
 Validating Damage Assessment: A Simulation-Based Analysis of Blind Write

Lineage in Fog Computing

Mariha Siddika Ahmad

Electrical Engineering and Computer Science Department

University of Arkansas

Fayetteville, AR 72701 USA

ma135@uark.edu

Brajendra Panda

Electrical Engineering and Computer Science Department

University of Arkansas

Fayetteville, AR 72701 USA

bpanda@uark.edu

Abstract— In order to solve problems like temporal lag,

communication overhead, and the requirement for

computational and storage resources to be closer to both the

ground and end users, the idea of fog computing evolved as an

extension of cloud computing. Due to its large number of

interconnected nodes, this system is susceptible to cyberattacks.

Damage from the attack swiftly spreads to other nodes and their

data items when valid transactions cause modifications using

the value of a compromised object, thus impairing the system's

real-time functions. This research proposes a fast damage

assessment approach to provide users access to unaffected nodes

while accelerating system recovery. In this paper, we provide

various algorithms along with simulated results to efficiently

identify and mitigate damage, ensuring the system's resilience

and continuity. Our proposed method demonstrates significant

improvements in damage assessment speed and efficiency

compared to traditional approaches, with simulation results

consistently showing substantially fewer data item reads

required during the recovery process across various scenarios.

Keywords- Fog computing security; blind write; data

dependency; damage assessment; malicious transaction.

I. INTRODUCTION

While cloud computing brought advantages like
processing power and communication, it also raised concerns
about data security and user experience due to delays. Fog
computing was developed as an extension of cloud computing
to tackle these issues. It brings the needed resources closer to
users but inherits security and privacy risks from traditional
cloud systems. In fog environments, the interconnected nature
and vast amount of data create a bigger attack surface,
allowing damage to spread rapidly. This is especially
worrisome for real-time processing, where breaches can have
a swift and significant impact. For critical systems like those
used by emergency services, hospitals, and police, fast
recovery of compromised data is essential. Unfortunately,
traditional recovery methods, which involve shutting down
systems for analysis and restoration, are not suitable for real-
time fog systems.

Traditional logs struggle to track data access during
attacks, hindering recovery. Blind write operations are those
that update data without reading it. These can be handily used
to accelerate recovery. This research builds on prior work on
blind write's role in recovery efficiency [1]. We explore the
damage assessment process and present the effectiveness of
our approach through simulation. We show that by using blind

writes, data recovery can be automated and becomes
significantly faster, eliminating manual data checks.

This paper is structured as follows: the following section
will explore the motivation behind this research. Section 3 will
examine relevant past research connected to this endeavor. In
Section 4, we will delve into the specifics of the model.
Section 5 will provide a broad discussion of damage
assessment for blind write lineage along with their
corresponding algorithms. Then, in Section 6, the simulated
results are shown. Finally, Section 7 will wrap up the paper
with the conclusion.

II. MOTIVATION

Distributed fog systems strategically store large amounts
of data near users, enabling real-time services in critical areas.
Their speed and reliability make them ideal for essential
computing infrastructure across various organizations, from
local emergency services to large enterprises. However, the
sensitive data they store makes them attractive targets, and
their inherent vulnerabilities pose significant security
challenges.

Fog systems' strength lies in their interconnectedness, but
this very feature creates a vulnerability. Like a chain breaking
at its weakest link, a single compromised node can trigger a
domino effect, crippling interconnected systems. These
systems are also heterogeneous, meaning different nodes have
varying software and data. Additionally, the sheer volume of
data across all connected nodes makes recovery extremely
complex after an attack. This complexity leads to significant
delays, a major issue considering the real-time nature of the
services fog systems provide.

A successful attack on a single fog node can wreak havoc
beyond its local database. Corrupted data can spread like a
virus as legitimate transactions unknowingly read tainted
information and update healthy data based on these bad
values. This domino effect rapidly infects other
interconnected nodes, creating a snowballing problem.
Recovering from such an attack becomes a race against time,
as these systems rely on real-time functionality. A swift and
accurate recovery mechanism is essential, not just for system
survival but also to minimize service disruptions.

The potential impact on critical infrastructure includes:

• Emergency Services: A compromised fog node
could lead to incorrect dispatch of information,
delaying response times and potentially costing
lives.

28Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

• Healthcare Systems: Corrupted patient data
could result in misdiagnosis or improper
treatment plans.

• Financial Institutions: Tainted transaction data
could cause widespread financial losses and
erode customer trust.

• Smart City Infrastructure: Compromised
traffic management systems could lead to
gridlock or increased accident risks.

