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Abstract— In order to solve problems like temporal lag, 

communication overhead, and the requirement for 

computational and storage resources to be closer to both the 

ground and end users, the idea of fog computing evolved as an 

extension of cloud computing. Due to its large number of 

interconnected nodes, this system is susceptible to cyberattacks. 

Damage from the attack swiftly spreads to other nodes and their 

data items when valid transactions cause modifications using 

the value of a compromised object, thus impairing the system's 

real-time functions. This research proposes a fast damage 

assessment approach to provide users access to unaffected nodes 

while accelerating system recovery. In this paper, we provide 

various algorithms along with simulated results to efficiently 

identify and mitigate damage, ensuring the system's resilience 

and continuity. Our proposed method demonstrates significant 

improvements in damage assessment speed and efficiency 

compared to traditional approaches, with simulation results 

consistently showing substantially fewer data item reads 

required during the recovery process across various scenarios. 

Keywords- Fog computing security; blind write; data 

dependency; damage assessment; malicious transaction. 

I.  INTRODUCTION  

While cloud computing brought advantages like 
processing power and communication, it also raised concerns 
about data security and user experience due to delays. Fog 
computing was developed as an extension of cloud computing 
to tackle these issues. It brings the needed resources closer to 
users but inherits security and privacy risks from traditional 
cloud systems. In fog environments, the interconnected nature 
and vast amount of data create a bigger attack surface, 
allowing damage to spread rapidly. This is especially 
worrisome for real-time processing, where breaches can have 
a swift and significant impact. For critical systems like those 
used by emergency services, hospitals, and police, fast 
recovery of compromised data is essential. Unfortunately, 
traditional recovery methods, which involve shutting down 
systems for analysis and restoration, are not suitable for real-
time fog systems. 

Traditional logs struggle to track data access during 
attacks, hindering recovery. Blind write operations are those 
that update data without reading it.  These can be handily used 
to accelerate recovery.  This research builds on prior work on 
blind write's role in recovery efficiency [1]. We explore the 
damage assessment process and present the effectiveness of 
our approach through simulation. We show that by using blind 

writes, data recovery can be automated and becomes 
significantly faster, eliminating manual data checks. 

This paper is structured as follows: the following section 
will explore the motivation behind this research. Section 3 will 
examine relevant past research connected to this endeavor. In 
Section 4, we will delve into the specifics of the model. 
Section 5 will provide a broad discussion of damage 
assessment for blind write lineage along with their 
corresponding algorithms. Then, in Section 6, the simulated 
results are shown. Finally, Section 7 will wrap up the paper 
with the conclusion. 

II. MOTIVATION 

Distributed fog systems strategically store large amounts 
of data near users, enabling real-time services in critical areas. 
Their speed and reliability make them ideal for essential 
computing infrastructure across various organizations, from 
local emergency services to large enterprises. However, the 
sensitive data they store makes them attractive targets, and 
their inherent vulnerabilities pose significant security 
challenges. 

Fog systems' strength lies in their interconnectedness, but 
this very feature creates a vulnerability. Like a chain breaking 
at its weakest link, a single compromised node can trigger a 
domino effect, crippling interconnected systems. These 
systems are also heterogeneous, meaning different nodes have 
varying software and data. Additionally, the sheer volume of 
data across all connected nodes makes recovery extremely 
complex after an attack. This complexity leads to significant 
delays, a major issue considering the real-time nature of the 
services fog systems provide. 

A successful attack on a single fog node can wreak havoc 
beyond its local database. Corrupted data can spread like a 
virus as legitimate transactions unknowingly read tainted 
information and update healthy data based on these bad 
values. This domino effect rapidly infects other 
interconnected nodes, creating a snowballing problem. 
Recovering from such an attack becomes a race against time, 
as these systems rely on real-time functionality. A swift and 
accurate recovery mechanism is essential, not just for system 
survival but also to minimize service disruptions. 

The potential impact on critical infrastructure includes:  

• Emergency Services: A compromised fog node 
could lead to incorrect dispatch of information, 
delaying response times and potentially costing 
lives. 
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• Healthcare Systems: Corrupted patient data 
could result in misdiagnosis or improper 
treatment plans. 

