2 + 1 = 1,229,377 gives the
model capacity to represent patterns in the MNIST data.

Naive Fourier KAN [25] replaces spline with single
dimension Fourier coefficients. The authors argue that this
approach would lead to a simplification since the Fourier
representations are more compact and dense. The naive version
uses memory proportional to the grid size parameter which is
typically related to the resolution of images in our case 28 x
28. Apart from the grid size this model uses bias which we set
to true to allow for a flexible fit and the smooth_init parameter
is also set to true to help with weights initialization.

Chebyshev KAN [27] called ChebyKAN replaces spline with
Chebyshev polynomials. According to the authors B-splines
lead to poor performance and are not intuitive which lead to
the use of the use of Chebyshev polynomials, which are widely
used for approximations and polynomial interpolation since
they provide close approximation to a continuous function. The
simplification leads to a reduction in model parameters. Apart
from the image size 28 x 28 and the number of classes, digits
0-9, we only have the degree of the polynomial.

Jacobi KAN [26] called JacobiKAN is based on the Cheby-
shev KAN [27] and it is also using orthogonal polynomials this
time Jacobi. They are similar but have two extra parameters
α and β to control the upper and lower ends of the interval
which is typically [−1, 1]. When these parameters are both
0 it is a special case of Jacobi, the Legendre polynomials.
This is typically used for MNIST classifications. The other
parameters are the same as in ChebyKAN, that is input, output,
and degree.

MLP Classifier is a feed-forward NN in the following
formation:

(28 ∗ 28) → 512 → 256 → 128 → 64 → 10

where (28 * 28) represents the input layer corresponding to
MNIST image size. Each layer is followed by ReLU activation
and dropout for regularization. The layers decrease in size
leading to the output layer containing 10 neurons, one for each
digit 0-9.

B. Attack Architecture

Noise Attack: We conducted Gaussian noise attacks at a
noise level of 100 to evaluate the robustness of the models
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under extreme conditions. This high noise level was deliberately
chosen to highlight the performance degradation, enabling a
clear comparison between different KAN architectures and a
baseline multi-layer perceptron (MLP) model used as a control.
In our prior work, we assessed the performance of a single
KAN model across progressively increasing noise levels to
analyze its sensitivity to noise attacks in comparison to the
MLP. In this study, our focus shifts to a comparative analysis
of various KAN models, while maintaining the MLP model as
a reference for evaluating performance robustness.

Fast Gradient Sign Method Attack: ART [22] was utilized
to generate adversarial examples and implement the FGSM
attack on each model. Perturbations were introduced to the
MNIST test data to create adversarial samples, with the epsilon
parameter, typically ranging from 0.1 to 0.8, controlling the
degree of perturbation. Higher epsilon values increase the
likelihood of visible distortions in the images. For this study,
we selected an epsilon value of 0.5, which was sufficient to
degrade model performance while avoiding noticeable visual
alterations to the images.

Projected Gradient Descent Attack: For this attack we
also used the ART to prepare and run the test. The PGD attack
works by progressively making small random perturbations to
the input to increase (maximize) loss. In each iteration step,
perturbation level is increased by a parameter while maintaining
imperceptibility to the human eye through the control of the
max size of perturbations. This attack is considered one of the
strongest first-order adversarial attacks because of this iterative
process, in contrast to the FGSM attack. We also used the 0.5
level for this attack as well, to keep it at a reasonable, realistic
level.

Tools and environment: All KAN implementations are
sourced from GitHub repositories [25]–[28] as well as The ART
[22] while the MLP is implemented by us using PyTorch and
Scikit-learn Python libraries. Google Colab cloud hardware and
software environment is used to develop and run all experiments
using Python. These standardized tools and environments
along with the above listed model parameters ensure that the
experiments are reproducible.

Experiments: All models were first trained using Google
Colab free tear environments. We evaluated all models before
adversarial attacks including the MLP Classifier. In each
adversarial attack, we measured the change in the performance
for each metric relative to the performance metrics before
the attack. We also compared the performance of each KAN
relative to that of MLP.

IV. RESULTS

Before Attacks: A comparison of models’ accuracy scores
before attacks is visualized in the bar graph from Figure 2. It
shows that MLP and Linear KAN have nearly identical accuracy.
However, the other three KAN models in our experiments
didn’t achieve the same level of accuracy. Since we are only
interested in relative changes in metrics this was not of critical
importance, however, this is something we will be looking into
exploring in the future. Although not the primary focus of this

paper, we observed that KAN models took significantly more
time to train. The training time in Google Colab T4 GPU free
tear improved about tenfold, however, training KAN models
still took more time in relatively the same proportion.