Traditional recovery methods, which often involve
system-wide shutdowns and time-consuming manual checks,
are simply not feasible for these real-time, mission-critical
systems. The need for a solution that can rapidly assess
damage, isolate compromised data, and restore system
functionality is paramount.

This paper proposes a novel method for recovering data in
fog computing systems that manage vital information. We
highlight the urgency of real-time recovery during
cyberattacks, leveraging the concept of blind writes to
accelerate the damage assessment process. Our approach aims
to minimize downtime, reduce the spread of corrupted data,
and ensure the continuity of essential services even in the face
of sophisticated attacks.

By addressing these critical challenges, our research
contributes to building more resilient fog computing
infrastructures capable of withstanding and swiftly recovering
from cyber threats, ultimately safeguarding the vital services
that modern society increasingly depends upon.

III. RELATED WORK

Following the success of cloud computing, fog and edge
computing are emerging as the next frontier. Research on fog
computing's role in the Internet of Things is well-established
by Bonomi et al. in [2] as well as several insightful surveys
exploring its key issues and potential by Mouradian et al. in
[3] and Vaquero et al. in [4]. Security remains a major
concern, as evidenced by various studies by Sun et al. [5] and
Mukherjee et al. [6]. In addition, in reference [7], Wu et al.
explore security vulnerabilities in critical infrastructure data
storage and management systems. Additionally, research by
Viganò et al. in [8] highlights vulnerabilities specific to
critical infrastructure data management systems.

Beyond general security, researchers like Kotzanikolaou
et al. [9] have investigated targeted risk assessment models for
cascading failures in critical infrastructure. Others have
emphasized how Cyber-Physical Systems introduce new
attack vectors in data-rich environments like Ding et al. in
[10]. Notably, Rehak et al. [11] propose a valuable model
depicting interconnected elements within an infrastructure
system. This model's focus on dependencies closely resembles
the interconnected nature of fog computing systems, offering
insights into potential cascading damage from attacks.

Database attacks can have a ripple effect, corrupting
healthy data through seemingly valid transactions unaware of
the compromise. Post-attack recovery is crucial, relying
heavily on system logs to identify affected data and initiate
recovery procedures. The concept of blind writes, updating
data without reading them, has been explored by various

researchers. Stearns et al. [12] define it as writing data without
a prior read request, highlighting the lack of a preliminary
check. Mendonca et al. [13] emphasize that during a blind
write operation, data copies are modified regardless of their
original values. Similarly, Burger et al. [14] focus on the
absence of a pre-write read operation inherent to blind writes.

Rapid damage assessment is vital for fog system recovery.
Existing methods leverage transaction or data dependencies
for this purpose by Ammann et al. in [15] and Tripathy et al.
in [16]. Recovery is equally important, as evidenced by
research on database recovery after attacks by Panda et al. [17]
and efficient damage assessment algorithms by Haraty et al.
[18]. Notably, Haraty et al. [18] presents a memory and time-
efficient algorithm that effectively handles blind writes,
minimizing attack impact and enabling swift, accurate
recovery.

The field of damage assessment has seen prior research
exploring the potential of blind writes for faster identification
of compromised data [1]. This paper takes that concept a step
further. We introduce a new model specifically tailored for fog
computing systems, a domain where rapid damage assessment
is paramount due to their interconnected nature and the
potential for swift propagation of attacks. Our proposed model
leverages blind writes for efficient damage assessment, and
we will further validate its effectiveness through the inclusion
of simulated results. By incorporating simulations, we aim to
demonstrate the model's ability to quickly pinpoint
compromised data after a cyberattack in a fog computing
environment.

 Fog computing's distributed nature compels us to explore
damage assessment techniques from distributed systems
research. Existing work in this area offers promise for fog
computing. For instance, Alshehri et al. [19] outline a
blockchain-based method designed to prevent a malicious fog
node from affecting other nodes in the network. The authors
propose a model that uses blockchain technology and
Ciphertext-Policy Attribute-Based Encryption (CP-ABE) to
create fog federations that enable secure and distributed
authorization among fog nodes. This approach aims to reduce
time delays and communication overhead between fog nodes
and cloud servers by allowing fog nodes within the same
federation to conduct distributed authorization processes
using smart contracts on the blockchain. By adapting these
techniques, specifically by integrating blockchain-based
authorization mechanisms and encryption methods such as
CP-ABE, fog systems can enhance their defense against
cyberattacks while maintaining system performance and
scalability. This approach enables more secure and efficient
damage recovery in fog computing environments, where
timely and coordinated responses to threats are crucial for
resilience.