• Financial Institutions: Tainted transaction data 
could cause widespread financial losses and 
erode customer trust. 

• Smart City Infrastructure: Compromised 
traffic management systems could lead to 
gridlock or increased accident risks. 

Traditional recovery methods, which often involve 
system-wide shutdowns and time-consuming manual checks, 
are simply not feasible for these real-time, mission-critical 
systems. The need for a solution that can rapidly assess 
damage, isolate compromised data, and restore system 
functionality is paramount. 

This paper proposes a novel method for recovering data in 
fog computing systems that manage vital information. We 
highlight the urgency of real-time recovery during 
cyberattacks, leveraging the concept of blind writes to 
accelerate the damage assessment process. Our approach aims 
to minimize downtime, reduce the spread of corrupted data, 
and ensure the continuity of essential services even in the face 
of sophisticated attacks. 

By addressing these critical challenges, our research 
contributes to building more resilient fog computing 
infrastructures capable of withstanding and swiftly recovering 
from cyber threats, ultimately safeguarding the vital services 
that modern society increasingly depends upon. 

III. RELATED WORK 

Following the success of cloud computing, fog and edge 
computing are emerging as the next frontier. Research on fog 
computing's role in the Internet of Things is well-established 
by Bonomi et al. in [2] as well as several insightful surveys 
exploring its key issues and potential by Mouradian et al. in 
[3] and Vaquero et al. in [4]. Security remains a major 
concern, as evidenced by various studies by Sun et al. [5] and 
Mukherjee et al. [6]. In addition, in reference [7], Wu et al. 
explore security vulnerabilities in critical infrastructure data 
storage and management systems. Additionally, research by 
Viganò et al. in [8] highlights vulnerabilities specific to 
critical infrastructure data management systems. 

Beyond general security, researchers like Kotzanikolaou 
et al. [9] have investigated targeted risk assessment models for 
cascading failures in critical infrastructure. Others have 
emphasized how Cyber-Physical Systems introduce new 
attack vectors in data-rich environments like Ding et al. in 
[10]. Notably, Rehak et al. [11] propose a valuable model 
depicting interconnected elements within an infrastructure 
system. This model's focus on dependencies closely resembles 
the interconnected nature of fog computing systems, offering 
insights into potential cascading damage from attacks. 

Database attacks can have a ripple effect, corrupting 
healthy data through seemingly valid transactions unaware of 
the compromise.  Post-attack recovery is crucial, relying 
heavily on system logs to identify affected data and initiate 
recovery procedures. The concept of blind writes, updating 
data without reading them, has been explored by various 

researchers. Stearns et al. [12] define it as writing data without 
a prior read request, highlighting the lack of a preliminary 
check. Mendonca et al. [13] emphasize that during a blind 
write operation, data copies are modified regardless of their 
original values. Similarly, Burger et al. [14] focus on the 
absence of a pre-write read operation inherent to blind writes. 

Rapid damage assessment is vital for fog system recovery. 
Existing methods leverage transaction or data dependencies 
for this purpose by Ammann et al.  in [15] and Tripathy et al. 
in [16].  Recovery is equally important, as evidenced by 
research on database recovery after attacks by Panda et al. [17] 
and efficient damage assessment algorithms by Haraty et al. 
[18]. Notably, Haraty et al. [18] presents a memory and time-
efficient algorithm that effectively handles blind writes, 
minimizing attack impact and enabling swift, accurate 
recovery. 

The field of damage assessment has seen prior research 
exploring the potential of blind writes for faster identification 
of compromised data [1]. This paper takes that concept a step 
further. We introduce a new model specifically tailored for fog 
computing systems, a domain where rapid damage assessment 
is paramount due to their interconnected nature and the 
potential for swift propagation of attacks. Our proposed model 
leverages blind writes for efficient damage assessment, and 
we will further validate its effectiveness through the inclusion 
of simulated results. By incorporating simulations, we aim to 
demonstrate the model's ability to quickly pinpoint 
compromised data after a cyberattack in a fog computing 
environment. 