Figure 2. Model Accuracy Comparison Before Attacks

Another interesting observation is that KAN models are not
as well balanced as MLP as illustrated in the graph Figure 3.
Linear KAN also achieves nearly the same F1 scores across
all classes except for the last, digit 9, where it significantly
drops. All other KAN model F1 scores follow the same pattern.
Confirming and exploring this imbalance further would be
important as it may lead to interesting new directions. All
these observations are left for future research.

Figure 3. Model F1 Score Comparison Before Attacks

Gaussian Noise Attack Results: All models showed
accuracy degradation when exposed to noisy data at level
100. The MLP model showed only a slight decrease followed
closely by the Linear KAN model. However, the other KAN
models suffered a catastrophic drop in accuracy. Figure 4 shows
the before and after accuracy scores for each model. Only the
Linear KAN suffered minimal accuracy degradation, although
still more than double the MLP loss.
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Figure 4. Model Accuracy Comparison After Noise Attack

Fast Gradient Sign Method Attack Results: As expected
under the FGSM attacks (at 0.5 level) all models lost accuracy
more than under noise attacks. Figure 5 shows the comparison
between accuracy scores before and after FGSM attacks for
each model. The MLP model, again, suffered the least among
the models, however, this time the drop is significant. The
Linear KAN model sustained even greater loss of accuracy
although performed better than the rest of the KAN models.
The most interesting observation following the FGSM attack
is that the Fourier KAN, that suffered the worst under the
noise attack, performed the best amongst KAN models, except
Linear, under FGSM attack.

Figure 5. Model Accuracy Comparison After FGSM Attack

Projected Gradient Descent Attack Results: Under PGD
attacks at an intensity level of 0.5, all models experienced a
catastrophic degradation in performance. Figure 6 shows the
comparison of accuracy scores before and after PGD attack
for each model.

Figure 6. Model Accuracy Comparison After PGD Attack

We also observed that the accuracy for all models for the
majority of digit classes dropped to zero. In the few cases
where some accuracy was retained, the performance remained
below 10%. What is interesting here is that all KAN models
except Linear KAN, showed better overall resilience than MLP,
with Cheby KAN leading the pack. Of course, the caveat is that
the results are still catastrophic. The best-performing model,
Cheby KAN achieved a score of just below 0.3. Still, it showed
the least loss of accuracy compared to all other models.

V. CONCLUSION AND FUTURE WORK

The results demonstrate a significant variation in how
different KAN models handle AA attacks and how they
compare to MLP. Consistent with our previous findings [6], we
confirmed that the MLP classifier is generally more resilient
than the KAN classifiers under AAs. However, under PGD
attacks, we see this reversed. Specifically, the Cheby KAN
model surpassed the MLP, while both the Fourier and Jacobi
KAN models also achieved better performance than the MLP.
We shouldn’t forget that all these results are poor. Nevertheless,
these preliminary empirical results highlight the need for further
investigations into theoretical and empirical differences between
KAN models using different activation functions, and between
MLP and KAN models. Understanding these differences could
offer valuable theoretical insights for both KANs and MLPs. It
could potentially open new avenues for developing AA attack-
resilient ML model architectures.

We also observed that KAN models have a higher class
imbalance, as illustrated in Figure 3. Looking further into the
reasons behind this could also unveil some interesting new
insights.

In this paper, we did not prioritize training efficiency or
performance optimization. However, investigating the relation-
ship between training efficiency and robustness against AA
attacks could be a valuable direction for future work, especially
since KAN models offer various optimization opportunities.
One notable finding is that the Cheby KAN model, despite
starting with a slightly lower accuracy score of 0.93 before
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attacks, compared to 0.98 for both the MLP and Linear
KAN models, under PGD attacks exhibited significantly less
accuracy degradation. The Cheby KAN model retained an
accuracy score of 0.3, while the MLP and Linear KAN
models’ accuracy dropped to 0.05 and 0.04, respectively. This
substantial difference warrants further exploration and could
lead to important insights.

Future research directions include:
• Investigating the observed differences further and

developing robustness training techniques better suited
for KANs.

• Looking into training KAN models specifically aimed
at handling AA.

• Looking into improving AA methods given that
they were less successful attacking KAN models
specifically PGD attacking the Cheby KAN model.

• Looking into the resistance of KAN models using
different AA methods, and using different datasets
would be a priority given our findings.
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