Our research introduces the concept of blind write lineage
to address security challenges in fog computing. This model
efficiently traces data dependencies and rapidly assesses
damage by leveraging the characteristics of blind writes.
Unlike traditional methods that rely on log analysis, our
approach offers a more effective solution for real-time damage
assessment in interconnected fog systems, which are

29Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

particularly vulnerable to cascading failures and rapid damage
propagation.

IV. BLIND WRITE LINEAGE MODEL

The previous research [1] leverages blind writes for rapid
damage assessment in fog computing systems. Blind writes
update data without first reading their existing values. A key
concept is data dependency, where one data item relies on the
value of another for its update.

[1] introduces the concept of blind write lineage, which
tracks data items solely dependent on a blindly written item or
its descendants. To facilitate damage assessment and
recovery, two crucial data structures are maintained:

Blind Write (BW) List: List which includes blindly written
data items, timestamps, and transaction numbers.

Blind Write Lineage (BW Lineage) List: Tracks the lineage
of data items solely dependent on blindly written items or their

descendants. Represented as [Parent_node → Child_node].

Blind write lineage is a method for swift damage
assessment in fog computing systems. It capitalizes on blind
writes, where data updates occur without first retrieving the
existing value. The previous paper [1] explored two primary
scenarios within blind write lineage:

Case 1: Single-parent/Single-child Lineage (Simpler
Scenario)

This case represents a simpler scenario where data items
are updated sequentially, with each item relying on a single
predecessor. The lineage of affected data items can be
efficiently traced back to the original blindly written item.

Case 2: Multipath Lineage (More Complex Scenario)
This case presents a more intricate scenario where a child

node might have multiple parent nodes, and vice versa. Data
items can also be updated by leveraging multiple arguments.
This complexity necessitates a more refined approach to
damage assessment.

In a fog computing system, the integrity of data relies
heavily on the relationships between various data items. When
an attack occurs, it is crucial to identify how data has been
compromised by analyzing transaction logs. These logs store
the sequence of operations performed on data items, including
read and write operations. In the context of blind writes, where
data is updated without reading its prior value, it becomes
especially challenging to trace which items are affected by
compromised data.

To efficiently perform damage assessment, the system
needs to track how data dependencies unfold. Each time a data
item is blindly written, its dependent items—those that rely on
it for updates—become potential candidates for compromise.
By analyzing the transaction logs, the system can trace these
dependencies and organize them into subgraphs, which
represent different clusters of related data items.

The analysis of transaction logs in a fog computing system
can reveal complex data dependencies. These dependencies
can be visualized as a graph, where:

• Nodes represent data items

• Edges represent dependencies between data
items (i.e., one data item being used to update
another)

However, this overall graph is not necessarily fully
connected. Instead, it often consists of multiple disconnected
subgraphs. Each of these subgraphs (G1, G2, G3, etc.)
represents a distinct "blind write lineage" - a chain of data
updates originating from a blindly written data item.

Figure 1. Multiple subgraphs in the data dependency (G) [1].

The analysis of transaction logs can reveal multiple
disconnected subgraphs within the overall data dependency
graph (Figure 1). These subgraphs, denoted as Gi (where i
represents a specific subgraph), collectively form the set G.
Each subgraph (Gi) represents a distinct blind write lineage.
For Figure 1, G would be: G: {G1, G2, G3}. This structure
allows for efficient assessment of damage even in scenarios
with multiple attack points.

One algorithm focuses on the simpler scenario of single-
parent/single-child lineage. It operates by first checking if the
initially compromised data item is present on the Blind Write
(BW) list. If found, the algorithm leverages the Blind Write
Lineage (BW Lineage) list to identify all subsequent data
items affected by the attack. The final output is a
comprehensive list of Damaged Data Items that require
remediation.

The next algorithm tackles the more general scenario of
multipath lineage. It achieves this by first identifying distinct
subgraphs within the overall data dependency graph. For each
subgraph, the algorithm defines three crucial sets:

Blind Write Set (BWSi): This set encompasses all blindly
written data items within the subgraph, along with their
corresponding timestamps. These blindly written items serve
as the root cause of potential damage.

Children Data Set (CDSi): This set comprises all data
items that are dependent on one or more elements within the
BWSi of the same subgraph. It also includes timestamps for
each data item's update. These data items are considered
potentially compromised due to their dependency on blindly
written elements.

Damaged Set (D): These items are considered damaged
because they were created by an attacker transaction. The

30Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

damaged set is like a family tree, where each data item is a
parent node in their respective subgraphs. This is because the
assumption is that attacker transactions create data blindly.