 Fog computing's distributed nature compels us to explore 
damage assessment techniques from distributed systems 
research. Existing work in this area offers promise for fog 
computing. For instance, Alshehri et al. [19] outline a 
blockchain-based method designed to prevent a malicious fog 
node from affecting other nodes in the network. The authors 
propose a model that uses blockchain technology and 
Ciphertext-Policy Attribute-Based Encryption (CP-ABE) to 
create fog federations that enable secure and distributed 
authorization among fog nodes. This approach aims to reduce 
time delays and communication overhead between fog nodes 
and cloud servers by allowing fog nodes within the same 
federation to conduct distributed authorization processes 
using smart contracts on the blockchain. By adapting these 
techniques, specifically by integrating blockchain-based 
authorization mechanisms and encryption methods such as 
CP-ABE, fog systems can enhance their defense against 
cyberattacks while maintaining system performance and 
scalability. This approach enables more secure and efficient 
damage recovery in fog computing environments, where 
timely and coordinated responses to threats are crucial for 
resilience. 

Our research introduces the concept of blind write lineage 
to address security challenges in fog computing. This model 
efficiently traces data dependencies and rapidly assesses 
damage by leveraging the characteristics of blind writes. 
Unlike traditional methods that rely on log analysis, our 
approach offers a more effective solution for real-time damage 
assessment in interconnected fog systems, which are 
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particularly vulnerable to cascading failures and rapid damage 
propagation. 

IV. BLIND WRITE LINEAGE MODEL 

The previous research [1] leverages blind writes for rapid 
damage assessment in fog computing systems. Blind writes 
update data without first reading their existing values.  A key 
concept is data dependency, where one data item relies on the 
value of another for its update. 

[1] introduces the concept of blind write lineage, which 
tracks data items solely dependent on a blindly written item or 
its descendants. To facilitate damage assessment and 
recovery, two crucial data structures are maintained: 

Blind Write (BW) List: List which includes blindly written 
data items, timestamps, and transaction numbers.  

Blind Write Lineage (BW Lineage) List: Tracks the lineage 
of data items solely dependent on blindly written items or their 

descendants. Represented as [Parent_node → Child_node].  

Blind write lineage is a method for swift damage 
assessment in fog computing systems. It capitalizes on blind 
writes, where data updates occur without first retrieving the 
existing value. The previous paper [1] explored two primary 
scenarios within blind write lineage: 

Case 1: Single-parent/Single-child Lineage (Simpler 
Scenario) 

This case represents a simpler scenario where data items 
are updated sequentially, with each item relying on a single 
predecessor. The lineage of affected data items can be 
efficiently traced back to the original blindly written item. 

Case 2: Multipath Lineage (More Complex Scenario) 
This case presents a more intricate scenario where a child 

node might have multiple parent nodes, and vice versa. Data 
items can also be updated by leveraging multiple arguments. 
This complexity necessitates a more refined approach to 
damage assessment.  

In a fog computing system, the integrity of data relies 
heavily on the relationships between various data items. When 
an attack occurs, it is crucial to identify how data has been 
compromised by analyzing transaction logs. These logs store 
the sequence of operations performed on data items, including 
read and write operations. In the context of blind writes, where 
data is updated without reading its prior value, it becomes 
especially challenging to trace which items are affected by 
compromised data. 

To efficiently perform damage assessment, the system 
needs to track how data dependencies unfold. Each time a data 
item is blindly written, its dependent items—those that rely on 
it for updates—become potential candidates for compromise. 
By analyzing the transaction logs, the system can trace these 
dependencies and organize them into subgraphs, which 
represent different clusters of related data items. 

The analysis of transaction logs in a fog computing system 
can reveal complex data dependencies. These dependencies 
can be visualized as a graph, where: 

• Nodes represent data items 

• Edges represent dependencies between data 
items (i.e., one data item being used to update 
another) 

However, this overall graph is not necessarily fully 
connected. Instead, it often consists of multiple disconnected 
subgraphs. Each of these subgraphs (G1, G2, G3, etc.) 
represents a distinct "blind write lineage" - a chain of data 
updates originating from a blindly written data item. 