By meticulously constructing these sets for each subgraph
based on transaction data, the last algorithm lays the
groundwork for effective damage assessment. The resulting
subgraphs, along with the BWSi and CDSi sets, provide
valuable insights into the extent of the attack and the data
items that require further investigation or restoration.

V. DAMAGE ASSESSMENT

For damage assessment, time (𝑡𝑎) as in attack time and for
every data item last updated time (𝑡𝑙𝑎𝑠𝑡 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑡𝑖𝑚𝑒) and

graph(G) must be taken into consideration for damage
assessment. As was mentioned in the previous paper [1], the
same data item can be updated in different transactions at
different times. So, time is very crucial here to find the
damaged data items and if that damaged item has been used
before or after the attack, depending on the time, it can be
decided if the damaged item should be recovered or not.
Again, the damaged graph is needed as in to differentiate if
the same data item is updated at the same time, it would be
much easier for assessment. For this purpose, the final updated
time for each data item and their corresponding subgraph
would be listed in a table (Table II). There would be one table
for Graph set Gi (Table I). Suppose for this example let’s
check the final updated timetable and the BWSi and CDSi set:

TABLE I. SETS

Gi G1 G2 G3

BWSi {(A,𝒕𝟏), (X,𝒕𝟑), (Y,𝒕𝟓)} {(P,𝒕𝟏𝟎), (S,𝒕𝟏𝟐)} {(J,𝒕𝟏𝟓)}

CDSi {(B,𝒕𝟐), (C,𝒕𝟒), (D,𝒕𝟔),

(E,𝒕𝟖), (F,𝒕𝟕), (G,𝒕𝟗)}

{(Q,𝒕𝟏𝟏),(C,𝒕𝟏𝟒),

(T,𝒕𝟏𝟓)}, (R,𝒕𝟏𝟖)}

{(C,𝒕𝟏𝟔),

(K,𝒕𝟏𝟕)}

D {(S,𝒕𝟏𝟐)}

TABLE II. FINAL UPDATED TIME TABLE

Data Items A B X Y D E F G

𝒕𝐋𝐚𝐬𝐭 𝐔𝐩𝐝𝐚𝐭𝐞𝐝 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗

Graph G1 G1 G1 G1 G1 G1 G1 G1

Data Items P Q S T J C K R

𝒕𝐋𝐚𝐬𝐭 𝐔𝐩𝐝𝐚𝐭𝐞𝐝 𝒕𝟏𝟎 𝒕𝟏𝟏 𝒕𝟏𝟐 𝒕𝟏𝟒 𝒕𝟏𝟓 𝒕𝟏𝟔 𝒕𝟏𝟕 𝒕𝟏𝟖

Graph G2 G2 G2 G2 G3 G3 G3 G2

In all three subgraphs (Figure 1), C is found to be

updated at 𝑡4, 𝑡13 𝑎𝑛𝑑 𝑡16. But in Table II, the final update of

C is listed which is 𝑡16 and it appears in subgraph G3 (shaded

part).

It is possible for the same data items to be blindly written

by multiple transactions. For instance, let's consider the data

item S, which could be blindly written in all the subgraphs

(G1, G2, and G3). In such a scenario, all the Blind Write Sets

(BWSi) for these subgraphs would contain "S." However, if

the update time is not considered within the set, all the

subgraphs will be deemed damaged. So, the time of the

update of each data item has been included in the BWSi and

CDSi as an ordered pair. Thus, in this example, when the

initial damaged set D, {(S,𝑡12)}, is intersected with the Blind

Write Sets (BWSi) of all the subgraphs in the system, only G2

would be identified as damaged, as the ordered pairs match.

In the case of G1 and G2, G1 has used a non-damaged C.

Since it is in a different graph it has no connection with

subgraph G2 hence this value is independent of that value of

C there. It is evident that data item C is a child of S, the

initially maliciously modified data item, implying that C is

damaged. However, in G3, C has been modified using a

blindly written data item, J. Given that these subgraphs are

isolated and unrelated to each other, it is deduced that C in G3

has already been recovered and can be released for use.

Upon establishing that a specific graph is affected, the

time of update for every child of the initial damage is referred

to as the affected time. For instance, in G2, if S is the initial

damage, then the time of update for C is denoted as 𝑡13, which

represents the affected time for C, and for T, the affected time

is 𝑡14. These affected times can also be found in the CDSi.

Another case to be mindful of is the possibility of a specific

data item being recovered within the same damaged graph.