 

Figure 1. Multiple subgraphs in the data dependency (G) [1]. 

The analysis of transaction logs can reveal multiple 
disconnected subgraphs within the overall data dependency 
graph (Figure 1). These subgraphs, denoted as Gi (where i 
represents a specific subgraph), collectively form the set G. 
Each subgraph (Gi) represents a distinct blind write lineage. 
For Figure 1, G would be: G: {G1, G2, G3}.   This structure 
allows for efficient assessment of damage even in scenarios 
with multiple attack points. 

One algorithm focuses on the simpler scenario of single-
parent/single-child lineage. It operates by first checking if the 
initially compromised data item is present on the Blind Write 
(BW) list. If found, the algorithm leverages the Blind Write 
Lineage (BW Lineage) list to identify all subsequent data 
items affected by the attack. The final output is a 
comprehensive list of Damaged Data Items that require 
remediation.  

The next algorithm tackles the more general scenario of 
multipath lineage. It achieves this by first identifying distinct 
subgraphs within the overall data dependency graph. For each 
subgraph, the algorithm defines three crucial sets: 

Blind Write Set (BWSi): This set encompasses all blindly 
written data items within the subgraph, along with their 
corresponding timestamps. These blindly written items serve 
as the root cause of potential damage. 

Children Data Set (CDSi): This set comprises all data 
items that are dependent on one or more elements within the 
BWSi of the same subgraph. It also includes timestamps for 
each data item's update. These data items are considered 
potentially compromised due to their dependency on blindly 
written elements. 

Damaged Set (D): These items are considered damaged 
because they were created by an attacker transaction.  The 
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damaged set is like a family tree, where each data item is a 
parent node in their respective subgraphs. This is because the 
assumption is that attacker transactions create data blindly.  

By meticulously constructing these sets for each subgraph 
based on transaction data, the last algorithm lays the 
groundwork for effective damage assessment. The resulting 
subgraphs, along with the BWSi and CDSi sets, provide 
valuable insights into the extent of the attack and the data 
items that require further investigation or restoration. 

V. DAMAGE ASSESSMENT 

For damage assessment, time (𝑡𝑎) as in attack time and for 
every data item last updated time ( 𝑡𝑙𝑎𝑠𝑡 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 ) and 

graph(G) must be taken into consideration for damage 
assessment. As was mentioned in the previous paper [1], the 
same data item can be updated in different transactions at 
different times. So, time is very crucial here to find the 
damaged data items and if that damaged item has been used 
before or after the attack, depending on the time, it can be 
decided if the damaged item should be recovered or not. 
Again, the damaged graph is needed as in to differentiate if 
the same data item is updated at the same time, it would be 
much easier for assessment. For this purpose, the final updated 
time for each data item and their corresponding subgraph 
would be listed in a table (Table II). There would be one table 
for Graph set Gi (Table I). Suppose for this example let’s 
check the final updated timetable and the BWSi and CDSi set: 

TABLE I.  SETS 

Gi G1 G2 G3 

BWSi {(A,𝒕𝟏), (X,𝒕𝟑), (Y,𝒕𝟓)} {(P,𝒕𝟏𝟎), (S,𝒕𝟏𝟐)} {(J,𝒕𝟏𝟓)} 

CDSi {(B,𝒕𝟐), (C,𝒕𝟒), (D,𝒕𝟔), 

(E,𝒕𝟖), (F,𝒕𝟕), (G,𝒕𝟗)} 

{(Q,𝒕𝟏𝟏),(C,𝒕𝟏𝟒), 

(T,𝒕𝟏𝟓)}, (R,𝒕𝟏𝟖)} 

{(C,𝒕𝟏𝟔), 

(K,𝒕𝟏𝟕)} 

D {(S,𝒕𝟏𝟐)} 

TABLE II.  FINAL UPDATED TIME TABLE 

Data Items A B X Y D E F G 

𝒕𝐋𝐚𝐬𝐭 𝐔𝐩𝐝𝐚𝐭𝐞𝐝 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟓 𝒕𝟔 𝒕𝟕 𝒕𝟖 𝒕𝟗 