Let's illustrate this scenario with an example to provide

clarity:

Figure 2. An example showing a data item being damaged and recovered in

the same Subgraph G2.

In Figure 2, it is evident that data item C was initially

damaged at 𝑡13. However, it undergoes modification again at

𝑡20, transpiring within the same damaged graph. Notably, this

time, C has a parent data item R that remains undamaged.

Consequently, C is successfully recovered within the same

damaged graph.

In a damage assessment scenario using the following

algorithm for case 2, imagine we have a subgraph where the

initial damaged data item is A, which belongs to the Blind

Write Set (BWS) of the subgraph. The system starts by

identifying that the subgraph is compromised

because A intersects with the BWS. Next, it evaluates the

Child Data Set (CDS), which contains dependent data items,

such as C and DD. Since C depends on A, it is flagged for

31Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

potential damage and added to the Potential Damaged List

(PDL). Moving further, D depends on C, and as C is already

marked for damage, D is also added to the PDL. The

algorithm then checks the final updated times

for C and D against the attack time and the affected time. If

the last updated time of an item is equal to the affected time

(e.g., C), it is confirmed as damaged and retained for further

evaluation. For items like D, if its last update is after the

affected time, the algorithm checks if its parent (in this

case, C) is damaged. Since C is indeed compromised, D is

also classified as damaged. Finally, the algorithm outputs a

list of damaged data items (C and D) for further recovery

processes. This structured approach efficiently isolates and

assesses damage propagation through data dependencies.

Algorithm: (Evaluate Subgraph Damage)
Input:

 D: The initial damaged set of data items.
 BWSi: The Blind Write set of a specific subgraph.

 CDSi :The Child Data Set of a specific subgraph.

 G: The data structure or graph representing the subgraphs.

 𝑡𝑎: Attack time

 𝑡𝑎𝑓𝑓: Affected time

 𝑡𝑙𝑎𝑠𝑡 : last/final updated time

 Rl: released data item list that contains the released data items would be

kept after process
 PDl: potential damaged list

 damaged_data_items: A list of data items within the subgraph to retain

for further evaluation.
Procedure:

1. Assess Subgraph for Damage considering each Gi:

1.1. If D∩BWSi!=NULL for Gi

1.1.1. indicating there's at least one common data item.

1.1.2. Gi is damaged.
2. Identify Data Items for Further Evaluation (if damaged):

2.1. If Gi is damaged:

2.1.1. For each data items y in CDSi:
2.1.1.1. if y= f(z) where zϵ D or zϵ descendant of D

2.1.1.1.1. Add y to the PDl

2.1.2. For each data item x in PDI
2.1.2.1. Check table Final_updated_timetable

2.1.2.2. If t_last(x)=t_aff

2.1.2.2.1. Add x to the damaged_data_items list
2.1.2.3. Elif t_last(x)> t_aff

2.1.2.3.1. if the Gi = the subgraph containing the initial

damaged data item
2.1.2.3.1.1. check parents of x

2.1.2.3.1.2. if x=f(z) where zϵD or zϵ descendant

of D
2.1.2.3.1.2.1. Add x to the damaged_data_items

list

2.1.2.3.1.3. Else

2.1.2.3.1.3.1. Release x

2.1.2.3.2. Else

2.1.2.3.2.1. Release x

3. if D∩BWSi =NULL for Gi

3.1. Release all the data items in Gi
4. Output Result:

4.1. return the damaged_data_items list for further evaluation.
Comment:
2.1.2.2. to 2.1.2.2.1.1: If the last update time is after the damaged time, only

then it is checked if they belong to same graph or in the different graph. If
they belong to same graph, then they could be affected depending on if one

of there are damaged or not and if they belong to different graph then they

can be released. This scenario can be explained in the following section.

Figure 3. Multiple subgraphs in the data dependency (G).

TABLE III. FINAL UPDATED TIMETABLE (FOR SCENARIO (A))

Data Items P Q S T C R

𝒕𝐋𝐚𝐬𝐭 𝐔𝐩𝐝𝐚𝐭𝐞𝐝 𝒕𝟏𝟎 𝒕𝟏𝟏 𝒕𝟏𝟐 𝒕𝟏𝟒 𝒕𝟏𝟗 𝒕𝟏𝟖

Graph G2 G2 G2 G2 G2 G2

TABLE IV. FINAL UPDATED TIMETABLE (FOR SCENARIO (B))

Data Items P Q S T J C K R

𝒕𝐋𝐚𝐬𝐭 𝐔𝐩𝐝𝐚𝐭𝐞𝐝 𝑡10 𝑡11 𝑡12 𝑡14 𝑡15 𝒕𝟏𝟔 𝑡17 𝑡18

Graph G2 G2 G2 G2 G3 G3 G3 G2

In Figure 3, two scenarios are discussed using G2 and G3.