Graph G1 G1 G1 G1 G1 G1 G1 G1 

 
Data Items P Q S T J C K R 

𝒕𝐋𝐚𝐬𝐭 𝐔𝐩𝐝𝐚𝐭𝐞𝐝 𝒕𝟏𝟎 𝒕𝟏𝟏 𝒕𝟏𝟐 𝒕𝟏𝟒 𝒕𝟏𝟓 𝒕𝟏𝟔 𝒕𝟏𝟕 𝒕𝟏𝟖 

Graph G2 G2 G2 G2 G3 G3 G3 G2 

 

In all three subgraphs (Figure 1), C is found to be 

updated at 𝑡4, 𝑡13 𝑎𝑛𝑑 𝑡16. But in Table II, the final update of 

C is listed which is 𝑡16 and it appears in subgraph G3 (shaded 

part). 

It is possible for the same data items to be blindly written 

by multiple transactions. For instance, let's consider the data 

item S, which could be blindly written in all the subgraphs 

(G1, G2, and G3). In such a scenario, all the Blind Write Sets 

(BWSi) for these subgraphs would contain "S." However, if 

the update time is not considered within the set, all the 

subgraphs will be deemed damaged. So, the time of the 

update of each data item has been included in the BWSi and 

CDSi as an ordered pair. Thus, in this example, when the 

initial damaged set D, {(S,𝑡12)}, is intersected with the Blind 

Write Sets (BWSi) of all the subgraphs in the system, only G2 

would be identified as damaged, as the ordered pairs match. 

In the case of G1 and G2, G1 has used a non-damaged C. 

Since it is in a different graph it has no connection with 

subgraph G2 hence this value is independent of that value of 

C there.  It is evident that data item C is a child of S, the 

initially maliciously modified data item, implying that C is 

damaged. However, in G3, C has been modified using a 

blindly written data item, J. Given that these subgraphs are 

isolated and unrelated to each other, it is deduced that C in G3 

has already been recovered and can be released for use. 

Upon establishing that a specific graph is affected, the 

time of update for every child of the initial damage is referred 

to as the affected time. For instance, in G2, if S is the initial 

damage, then the time of update for C is denoted as 𝑡13, which 

represents the affected time for C, and for T, the affected time 

is 𝑡14. These affected times can also be found in the CDSi. 

Another case to be mindful of is the possibility of a specific 

data item being recovered within the same damaged graph. 

Let's illustrate this scenario with an example to provide 

clarity: 

                  
Figure 2. An example showing a data item being damaged and recovered in 

the same Subgraph G2.  

In Figure 2, it is evident that data item C was initially 

damaged at 𝑡13. However, it undergoes modification again at 

𝑡20, transpiring within the same damaged graph. Notably, this 

time, C has a parent data item R that remains undamaged. 

Consequently, C is successfully recovered within the same 

damaged graph. 

In a damage assessment scenario using the following 

algorithm for case 2, imagine we have a subgraph where the 

initial damaged data item is A, which belongs to the Blind 

Write Set (BWS) of the subgraph. The system starts by 

identifying that the subgraph is compromised 

because A intersects with the BWS. Next, it evaluates the 

Child Data Set (CDS), which contains dependent data items, 

such as C and DD. Since C depends on A, it is flagged for 
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potential damage and added to the Potential Damaged List 

(PDL). Moving further, D depends on C, and as C is already 

marked for damage, D is also added to the PDL. The 

algorithm then checks the final updated times 

for C and D against the attack time and the affected time. If 

the last updated time of an item is equal to the affected time 

(e.g., C), it is confirmed as damaged and retained for further 

evaluation. For items like D, if its last update is after the 

affected time, the algorithm checks if its parent (in this 

case, C) is damaged. Since C is indeed compromised, D is 

also classified as damaged. Finally, the algorithm outputs a 

list of damaged data items (C and D) for further recovery 

processes. This structured approach efficiently isolates and 

assesses damage propagation through data dependencies.  

 

Algorithm: (Evaluate Subgraph Damage) 
Input: 

    D: The initial damaged set of data items. 
    BWSi: The Blind Write set of a specific subgraph. 

    CDSi :The Child Data Set  of a specific subgraph. 

    G: The data structure or graph representing the subgraphs. 

    𝑡𝑎: Attack time  

    𝑡𝑎𝑓𝑓: Affected time 

    𝑡𝑙𝑎𝑠𝑡 : last/final updated time 

    Rl: released data item list that contains the released data items would be 

kept after process 
    PDl: potential damaged list 

   damaged_data_items: A list of data items within the subgraph to retain 

for further evaluation. 
Procedure: 

1. Assess Subgraph for Damage considering each Gi: 

1.1. If D∩BWSi!=NULL for Gi 

1.1.1. indicating there's at least one common data item. 

1.1.2. Gi is damaged.  
2. Identify Data Items for Further Evaluation (if damaged): 

2.1. If Gi is damaged: 

2.1.1. For each data items y in CDSi: 
2.1.1.1. if y= f(z) where zϵ D or zϵ descendant of D 

2.1.1.1.1. Add y to the PDl 

2.1.2. For each data item x in PDI 
2.1.2.1. Check table Final_updated_timetable  

2.1.2.2. If t_last(x)=t_aff 

2.1.2.2.1. Add x to the damaged_data_items list  
2.1.2.3. Elif t_last(x)> t_aff 

2.1.2.3.1. if the Gi = the subgraph containing the initial 

damaged data item 
2.1.2.3.1.1. check parents of x 

2.1.2.3.1.2. if x=f(z) where zϵD or zϵ descendant 

of D 
2.1.2.3.1.2.1. Add x to the damaged_data_items 

list 

2.1.2.3.1.3. Else 

2.1.2.3.1.3.1. Release x 

2.1.2.3.2. Else 

2.1.2.3.2.1. Release x 

3. if D∩BWSi =NULL for Gi 

3.1. Release all the data items in Gi 
4. Output Result:  

4.1. return the damaged_data_items list for further evaluation. 
Comment: 
2.1.2.2. to 2.1.2.2.1.1: If the last update time is after the damaged time, only 

then it is checked if they belong to same graph or in the different graph. If 
they belong to same graph, then they could be affected depending on if one 

of there are damaged or not and if they belong to different graph then they 

can be released. This scenario can be explained in the following section. 

 

 

 
Figure 3. Multiple subgraphs in the data dependency (G). 

TABLE III.  FINAL UPDATED TIMETABLE (FOR SCENARIO (A)) 

Data Items P Q S T C R 

𝒕𝐋𝐚𝐬𝐭 𝐔𝐩𝐝𝐚𝐭𝐞𝐝 𝒕𝟏𝟎 𝒕𝟏𝟏 𝒕𝟏𝟐 𝒕𝟏𝟒 𝒕𝟏𝟗 𝒕𝟏𝟖 

Graph G2 G2 G2 G2 G2 G2 

TABLE IV.  FINAL UPDATED TIMETABLE (FOR SCENARIO (B)) 

Data Items P Q S T J C K R 

𝒕𝐋𝐚𝐬𝐭 𝐔𝐩𝐝𝐚𝐭𝐞𝐝  𝑡10  𝑡11 𝑡12 𝑡14 𝑡15 𝒕𝟏𝟔 𝑡17 𝑡18 

Graph G2 G2 G2 G2 G3 G3 G3 G2 

 

In Figure 3, two scenarios are discussed using G2 and G3. 

Tables III and IV display the final updated timetables for 

scenario (a) and (b), respectively. 

When examining all the children for a particular graph, 

if it is discovered that the final updated time of a specific child 

is after the attack, the graph undergoes scrutiny. If the graph 

is distinct from the damaged graph, then the child data item 

is deemed safe for release. Because it belongs to a different 

graph that means it has no connection with the damaged items 

in the previous graph. Had there been a connection it would 

have been in the same graph. Since it is not in the same graph 

that guarantees there is no connection with any of the 

previously damaged values. However, if it belongs to the 
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same damaged graph, it could be considered as damaged 

depending on its’ parents. If it’s one of the parents is 

damaged, then definitely that data item is damaged. And if 

none of its parents are damaged then it can be said that even 

after being damaged it recovered in the same graph. For 

example, in scenario (a), checking Table III reveals that the 

child data item C was finally updated at 𝑡19, transpiring in the 

damaged graph G2 (shaded part). Conversely, from the 

shaded area of Table IV (scenario (b)), even though C is a 

child of the initial damaged data item S, its last update 

occurred at 𝑡16 in the separate graph G3, signifying that C is 

safe for release. 