Tables III and IV display the final updated timetables for

scenario (a) and (b), respectively.

When examining all the children for a particular graph,

if it is discovered that the final updated time of a specific child

is after the attack, the graph undergoes scrutiny. If the graph

is distinct from the damaged graph, then the child data item

is deemed safe for release. Because it belongs to a different

graph that means it has no connection with the damaged items

in the previous graph. Had there been a connection it would

have been in the same graph. Since it is not in the same graph

that guarantees there is no connection with any of the

previously damaged values. However, if it belongs to the

32Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

same damaged graph, it could be considered as damaged

depending on its’ parents. If it’s one of the parents is

damaged, then definitely that data item is damaged. And if

none of its parents are damaged then it can be said that even

after being damaged it recovered in the same graph. For

example, in scenario (a), checking Table III reveals that the

child data item C was finally updated at 𝑡19, transpiring in the

damaged graph G2 (shaded part). Conversely, from the

shaded area of Table IV (scenario (b)), even though C is a

child of the initial damaged data item S, its last update

occurred at 𝑡16 in the separate graph G3, signifying that C is

safe for release.

Our algorithm systematically processes each data item in

the database to ascertain its affected status. If deemed

affected, the data item is forwarded for recovery; if not, it is

released. This comprehensive approach involves checking

every graph, ensuring that each data item within that graph

undergoes examination.

It is essential to note that there will be no data item

existing outside of a graph. This assurance stems from the

inherent nature of data item creation, where it is either

generated blindly or based on another data item. In both

scenarios, the data item is bound to be part of a graph.

As the algorithm meticulously examines each graph and

subsequently categorizes every data item within as damaged

or undamaged, the guarantee is established that the algorithm

checks and classifies every data item as damaged or not

damaged without exception.

VI. SIMULATION RESULTS

In our simulation study, we consider five variables,

which are as follows:

1. Number of Transactions: This represents the quantity

of transactions executed per experiment.

2. Number of Data Items: Denotes the total count of data

items utilized per experiment.

3. Maximum Number of Operations per Transaction:

This parameter can vary and is randomly selected within

the program.

4. Maximum Write Operations: Specifies the maximum

number of write operations permitted per transaction,

which can also vary.

5. Number of Blind Writes: Indicates the number of blind

writes permitted in each experiment, calculated as 5% of

the total number of transactions.

For consistency, we will maintain the following base

values throughout the experiments:

• Number of Transactions = 200

• Number of Data Items = 1000

• Maximum Number of Operations per Transaction = 5

• Maximum Write Operations = 2

• Number of Blind Writes per Transaction = (Number of

Transactions * 5%)

In each scenario, we will manipulate one variable while

keeping the others constant. We will execute the program 25

times for each case and compute the average number of data

readings using our blind writing method, as well as in normal

transactions after identifying the malicious blind write.

A. Varying the number of transactions

In this scenario, we will be altering the number of
transactions, ranging from 200 to 900, while maintaining the
other variables (Number of data items, Maximum number of
operations per transaction, Maximum write operations,
Number of blind writes per transaction) constant.

Figure 4: Varying the number of transactions.

As observed (Figure 4), when the number of transactions
increases, the average data item reads after identifying
malicious data in the usual log gradually rises. However, in
our method, the average data item reads from the graph
remains relatively constant but significantly lower compared
to the usual scenario. This trend is attributed to the increasing
number of transactions, which consequently leads to a higher
number of blind writes and subsequently more graphs. Despite
this, the average dependency per graph remains consistent.
Hence, the graph representing our method appears almost flat
due to this consistent average dependency per graph.

B. Varying the number of data items

In this scenario, we will be adjusting the number of data
items, ranging from 500 to 3000, while keeping the other
variables (Number of transactions, Maximum number of
operations per transaction, Maximum write operations,
Number of blind writes per transaction) constant.

In this scenario, we observe a significant reduction in the
average reading of data items after identifying the damaged
data in our method compared to the normal case (Figure 5).
However, the graph remains relatively consistent. This
consistency can be attributed to the fixed number of blind-
written data items and the fixed number of written data items
per transaction in our method. Since, the reading of data items
is dependent on the data items written previously which means
previously written data items are mostly read later on to write
another data item, leading to consistent behavior even with
variations in the number of data items.

33Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

Figure 5: Varying the number of data items.

C. Varying the Max number of operations per transaction

In this scenario, we will be adjusting the maximum
number of operations per transaction, ranging from 3 to 12,
while maintaining the other variables (Number of
transactions, Number of data items, Maximum write
operations, Number of blind writes per transaction) constant.

Figure 6: Varying the Max number of operations per transaction.

While both cases exhibit a gradual increase, the average
read in our method remains significantly lower compared to
normal transactions (Figure 6). However, the average read in
our method increases gradually due to the higher number of
operations per transaction. Since the number of write
operations per transaction is fixed, more operations per
transaction result in more read items, leading to increased
dependency and consequently more data to read. This explains
the gradual increase observed in the graph.

D. Varying the Number of blind write per transaction

In this scenario, we will be adjusting the number of blind
writes per transaction, ranging from 1% to 10% of the number
of transactions, while keeping the other variables (Number of
transactions, Number of data items, Maximum number of
operations per transaction, Maximum write operations)
constant.

In this case, we observe a gradual decrease in the average
reading in our method, while the average reading remains
relatively constant in normal transactions (Figure 7). This
difference can be attributed to the effect of varying the number
of blind-written data items. In normal transactions, this
variation has no impact. However, in our method, as the
number of blind writes increases, the number of graphs also
increases. Consequently, the number of data items depending

on each graph decreases, leading to a decrease in the average
reading.

Figure 7: Varying the Number of blind writes per transaction.

It is important to note that in the first scenario where the
number of transactions was varied, the graph representing our
method remained constant. This was because the number of
blind writes increased proportionally with the number of
transactions. However, in the current scenario where the
number of transactions and other factors are fixed, while the
number of blind writes was varied, we observe a gradual
decrease in the average number of data items read to recover
after identifying the malicious data.

E. Varying the Max write operations

In this scenario, we will manipulate the number of
maximum write operations, ranging from 1 to 5, while
keeping the other variables constant (Number of transactions,
Number of data items, Maximum number of operations per
transaction, Number of blind write per transaction).

Figure 8: Varying the Max write operations.

In this case, it can be observed that in the normal case, the
average reading remains somewhat constant (Figure 8).
However, in our method, it increases gradually. This occurs
because, with more write operations, the dependency also
increases, given that blind writes are fixed in this scenario.
Although blind writings are fixed, the process involves
writing more data items after reading them, leading to
increased dependency. Consequently, the graph shows a slight
increase over time.

34Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

VII. CONCLUSION

This research proposes a novel technique for swiftly

assessing damage caused by malicious attacks in fog

computing systems. Traditional methods relying on log

analysis are slow, hindering real-time data access. This model

addresses this issue by leveraging blind write lineage,

efficiently tracing the impact of blindly written data. The

model constructs three key data structures during ongoing

transactions: a Blind Data Set to track blindly written items,

a Children Data Set to identify dependent data items, and

Sub-dependency Graphs to represent intricate data

relationships. When an attack is detected, the algorithm

analyzes affected sub-dependency graphs and evaluates data

items within them. This evaluation considers time

parameters, release criteria, and potential damage to generate

a final list of compromised data items. The simulation results

show that the model offers advantages in speed, efficiency,

and accuracy compared to traditional methods. However,

applying this approach to real-world fog systems presents

several requirements. These include the need for robust

transaction logging, real-time dependency tracking

mechanisms, and synchronization across distributed nodes.

One key lesson learned is the critical role of data dependency

management in preventing the propagation of damage.

However, the diversity of fog systems introduces challenges,

particularly the need to balance performance with accuracy

in environments with heterogeneous node configurations and

complex multipath dependencies. Future work will focus on

refining the model to address attacks within specific time

ranges, optimizing memory consumption through more

efficient data structures, and ensuring scalability across

diverse fog architectures. Additionally, exploring blockchain

integration for immutable logging of transactions will further

enhance the system’s security and resilience. Overall, this

research offers a significant contribution towards building

more robust fog computing systems capable of maintaining

real-time data access and swift recovery in the face of

cyberattacks.

ACKNOWLEDGMENT

This work has been supported in part by grant H98230-
22-1-0321 issued by the National Security Agency as part of
the National Centers of Academic Excellence in
Cybersecurity's mission to expand cybersecurity research and
education for the Nation.

REFERENCES

[1] M. S. Ahmad and B. Panda, "Damage Assessment in Fog Computing
Systems: A Blind Write Lineage Approach." In 2024 IEEE 24th
International Symposium on Cluster, Cloud and Internet Computing
Workshops (CCGridW), pp. 50-55. IEEE, 2024.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. "Fog computing and its
role in the internet of things," In Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, pp. 13-16. 2012.