Our algorithm systematically processes each data item in 

the database to ascertain its affected status. If deemed 

affected, the data item is forwarded for recovery; if not, it is 

released. This comprehensive approach involves checking 

every graph, ensuring that each data item within that graph 

undergoes examination. 

It is essential to note that there will be no data item 

existing outside of a graph. This assurance stems from the 

inherent nature of data item creation, where it is either 

generated blindly or based on another data item. In both 

scenarios, the data item is bound to be part of a graph. 

As the algorithm meticulously examines each graph and 

subsequently categorizes every data item within as damaged 

or undamaged, the guarantee is established that the algorithm 

checks and classifies every data item as damaged or not 

damaged without exception. 

VI. SIMULATION RESULTS 

In our simulation study, we consider five variables, 

which are as follows: 

1. Number of Transactions: This represents the quantity 

of transactions executed per experiment. 

2. Number of Data Items: Denotes the total count of data 

items utilized per experiment. 

3. Maximum Number of Operations per Transaction: 

This parameter can vary and is randomly selected within 

the program. 

4. Maximum Write Operations: Specifies the maximum 

number of write operations permitted per transaction, 

which can also vary. 

5. Number of Blind Writes: Indicates the number of blind 

writes permitted in each experiment, calculated as 5% of 

the total number of transactions. 

For consistency, we will maintain the following base 

values throughout the experiments: 

• Number of Transactions = 200 

• Number of Data Items = 1000 

• Maximum Number of Operations per Transaction = 5 

• Maximum Write Operations = 2 

• Number of Blind Writes per Transaction = (Number of 

Transactions * 5%) 

In each scenario, we will manipulate one variable while 

keeping the others constant. We will execute the program 25 

times for each case and compute the average number of data 

readings using our blind writing method, as well as in normal 

transactions after identifying the malicious blind write. 

A. Varying the number of transactions 

In this scenario, we will be altering the number of 
transactions, ranging from 200 to 900, while maintaining the 
other variables (Number of data items, Maximum number of 
operations per transaction, Maximum write operations, 
Number of blind writes per transaction) constant. 

 
Figure 4: Varying the number of transactions. 

As observed (Figure 4), when the number of transactions 
increases, the average data item reads after identifying 
malicious data in the usual log gradually rises. However, in 
our method, the average data item reads from the graph 
remains relatively constant but significantly lower compared 
to the usual scenario. This trend is attributed to the increasing 
number of transactions, which consequently leads to a higher 
number of blind writes and subsequently more graphs. Despite 
this, the average dependency per graph remains consistent. 
Hence, the graph representing our method appears almost flat 
due to this consistent average dependency per graph. 

B. Varying the number of data items 

In this scenario, we will be adjusting the number of data 
items, ranging from 500 to 3000, while keeping the other 
variables (Number of transactions, Maximum number of 
operations per transaction, Maximum write operations, 
Number of blind writes per transaction) constant.  

In this scenario, we observe a significant reduction in the 
average reading of data items after identifying the damaged 
data in our method compared to the normal case (Figure 5). 
However, the graph remains relatively consistent. This 
consistency can be attributed to the fixed number of blind-
written data items and the fixed number of written data items 
per transaction in our method. Since, the reading of data items 
is dependent on the data items written previously which means 
previously written data items are mostly read later on to write 
another data item, leading to consistent behavior even with 
variations in the number of data items. 
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Figure 5: Varying the number of data items. 

C. Varying the Max number of operations per transaction 

In this scenario, we will be adjusting the maximum 
number of operations per transaction, ranging from 3 to 12, 
while maintaining the other variables (Number of 
transactions, Number of data items, Maximum write 
operations, Number of blind writes per transaction) constant. 