[3] C. Mouradian et al., “A Comprehensive Survey on Fog Computing:
State-of-the-art and Research Challenges”, IEE Communications
Surveys Tutorials, vol. 20, pp. 416-464. 2018.

[4] L. M. Vaquero and L. Rodero-Merino, “Finding Your Way in the Fog:
Towards a Comprehensive Definition of Fog Computing”, ACM
SIGCOMM Computer Communication Review, vol. 44., No. 5, pp. 27-
32, 2014.

[5] G. Sun et al., “Security and privacy preservation in fog-based crowd
sensing on the internet of vehicles,” Journal of Network and Computer
Applications, vol. 134, pp. 89–99, 2019.

[6] M. Mukherjee et al., “Security and Privary in Fog Computing:
Challenges”, IEEE Access, vol. 5, pp. 19293-19304, 2017.

[7] D. Wu and N. Ansari, "A Cooperative Computing Strategy for
Blockchain-Secured Fog Computing," in IEEE Internet of Things
Journal, vol. 7, no. 7, pp. 6603-6609, July 2020, doi:
10.1109/JIOT.2020.2974231.

[8] E. Viganò, M. Loi, and E. Yaghmaei, “Cybersecurity of Critical
Infrastructure,” In The Ethics of Cybersecurity; Springer: Cham,
Switzerland, 2020, pp. 157–177.

[9] P. Kotzanikolaou, M. Theoharidou, and D. Gritzalis, “Cascading
Effects of Common-Cause Failures in Critical Infrastructures,” In: J.
Butts and S. Shenoi (eds) Critical Infrastructure Protection VII. ICCIP
2013. IFIP Advances in Information and Communication Technology,
vol 417. Springer, Berlin, Heidelberg. Communications, 2017, pp. 1-9.

[10] J. Ding, Y. Atif, S. F. Andler, B. Lindström, and M. Jeusfel, “CPS-
based threat modeling for critical infrastructure protection,” ACM
SIGMETRICS Performance Evaluation Review, 45(2), pp.129-132,
2017.

[11] D. Rehak, J. Markuci, M. Hromada, and K. Barcova, “Quantitative
evaluation of the synergistic effects of failures in a critical
infrastructure system,” International Journal of Critical Infrastructure
Protection, 14, pp.3-17, 2016.

[12] R. E. Stearns and D. J. Rosenkrantz, "Distributed Database
Concurrency Controls using Before-values," Proceedings of the 1981
ACM SIGMOD International Conference on Management of Data, pp.
74-83, 1981.

[13] N. das Chagas Mendonca and R. de Oliveira Anido, "Using Extended
Hierarchical Quorum Consensus to Control Replicated Data: from
Traditional Voting to Logical Structures," Proceedings of the Twenty-
Seventh Hawaii International Conference on System Sciences, vol. 27.
pp. 303–312, 1994.

[14] A. Burger, V. Kumar, and M. L. Hines, "Performance of Multiversion
and Distributed Two-Phase Locking Concurrency Control
Mechanisms in Distributed Databases," Inf. Sci., vol. 96, no. 1-2, pp.
129-152, 1997.

[15] P. Ammann, S. Jajodia and Peng Liu, "Recovery from malicious
transactions," in IEEE Transactions on Knowledge and Data
Engineering, vol. 14, no. 5, pp. 1167-1185, Sept.-Oct. 2002, doi:
10.1109/TKDE.2002.1033782.

[16] S. Tripathy and B. Panda, “Post-Intrusion Recovery Using Data
Dependency Approach,” In Proceedings of the 2001 IEEE Workshop
on Information Assurance and Security, pp. 156-160, 2001.

[17] B. Panda and P. Ragothaman, “Database Recovery in Information
Warfare Scenario,” Handbooks in Information Systems, vol. 4,
Information Assurance, Security and Privacy Services, pp. 73-97, H.
Raghav Rao 12 and Shambhu Upadhyaya (Editors), Emerald
Publications, United Kingdom, July 2009.

[18] R. A. Haraty, S. Kaddoura, and A.S. Zekri, “Recovery of business
intelligence systems: Towards guaranteed continuity of patient centric
healthcare systems through a matrix-based recovery approach,”
Telematics and Informatics, 35(4), pp. 801-814, 2018.

[19] M. Alshehri et al., “A Novel Blockchain-based Encryption Model to
Protect Fog Nodes from Behaviors of Malicious Nodes,” Electronics,
vol. 10, pp. 313, 2022.

35Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