 
 

Figure 6: Varying the Max number of operations per transaction. 

While both cases exhibit a gradual increase, the average 
read in our method remains significantly lower compared to 
normal transactions (Figure 6). However, the average read in 
our method increases gradually due to the higher number of 
operations per transaction. Since the number of write 
operations per transaction is fixed, more operations per 
transaction result in more read items, leading to increased 
dependency and consequently more data to read. This explains 
the gradual increase observed in the graph. 

D. Varying the Number of blind write per transaction 

In this scenario, we will be adjusting the number of blind 
writes per transaction, ranging from 1% to 10% of the number 
of transactions, while keeping the other variables (Number of 
transactions, Number of data items, Maximum number of 
operations per transaction, Maximum write operations) 
constant.  

In this case, we observe a gradual decrease in the average 
reading in our method, while the average reading remains 
relatively constant in normal transactions (Figure 7). This 
difference can be attributed to the effect of varying the number 
of blind-written data items. In normal transactions, this 
variation has no impact. However, in our method, as the 
number of blind writes increases, the number of graphs also 
increases. Consequently, the number of data items depending 

on each graph decreases, leading to a decrease in the average 
reading. 

 
 

Figure 7: Varying the Number of blind writes per transaction. 

It is important to note that in the first scenario where the 
number of transactions was varied, the graph representing our 
method remained constant. This was because the number of 
blind writes increased proportionally with the number of 
transactions. However, in the current scenario where the 
number of transactions and other factors are fixed, while the 
number of blind writes was varied, we observe a gradual 
decrease in the average number of data items read to recover 
after identifying the malicious data. 

E. Varying the Max write operations 

In this scenario, we will manipulate the number of 
maximum write operations, ranging from 1 to 5, while 
keeping the other variables constant (Number of transactions, 
Number of data items, Maximum number of operations per 
transaction, Number of blind write per transaction). 

 
 

Figure 8: Varying the Max write operations. 

In this case, it can be observed that in the normal case, the 
average reading remains somewhat constant (Figure 8). 
However, in our method, it increases gradually. This occurs 
because, with more write operations, the dependency also 
increases, given that blind writes are fixed in this scenario. 
Although blind writings are fixed, the process involves 
writing more data items after reading them, leading to 
increased dependency. Consequently, the graph shows a slight 
increase over time. 
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VII. CONCLUSION 

This research proposes a novel technique for swiftly 

assessing damage caused by malicious attacks in fog 

computing systems. Traditional methods relying on log 

analysis are slow, hindering real-time data access. This model 

addresses this issue by leveraging blind write lineage, 

efficiently tracing the impact of blindly written data. The 

model constructs three key data structures during ongoing 

transactions: a Blind Data Set to track blindly written items, 

a Children Data Set to identify dependent data items, and 

Sub-dependency Graphs to represent intricate data 

relationships. When an attack is detected, the algorithm 

analyzes affected sub-dependency graphs and evaluates data 

items within them. This evaluation considers time 

parameters, release criteria, and potential damage to generate 

a final list of compromised data items. The simulation results 

show that the model offers advantages in speed, efficiency, 

and accuracy compared to traditional methods. However, 

applying this approach to real-world fog systems presents 

several requirements. These include the need for robust 

transaction logging, real-time dependency tracking 

mechanisms, and synchronization across distributed nodes. 

One key lesson learned is the critical role of data dependency 

management in preventing the propagation of damage. 

However, the diversity of fog systems introduces challenges, 

particularly the need to balance performance with accuracy 

in environments with heterogeneous node configurations and 

complex multipath dependencies. Future work will focus on 

refining the model to address attacks within specific time 

ranges, optimizing memory consumption through more 

efficient data structures, and ensuring scalability across 

diverse fog architectures. Additionally, exploring blockchain 

integration for immutable logging of transactions will further 

enhance the system’s security and resilience. Overall, this 

research offers a significant contribution towards building 

more robust fog computing systems capable of maintaining 

real-time data access and swift recovery in the face of 

cyberattacks. 
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